

St. John’s Linux Users’ Group

Donald Craig
March 23, 2006

Ruby on Rails

Introduction
● Ruby on Rails is an open source framework for

developing web applications.
● The framework was extracted from an existing

project management application called
Basecamp, written by 37signals.

● Uses a Model-View-Controller Architecture
(MVC).

● Provides an Object-Relational Mapper (ORM).
● Version 1.0 released December 13, 2005.
● Disclaimer...

Philosophies

● Don’t Repeat Yourself (DRY)
– Keep duplication at a minimum.

– Makes modifications to the system less tedious and
error prone.

● Convention over configuration
– Use sensible (and natural) defaults for the location

of files, names of database tables, class names etc.

● Encourage testing during development.
– Supports unit tests (for models) and functional tests

(for controllers).

Model-View-Controller

● From Wikipedia:
– “Model-view-controller (MVC) is a software architecture that

separates an application’s data model, user interface, and control
logic into three distinct components so that modifications to one
component can be made with minimal impact to the others.”

● Model: typically sits on top of a database.
● View: What the user actually sees (web page).
● Controller: Takes requests; acts as a link

between the model and the view.
● The controller and the view are closely related

(together they make up the presentation layer).

The Rails Cycle

http://wiki.rubyonrails.com/rails/pages/UnderstandingRailsMVC

http://wiki.rubyonrails.com/rails/pages/UnderstandingRailsMVC

Active Record (AR)
● Implements the “model” part of MVC.
● All database accesses go through the AR.
● Conventions:

– Database tables are plural with underscores
● e.g. stock_holdings

– AR class names are singular with camel-case
● e.g. StockHolding

– Primary keys are always named id
– Foreign keys use the singular name of the foreign

table with _id appended

Active Record (AR)
● Data validations are handled by AR.

– e.g. validate_presence_of,
validate_uniqueness_of, validate_format_of

● Relationships between tables are handled by
AR.
– e.g. has_one, has_many, belongs_to,
has_and_belongs_to_many

● AR handles the Object/Relational Mapping
layer.
– Makes database access/modification easier.

Active Record (example)

Consider the following two database tables:
CREATE TABLE patients (
 id int unsigned NOT NULL auto_increment,
 given_names varchar(64) NOT NULL,
 last_name varchar(64) NOT NULL,
 mcp_number varchar(12) NOT NULL,

 PRIMARY KEY(id)
);

CREATE TABLE charts (
 id int unsigned NOT NULL auto_increment,
 patient_id int unsigned NOT NULL,
 weight int(4) NOT NULL,
 height int(4) NOT NULL,
 comment varchar(255) NOT NULL,
 date datetime NOT NULL,

 PRIMARY KEY(id)
);

Active Record (example)

Here are the corresponding Active Records:

class Patient < ActiveRecord::Base
 validates_presence_of :given_names, :last_name
 validates_uniqueness_of :mcp_number
 validates_format_of :mcp_number,
 :with => /^\d{12}$/,
 :message => "must be 12 digits"
 has_many :charts
end

class Chart < ActiveRecord::Base
 validates_presence_of :date, :comment

 belongs_to :patient
end

Action Pack (Controller/Views)

● The controller class contains a collection of
methods which represent actions to be
performed on the database.

● Each action typically consults the database
performing necessary reads and/or writes.

● The controller then delegates control to the
corresponding view which is simply an .rhtml
file (HTML + snippets of Ruby code).

● The controller also contains methods that are
called when forms are submitted.

Action Pack (example)
class ClinicController < ApplicationController
 def index
 list
 render :action => 'list'
 end

 def list
 @patient_pages, @patients =
 paginate :patients, :per_page => 10
 end

 def show
 @patient = Patient.find(params[:id])
 end

 def new
 @patient = Patient.new
 end

 def create
 ...
 end

 def edit
 @patient = Patient.find(params[:id])
 end

 def update
 ...
 end

 def destroy
 ...
 end
end

<h1>Listing patients</h1>

<table>
 <tr>
 <% for column in Patient.content_columns %>
 <th><%= column.human_name %></th>
 <% end %>
 </tr>

<% for patient in @patients %>
 <tr> ...

<% for column in Patient.content_columns %>
<p>
 <%= column.human_name %>:
 <%=h @patient.send(column.name) %>
</p>
<% end %>

<%= link_to 'Edit',
 :action => 'edit', :id => @patient %> |
<%= link_to 'Back', :action => 'list' %>

<h1>New patient</h1>
<%= start_form_tag :action => 'create' %>
 <%= render :partial => 'form' %>
 <%= submit_tag "Create" %>
<%= end_form_tag %>
<%= link_to 'Back', :action => 'list' %>

list.rhtml

new.rhtml

show.rhtml

Object Relational Mapping (ORM)

● A class represents a database table, an object
represents a row in the table and an object
attribute represents a column of the row.

● Allows one to access/modify a database using
constructs native to an object-oriented
language instead of having to use SQL.

● Relationships between tables can also be
created and navigated using native object-
oriented constructs.

ORM (examples)
 pat = Patient.new
 pat.given_names = "Homer J."
 pat.last_name = "Simpson"
 pat.mcp_number = "123456789012"
 pat.save

 Patient.create(:given_names => "Marge",
 :last_name => "Simpson",
 :mcp_number => "210987654321")
 require 'pp'

 pp Patient.find(1)
 pp Patient.find_by_last_name("Simpson")
 pp Patient.find_all_by_last_name("Simpson")

 pat = Patient.find_by_given_names("Homer J.")
 pat.given_names = "Homer Jay"
 pat.save
 pp Patient.find(1)

 Patient.find(params[:id]).charts.create(params[:chart])

Scaffolding

● Allows one to generate a Controller (with its
associated views) and Model very quickly.

● Intended to get a functional web application up
and running quickly.

● The web interface is very primitive. It’s not
really intended for production web sites.

● You can use scaffolding to help learn some of
the fundamentals of Rails.

● As you further develop your application, the
scaffolding disappears.

Software Compatibility

● Ruby on Rails is not tied to any one specific
web server, database or even operating
system.
– Web servers known to work with Rails include:

Apache, WEBrick, LightTPD, ...

– Databases that work with Rails include: MySQL,
PostgreSQL, SQL Server, DB2, Oracle, ...

– Rails friendly Operating Systems include: Linux,
Mac OS X, Windows, (many of the core
developers work on Mac OS X).

Miscellaneous

● Downloading and installing the Rails framework
is straight forward, but a bit tedious:
– See http://www.rubyonrails.org/down for details.

– Alternatively, Mac OS X users can try:
http://locomotive.sourceforge.net/

– Windows users can try:
http://instantrails.rubyforge.org/

● RadRails, an IDE built on the Eclipse “Rich
Client Platform” (RCP), is available at:
http://www.radrails.org/

http://www.rubyonrails.org/down
http://locomotive.sourceforge.net/
http://instantrails.rubyforge.org/
http://www.radrails.org/

Comparing the Java/J2EE stack
with the Ruby on Rails stack...

http://jutopia.tirsen.com/articles/2005/10/28/why-ruby-on-rails

http://jutopia.tirsen.com/articles/2005/10/28/why-ruby-on-rails

References

● Helpful Links:
– http://www.rubyonrails.org

– http://wiki.rubyonrails.org/rails

– http://developer.apple.com/tools/rubyonrails.html

– http://www.rubyonrails.org/docs

● Useful Books:
– Agile Web Development with Rails

– Programming Ruby (2nd edition)

– More books on the way...

http://www.rubyonrails.org/
http://wiki.rubyonrails.org/rails
http://developer.apple.com/tools/rubyonrails.html
http://www.rubyonrails.org/docs

Demo...

http://www.cs.mun.ca/~donald/slug/2006-03-23/demo.php

http://www.cs.mun.ca/~donald/slug/2006-03-23/demo.php

