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Motivation, Purpose and Outline
Software component interfaces can be represented using Petri nets.

Multiple component interfaces can be composed using a formal technique
(not entirely relevant to this particular presentation).

In order to assess the compatibility of the resulting composition, we must
determine whether the composed net is deadlock free.

Outline

— Introduction to Petri nets

— Reachability analysis

— Structural analysis

— Net simplification techniques
* Similar and essential siphons
x Parallel paths
x Alternative paths

— Conclusions



Introduction to Petri Nets
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e A Petri net is defined by sets of places (representing conditions) and transi-

tions (representing events) which are connected to each other by directed
arcs, N = (P, T, A). We define:

Inp(p) = {teT|(tp)ecA},  eg. Inp(ps) = {l2}
Out(p)= {teT|(p,t)e A}, e.g. Out(ps) = {t3,%4}
Inp(t) = {peP|(pt)eAl e.g. Inp(t1) = {p2,ps}
Out(t)= {peP|(t,p) €A}, e.g. Out(t1) = {p1}.

e The structure of a Petri net can be described by a connectivity matrix C
(the rows correspond to places and the columns correspond to transitions).



Introduction to Petri Nets (cont’d)

e We can assign tokens to the places of a Petri net. This is known as a marked
net, M = (P,T, A, mg), Where my is the initial marking function.

e A transition, t, is enabled in marking mg iff Vp € Inp(t) : mo(p) > O.
An enabled transition can fire — this moves one token from each of the
transition’s input places to each of its output places.

e When no transition is enabled, the net is deadlocked. The firing sequence
(t2,t4,t1,10,t3) results in the net above becoming deadlock.



Checking Deadlock-freeness — Reachability Analysis

t Node Marking Next Transition

0,1,1,0,0) —— [1,0,0,1,0] Marking
b, | b 0 | [1,0,1,0,0] 1 ty
[0,0,1,0,1] [0,0,0,1,1] 1 [0,0,1,0,1] 2 ty
% t t4 2 [0,1,1,0,0] 3 t1
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3 [1,0,0,1, 0] 4 to
1,0,1,0,0]  [0,1,0,1,0] [0,0,1,0,0] y 0.0.0.1.1] 5 3
6 ty
5 [0,0,1,0,0] dead 0
6 [0,1,0,1,0] dead 0

e The reachability graph of a marked net can be derived by exhaustively
determining all possible markings that are possible (or reachable) from the
initial marking. The graph may also be expressed in the form of a table.

e Limitations:

— The number of reachable markings could conceivably be quite large for
larger nets. But this may be mitigated using techniques such as Binary
Decision Diagrams (BDD); state spaces of up to 10! states have been
analyzed in this way.

— Not suitable for unbounded nets: the reachability graph becomes infinite.
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Siphons and Traps
p1 tﬂl P2

e Siphons and traps are important for the structural analysis of nets.

e A siphon is a subset of places, S C P, such that Inp(S) C Out(S), where:
Inp(S) = U,egInp(s), Out(S) = U,cq Out(s). €.9. {p1,ps,pa} is a siphon

since {tl,tg} C {tl,tg,tg}.

e Once a siphon becomes unmarked, it remains unmarked “forever.”

e A minimal siphon is a siphon which does not include any other siphon.
{ps,p4} is @ minimal siphon (consequently {pi, p3, p4} is not).

e A trap is a subset of places, () C P, such that Out(Q) C Inp(Q).



Checking for Deadlock-freeness — Structural Analysis

[Xie & Chu, 1997] A Petri net is deadlock-free if for each minimal siphon S,
either it contains a marked trap or

min Zm(p) > ()

peES

subject to: £ > 0; m = mg+ Cx > 0.
x is the firing vector which can be determined through linear programming.

Limitations:

e Determining the objective function requires enumerating all the minimal
siphons in a net — for some nets, the number of minimal siphons increases
exponentially with the net size.

e If the number of minimal siphons is large, many objective functions may
have to be minimized.



Similar and Essential Siphons

Definition: Two siphons S; and S5 in a net M are similar, S; ~ S5, if for all
reachable markings, either both are marked or both are unmarked:

S1 ~ Sy < Vm € M(M) : mark(S7,m) = 0 < mark(Sz,m) =0

where mark(S,m) = »_ s m(p).

Corollary: The relation of siphon similarity is an equivalence relation on the
set of siphons of a marked net M, so it implies a partition of this set into
classes of similar siphons.
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Definition: Set S = {51,55,...,5,} is a set of essential siphons for M if no
two siphons in S are similar and any other siphon of M is similar to one of the
siphons in S.



Reduction of Similar Siphons — Parallel Paths

Definition: A simple path in a net \V is a sequence of transitions and places
tiop’iltilp?é .. 'piktik’ such that:

(Vl <)< ko Inp(pij) — {t’ij_1} A OU-t(pij> — {tij}) A
(V1<j<k :Inp(ty)=1{pi} N Out(ts) =1{pi;.})

A simple path is denoted by the pair of delimiting transitions, e.g. path(¢;,, ;).

Definition: Parallel paths are any two simple paths which connect the same
transitions ¢; and ¢; (Where ¢; =t;, and t; = t; ).

O — 0



Reduction of Similar Siphons — Alternative Paths

Definition: An alternative path is a collection of disjoint, simple paths

path(t; ,t;,), path(tiy, tj,),. . ., path(t; ,t;,), ti, # ti,, tj, # tj,, for 1 < <k,
with an additional common path (called the base) connected to all ¢;,

(ti,,pi) € A, 1 <l <k,andallt;, (p;,t;,) €A, {=1,... k.

til tjl

ti Lin

k

Observe that alternative paths are different from parallel paths because par-
allel paths are delimited by exactly one pair of transitions. Alternative paths
are delimited by more than one pair of transitions and have a shared base.
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Petri Net Simplification/Reduction

e If a net M has parallel paths, then a set of essential siphons for M’, a net
obtained from M by removing one of the parallel paths, is also a set of
essential siphons for M.

e If a net M has alternative paths, then a set of essential siphons for M’, a
net obtained from M by removing the base of alternative paths, is also a
set of essential siphons for M.

e A set of essential siphons for a net M can be determined by removing all
parallel paths in M and all bases of alternative paths and finding the siphons
in the simplified net M’.

e Any set of essential siphons of M is sufficient for deadlock analysis of M.

e Removing alternative and parallel paths can make the net significantly eas-
ier to analyze without adversely affecting the tests for deadlock-freeness.
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Component Compatibility Example (before)

Number of mlmmal siphons: ?
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Concluding Remarks

Deadlock detection can be done (with varying degrees of success) using
reachability analysis (for small and medium size models) or structural anal-
ysis (based on minimal siphons) and linear programming.

In order to make structural analysis more efficient, a net may be reduced,
or simplified, while still preserving the relevant properties for deadlock
analysis.

Two ways to reduce or simplify a net are to remove parallel and alternative
paths.

As mentioned at the beginning, this work has pragmatic considerations: If
we represent component interfaces as Petri nets, then we can determine if
two or more components are compatible by checking the composed inter-
face for deadlock-freeness.

Because of the size of the composed models, any simplification of the
composed net can have a significant effect on the performance of the veri-
fication procedure.
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Supplemental Slides
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Linear Programming example

e Minimal SiphonS: {plap27p5}’ {plap?npf)} and {p37p4}-

e But {ps3,p4} is @ marked trap and so it cannot become unmarked.

e Considering S = {p1, p2, p5}, the objective function to be minimized is:

> m(p)

peS

1 + (5131 —LUQ) + (—xl —|—ZE4) + (5132 — I3 —$4)

1—5133
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Linear Programming example (cont’d)

O 4+1 -1 -1

e The constraints are deduced from the connectivity matrix:

l+x1—2220 —21+2x42>0
l—xz14+23>20 x1—23>0
Xo—x3—T420 1120, 202>0, 23>0, x4 >0.

e Minimizing the tokens in siphon {p1, p2, p5} gives the firing vector [1,2,1,1],
which can be verified to correspond to the firing sequence (to,t4,%1,t2,13).
Using the same technique on the other siphon, {pi,ps,ps}, results in
the firing vector [1,2,0,2], which corresponds to the firing sequence
(to2,t4,t1,12,t4). Both firing sequences result in deadlock.
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