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Motivation, Purpose and Outline

• Software component interfaces can be represented using Petri nets.

• Multiple component interfaces can be composed using a formal technique
(not entirely relevant to this particular presentation).

• In order to assess the compatibility of the resulting composition, we must
determine whether the composed net is deadlock free.

• Outline

– Introduction to Petri nets
– Reachability analysis
– Structural analysis
– Net simpli�cation techniques
∗ Similar and essential siphons
∗ Parallel paths
∗ Alternative paths

– Conclusions
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Introduction to Petri Nets
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• A Petri net is de�ned by sets of places (representing conditions) and transi-
tions (representing events) which are connected to each other by directed
arcs, N = (P, T,A). We de�ne:

Inp(p) = { t ∈ T | (t, p) ∈ A }, e.g. Inp(p5) = {t2}
Out(p) = { t ∈ T | (p, t) ∈ A }, e.g. Out(p5) = {t3, t4}
Inp(t) = { p ∈ P | (p, t) ∈ A }, e.g. Inp(t1) = {p2, p3}
Out(t) = { p ∈ P | (t, p) ∈ A }, e.g. Out(t1) = {p1}.

• The structure of a Petri net can be described by a connectivity matrix C
(the rows correspond to places and the columns correspond to transitions).
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Introduction to Petri Nets (cont'd)
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• We can assign tokens to the places of a Petri net. This is known as a marked
net, M = (P, T,A, m0), where m0 is the initial marking function.

• A transition, t, is enabled in marking m0 iff ∀p ∈ Inp(t) : m0(p) > 0.
An enabled transition can �re � this moves one token from each of the
transition's input places to each of its output places.

• When no transition is enabled, the net is deadlocked. The �ring sequence
(t2, t4, t1, t2, t3) results in the net above becoming deadlock.
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Checking Deadlock-freeness � Reachability Analysis
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t1 Node Marking Next Transition
Marking

0 [1, 0, 1, 0, 0] 1 t2
1 [0, 0, 1, 0, 1] 2 t4
2 [0, 1, 1, 0, 0] 3 t1
3 [1, 0, 0, 1, 0] 4 t2
4 [0, 0, 0, 1, 1] 5 t3

6 t4
5 [0, 0, 1, 0, 0] dead ∅
6 [0, 1, 0, 1, 0] dead ∅

• The reachability graph of a marked net can be derived by exhaustively
determining all possible markings that are possible (or reachable) from the
initial marking. The graph may also be expressed in the form of a table.

• Limitations:

– The number of reachable markings could conceivably be quite large for
larger nets. But this may be mitigated using techniques such as Binary
Decision Diagrams (BDD); state spaces of up to 10100 states have been
analyzed in this way.

– Not suitable for unbounded nets: the reachability graph becomes in�nite.
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Siphons and Traps
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• Siphons and traps are important for the structural analysis of nets.

• A siphon is a subset of places, S ⊆ P , such that Inp(S) ⊆ Out(S), where:
Inp(S) =

⋃
s∈S Inp(s),Out(S) =

⋃
s∈S Out(s). e.g. {p1, p3, p4} is a siphon

since {t1, t3} ⊆ {t1, t2, t3}.

• Once a siphon becomes unmarked, it remains unmarked �forever.�

• A minimal siphon is a siphon which does not include any other siphon.
{p3, p4} is a minimal siphon (consequently {p1, p3, p4} is not).

• A trap is a subset of places, Q ⊆ P , such that Out(Q) ⊆ Inp(Q).
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Checking for Deadlock-freeness � Structural Analysis

[Xie & Chu, 1997] A Petri net is deadlock-free if for each minimal siphon S,
either it contains a marked trap or

min

 ∑
p∈S

m(p)

 > 0

subject to: x ≥ 0; m = m0 + Cx ≥ 0.

x is the �ring vector which can be determined through linear programming.

Limitations:

• Determining the objective function requires enumerating all the minimal
siphons in a net � for some nets, the number of minimal siphons increases
exponentially with the net size.

• If the number of minimal siphons is large, many objective functions may
have to be minimized.
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Similar and Essential Siphons

De�nition: Two siphons S1 and S2 in a net M are similar, S1 ∼ S2, if for all
reachable markings, either both are marked or both are unmarked:

S1 ∼ S2 ⇔ ∀m ∈ M(M) : mark(S1,m) = 0 ⇔ mark(S2,m) = 0

where mark(S, m) =
∑

p∈S m(p).

Corollary: The relation of siphon similarity is an equivalence relation on the
set of siphons of a marked net M, so it implies a partition of this set into
classes of similar siphons.

. . .
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De�nition: Set S = {S1, S2, . . . , Sn} is a set of essential siphons for M if no
two siphons in S are similar and any other siphon ofM is similar to one of the
siphons in S.
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Reduction of Similar Siphons � Parallel Paths

De�nition: A simple path in a net N is a sequence of transitions and places
ti0pi1ti1pi2 . . . piktik, such that:

(∀1 ≤ j ≤ k : Inp(pij) = {tij−1
} ∧ Out(pij) = {tij}) ∧

(∀1 ≤ j < k : Inp(tij) = {pij} ∧ Out(tij) = {pij+1
})

A simple path is denoted by the pair of delimiting transitions, e.g. path(ti0, tik).

De�nition: Parallel paths are any two simple paths which connect the same
transitions ti and tj (where ti = ti0 and tj = tik).

ti tj

. . .

. . .
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Reduction of Similar Siphons � Alternative Paths

De�nition: An alternative path is a collection of disjoint, simple paths
path(ti1, tj1), path(ti2, tj2),. . . , path(tik, tjk

), ti` 6= tin, tj`
6= tjn, for 1 ≤ ` ≤ k,

with an additional common path (called the base), connected to all ti`,
(ti`, pi) ∈ A, 1 ≤ ` ≤ k, and all tj`

, (pj, tj`
) ∈ A, ` = 1, . . . , k.

. . .

. . .

. . .
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Observe that alternative paths are different from parallel paths because par-
allel paths are delimited by exactly one pair of transitions. Alternative paths
are delimited by more than one pair of transitions and have a shared base.
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Petri Net Simplification/Reduction

• If a net M has parallel paths, then a set of essential siphons for M′, a net
obtained from M by removing one of the parallel paths, is also a set of
essential siphons for M.

• If a net M has alternative paths, then a set of essential siphons for M′, a
net obtained from M by removing the base of alternative paths, is also a
set of essential siphons for M.

• A set of essential siphons for a net M can be determined by removing all
parallel paths inM and all bases of alternative paths and �nding the siphons
in the simpli�ed net M′.

• Any set of essential siphons of M is suf�cient for deadlock analysis of M.

• Removing alternative and parallel paths can make the net signi�cantly eas-
ier to analyze without adversely affecting the tests for deadlock-freeness.

11



Component Compatibility Example (before)
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Number of minimal siphons: ?
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Component Compatibility Example (after)

insurance
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Number of minimal siphons: 5.
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Concluding Remarks

• Deadlock detection can be done (with varying degrees of success) using
reachability analysis (for small and medium size models) or structural anal-
ysis (based on minimal siphons) and linear programming.

• In order to make structural analysis more ef�cient, a net may be reduced,
or simpli�ed, while still preserving the relevant properties for deadlock
analysis.

• Two ways to reduce or simplify a net are to remove parallel and alternative
paths.

• As mentioned at the beginning, this work has pragmatic considerations: If
we represent component interfaces as Petri nets, then we can determine if
two or more components are compatible by checking the composed inter-
face for deadlock-freeness.

• Because of the size of the composed models, any simpli�cation of the
composed net can have a signi�cant effect on the performance of the veri-
�cation procedure.
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Linear Programming example
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• Minimal siphons: {p1, p2, p5}, {p1, p3, p5} and {p3, p4}.

• But {p3, p4} is a marked trap and so it cannot become unmarked.

• Considering S = {p1, p2, p5}, the objective function to be minimized is:∑
p∈S

m(p) = 1 + (x1 − x2) + (−x1 + x4) + (x2 − x3 − x4)

= 1− x3
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Linear Programming example (cont'd)
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• The constraints are deduced from the connectivity matrix:

1 + x1 − x2 ≥ 0 −x1 + x4 ≥ 0
1− x1 + x3 ≥ 0 x1 − x3 ≥ 0
x2 − x3 − x4 ≥ 0 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

• Minimizing the tokens in siphon {p1, p2, p5} gives the �ring vector [1, 2, 1, 1],
which can be veri�ed to correspond to the �ring sequence (t2, t4, t1, t2, t3).
Using the same technique on the other siphon, {p1, p3, p5}, results in
the �ring vector [1, 2, 0, 2], which corresponds to the �ring sequence
(t2, t4, t1, t2, t4). Both �ring sequences result in deadlock.
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