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Abstract

The area of Component Based Software Engineering (CBSE) is rapidly emerging

as a means of mitigating the complexity faced by software architects during the de-

sign and maintenance of large software systems. Unfortunately, given the substantial

number of components that may be deployed in a given software architecture, suc-

cessfully establishing compatible interaction amongst components can be a difficult

problem to solve. The purpose of this work is to show that compatibility between

components may be determined by developing a formal model to describe component

interfaces and their behaviour. In addition to promoting reuse and substitutability

in the design and maintenance of software systems, this approach may also have a

significant effect on the reliability and trustworthiness of software systems.

At a fundamental level, a component can be regarded as a cohesive logical unit

of abstraction with well-defined interfaces that provide services to its environment or

request such services. This work sets the foundation for a formal model of component

composition by using Petri nets to represent the behaviour of component interfaces.

Compatibility is established by verifying that interfaces can satisfy all requested se-

quences of operations. The requires and provides relationships are discussed in the

context of formal languages generated by the corresponding labelled Petri net models.

The compatibility of the interfaces is determined by examining various structural and

reachability properties of the net obtained by the composition of the interfaces.

As commercial components become increasingly available and the web services

industry becomes more vibrant, formal compatibility assessment is an important step

toward the construction of large, distributed software systems.
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Chapter 1

Introduction

1.1 Motivation

The challenges and difficulties associated in the development of large-scale software

projects are well documented [96, 111] as are the analyses of project failures [36].

Over the years, numerous strategies have been developed to help mitigate these dif-

ficulties. Object-oriented programming [12] and numerous architectural description

languages [71] have been introduced in order to make the development of software

systems more tractable. During recent years, component based software engineering

(CBSE) [16] has been emerging as viable means of software construction whereby

pre-manufactured software structures with well-defined interfaces are designed and

implemented, and subsequently incorporated into larger software systems [45]. While

this approach has met with some degree of success, there remains the problem of

determining compatibility between components.

In his provocative paper, No Silver Bullet — Essence and Accident in Software



Engineering [14], Frederick Brooks Jr. identified four essential difficulties that impede

the construction of large software systems: complexity, conformity, changeability and

invisibility. Of these four so-called “essences,” the problem of complexity is often

regarded as the most difficult to address and subsumes the other three.

Attempts to address the complexity inherent in the software design process have

met with mixed success. For example, visual programming languages and environ-

ments [95, 113] attempt to allow software designers to model software the same way

hardware designers create circuits. However, because the design and creation of soft-

ware is very much a mental exercise, completely accurate physical representation is

not possible, thereby limiting the scope of problems that can be solved by visual

programming techniques.

Artificial intelligence and expert-systems [66] have also been presented as possible

answers to the problem of complexity. However, until we, as software designers,

are able to justify all the reasons why a particular software design is more suitable

than another and until we are able to enumerate those reasons as a series of logical

rules suitable for consumption by a machine, AI and expert systems approaches will

only be applicable in the design of specific domain systems. Expert human designers

acknowledge that there is a certain level of art in the construction of well-designed

software systems; extracting and distilling these qualitative features and representing

them concisely and accurately has proven to be elusive.

While the advent of high-level languages has produced significant productivity

gains in the area of software implementation and deployment, high-level languages

have not contributed significantly to a reduction in the inherent complexity of soft-

ware analysis and design. As designs of modern day software systems have grown

2



increasingly complex, popular implementation languages such as Java, C and C++

are still relatively low-level when compared to the high-level abstractions necessary

to solve nontrivial problems.

Consequently, a formal, high-level approach towards the composition of software

subsystems would lessen the development burden on software architects and thus be

amenable to the construction of larger, more complex software systems. In particular,

a formal model to describe the composition of software entities and to determine their

resulting compatibility is crucial in the construction of large software systems. This

work is an attempt to establish a foundation for such an approach.

Classical techniques of determining compatibility have typically focused on compile-

time metrics such as consistency between the numbers and types of method arguments

and on appropriate use of a method return type. While such static checks are clearly

important, they are insufficient in establishing the dynamic or behavioural compat-

ibility between two or more software components. For example, it is possible for a

server component to provide methods that exactly match the static requirements of

a client component, however, if the service component imposes a rigid ordering upon

the sequence of these method calls that are not adhered to by the client, it is still pos-

sible for the two components to exhibit conflicting behaviours. Such conflicts result

in component incompatibility.

1.2 Research Objectives

The primary goal of this research is to provide a formal model of component inter-

action by representing the behaviour of components at their interfaces using Petri

3



nets [78, 86]. Interface compatibility is established by determining those interfaces

which can satisfy all possible sequences of requested operations. The “requires” and

“provides” relationships are discussed in the context of formal languages generated by

the corresponding Petri nets in a component’s deployment environment. By analyzing

the structural and dynamic properties of the Petri net representing the composition of

the components’ interfaces, compatibility between components is tested and verified.

Of particular importance in the development of software systems is whether two

separate software modules, one of which relies on the services of the other, can suc-

cessfully interact with one another to fulfill their requirements. One of the primary

objectives of this work is to provide a formal definition of compatibility in terms of

the languages manifested by the interfaces. With this objective satisfied, a formal

means to actually assess or verify that two or more components satisfy this property

can then be found by composing the nets and showing the resulting net is free of

deadlocks. Multiple strategies can be used for deadlock detection, depending upon

the structural and behavioural properties of the composed net; this work describes the

advantages and disadvantages of each method. To help mitigate some of the complex-

ity associated with the analysis of the composed net, various net reduction algorithms

are proposed to limit the number of the elements in the net. More complicated in-

teractions between multiple providers and multiple requesters are also discussed both

formally and with examples.

This work is not focused on decomposition strategy of software design nor is

it focused on the actual construction of the atomic elements themselves. Rather,

the goal of this work is to facilitate the determination that two or more software

entities can successfully be composed to achieve a useful goal in the context of a larger

4



software system. Ultimately, it is hoped that this work may provide the necessary

infrastructure to build autonomous self-assembling software systems that may evolve

independently.

1.3 Practical Implications

Initially, the implications of this research should increase the reliable construction

of software systems. From an industrial perspective, software integration and reuse

are two primary challenges facing the pragmatic construction of large-scale software

systems. During the early stages of development, components should be reused as a

cost-saving measure so as to reduce re-implementation of commonly used function-

ality. Compatibility assessment can help determine whether a pre-existing software

entity can be reused in a particular environment. Later, when independently de-

veloped software modules are integrated to form larger software architectures, it is

important to assess the compatibility of these modules so that the developers can be

assured that the software structures are able to communicate effectively with each

other. The strategy presented in this work may be able to provide quantitative metrics

which can be used to assess compatibility of software components.

In the area of software maintenance, substitutability allows upgrades of software

systems already deployed in a production environment. Whether new components are

acting as traditional clients or servers in a multi-tier architecture or the components

are in a peer network of components, it is vital that they are able to operate correctly

in their deployed environment. Again, compatibility assessment is crucial in this area.

Eventually, this research may help facilitate the further advancement of self-

5



organizing applications [34] in which applications evolve to adapt to changing en-

vironments or requirements. This could lead to the construction of software systems

that can dynamically reconfigure themselves to adapt to changing conditions as dic-

tated by their context. Closely related to this is the notion of software evolution [22]

in which sub-elements of software projects are replaced over time to satisfy new de-

mands placed upon a software system. The feasibility of such systems depends largely

upon the dynamic integration of separate software entities, during which compatibil-

ity evaluation must be performed.

1.4 Outline of Thesis

Software development methodologies are briefly presented in Chapter 2 which also

provides an overview of the concept of software architectures in general. Chapter 3

describes the concept of component-based software engineering, a software develop-

ment strategy which is gaining wider acceptance in the construction of sophisticated

software systems. This chapter also reviews some current component-based systems

used in practice. The important features of this methodology, which form the basis of

the remainder of the thesis, are emphasized. Various informal and formal definitions

of components are presented in Chapter 4. Various properties related to Petri nets

in general are also proposed as well as algorithms for net reductions and deadlock

detection. Also in this chapter, a formal model of component interfaces that employs

Petri nets is introduced. Moreover, the notion of interface languages is proposed and

elaborated upon. Chapter 5 describes the different strategies that can be used to

compose component interfaces and presents formal frameworks for establishing com-

6



patibility between two components. The proposed framework is based on the Petri

net models of component interfaces and deadlock detection in the composed model.

In Chapter 6, some examples that demonstrate the proposed approach are provided.

Finally, Chapter 7 concludes the thesis and discusses future work.
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Chapter 2

Software Development

Methodologies

Prior to discussing software architectures in general, and component based systems

in particular, this chapter provides context to the complexities of software develop-

ment. The following section is devoted to a high-level review of the techniques used

to address the complexities associated with the development of large-scale software

systems. Numerous paradigms and methodologies have evolved to address inherent

difficulties associated with the engineering of large software systems [18]. Recent

strategies have attempted to raise the level of abstractions at which the software

designer and, subsequently, implementer operate.

2.1 Background of Software Development Trends

By briefly studying the historical evolution of software representation, we can attempt

to extrapolate future trends in software development. Representations of modern soft-



ware originated with machine code, the lowest-level representation to which any other

software representation is usually translated prior to execution. This representation of

hardware operations and their corresponding arguments as a series of bits, while offer-

ing ultimate flexibility, is very error-prone as a development language. To counteract

this deficiency, symbolic languages were created to represent hardware instructions

and their arguments. While certainly less error-prone than raw machine-code, the

symbolic languages, also referred to as assembler [53], offered limited advantages in

terms of raising the level of abstraction — each symbol is essentially mapped directly

onto a hardware instruction, there is typically no concept of data types and control

flow is quite arbitrary.

With the advent of compilers, higher-level representations of software were pos-

sible. Programming languages such as fortran use program statements that more

closely model the corresponding mathematical domain. Each programming state-

ment could conceivably be mapped to several low-level machine instructions, but the

programmer is kept isolated from these details, thereby making the programming

task easier. These programming languages also introduced a set of fundamental set

of data types which could be easily manipulated by the programmer. The use of

arbitrary flow of control was also discouraged in favour of more restricted looping

constructs and function calls. This led to programs with a greater degree of structure

and modularity and hence served to increase program comprehension.

Eventually, the importance of data encapsulation began to arise, in which the

fundamental representation of data structures was concealed behind a well-defined

interface. Access to a data structure’s composite data elements could only be made

indirectly via the interface. Consequently, the designer of the data type could change
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the internal representation without adversely affecting the users of the data type as

the interface would remain the same. These so-called abstract data types (ADTs) [99]

gave rise to object-based programming.

In an effort to promote the reuse of code, the concepts of classes and inheritance

were introduced in languages such as Simula-67 and smalltalk. By allowing a

derived class to inherit and extend the behaviour of a base class, developers are en-

couraged to extend existing classes rather than developing their own. Other features,

such as run-time binding of function calls (polymorphism), further relieve the pro-

grammer from creating tedious and error-prone dispatch tables. The combination of

data encapsulation, inheritance and polymorphism gave rise to object-oriented pro-

gramming [12].

The trend described above suggests two simultaneous developments in the evo-

lution of software representation. The first is an attempt to raise the level of ab-

straction by placing more responsibilities on the translation tools. Features such as

type checking, exception handling and dynamic dispatch become the responsibility

of the compile-time and run-time environments. These advances allow the developer

to concentrate more fully on aspects directly related to solving a given problem. The

second trend, and perhaps counter-intuitively, is that new software representations

tend to be more restrictive or constrained than their predecessors. Arbitrary control

flow is sacrificed in favour of more restricted looping or recursive constructs. Direct

access to encapsulated data elements that implement a more complex data struc-

ture is prohibited in favour of using a more abstract interface instead. By imposing

well-defined restrictions upon the data representations and control flow, the software

representation as a whole becomes more tractable, less arbitrary and, therefore, more
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comprehensible for the developer.

The concepts of systematic module decomposition and reuse mentioned earlier

have been aggressively promoted as a means to counteract the complexity inherent

in the design and implementation of software systems [82, 83, 105]. Unfortunately,

while this approach was initially very appealing, the effort required to design and

implement a module that is simultaneously generic and useful, can be overwhelming.

Also, truly generic software entities can be very difficult for software designers to

efficiently deploy, thereby limiting the advantages gained by module reuse.

The importance of examining successful software systems and documenting their

common design decisions also cannot be ignored in the evolution of the software de-

velopment process. Such documentation has led to the creation of design patterns [21]

which attempt to make software development more template-oriented. Design pat-

terns originate from recognizing the frequent occurrence of similar design structures

across several successful software systems. These design structures can then be gener-

alized and documented, thereby creating a library of patterns. These patterns, once

shared with the development community, can then be adapted and reused for sim-

ilar problems in other domains. For example, the Composite pattern can be easily

adapted to represent the hierarchical composition of graphic elements in a visualiza-

tion product or can be used to represent the hierarchical composition of hardware

components in a CAD package. While design patterns can, in theory, transcend all

levels of software representation, they are most commonly employed in the context

of object-oriented and component-based software development [38].

Scenario-based software analysis has also met with some success in the comprehen-

sion and maintenance of software systems [54]. In this strategy, the various activities
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that the system is required to support are identified. These so-called “system uses”

are developed from the perspective of both the different end-users and the developers

of the systems. By analyzing software from these two perspectives, multiple views of

the system can be derived and studied. Scenarios can be used to determine whether

an existing software system successfully satisfies its qualitative requirements in do-

main specific areas. High degrees of coupling and low degrees of cohesion, both of

which can negatively impact the design of a system, can also be found by identifying

locations in the software where scenario interaction and interdependence are at their

greatest [54].

Somewhat related to this is Aspect Oriented Programming (AOP) [26, 31]. Under

this paradigm, functionalities that are employed by several software subsystems are

identified as cross-cutting concerns. For example, functionality that involves writ-

ing diagnostic or debugging information to a file or database would be regarded as

a cross-cutting concern since it has the potential to be used by a large number of

subsystems. Other cross-cutting concerns can involve aspects related to authentica-

tion and database transactions. AOP involves the identification of locations in the

code base where cross-cutting concerns or aspects arise (these locations are called join

points) and the injection of appropriate code segments that implement the aspects

into those join points. This injection of code, called weaving, is most effectively done

automatically by software tools.

Agile methods [10] are also becoming more relevant in both research and indus-

try. Agile methods include adaptive software development [46], which strongly em-

phasizes the iterative nature of the development process while maintaining focus on

the required feature sets. Extreme programming [7, 98] is another example of an ag-
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ile method that has been successful in emphasizing the benefits of pair-programming,

test-driven development, unit testing and continuous integration of software, amongst

many other aspects. Agile methods deemphasize the predictive nature of the tradi-

tional waterfall software life-cycle in favour of a more adaptive style of software de-

velopment which can more readily contend with rapidly changing requirements. This

style promotes more frequent releases of code, greater collaboration with the intended

consumers of the software and greater communication between the software develop-

ers themselves. As a result, agile methods appear to be most effective in relatively

small, collocated teams of about a dozen developers.

Currently, concepts related to software architecture are becoming more widespread

as a means of addressing the complexity associated with software development [5, 40].

Software architecture attempts to tie together many of the more recent trends in

software development, including object-oriented design patterns and scenario-based

software analysis, in an attempt to make the production of large-scale software easier

and more effective. Software architectures are discussed in more detail in next section.

The paradigms and methodologies described above by no means constitute an

exhaustive list of all the practices in the software design and development field today;

however they do provide an overview of current techniques which are being employed

to facilitate design and implementation of software systems.

2.2 Software Architecture

Software architecture [1] represents an attempt to limit the complexity of software de-

velopment by studying a software system at a very high-level of abstraction. Details
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regarding low-level abstractions such as APIs, protocols, algorithms and data struc-

tures, for example, are elided in favour of a more general view of the design. Software

representation, consequently, is described using architecture description languages

(ADLs), that offer a wider, more abstract view of software systems and may even be

used to represent evolving software architectures [76].

When thinking of software architecture, it is sometimes useful to apply analogies

with other domains where the concept of an architecture is better understood. For ex-

ample, in the context of computer hardware, the architecture can be thought of as an

interconnected collection of smaller functional entities (or building blocks). However,

unlike physical architectural domains, a functioning software project does not have a

physical manifestation. Therefore, many “real world” analogies relating to software

architecture have been deemed to be inadequate and may actually misrepresent the

numerous nuances associated with a software system [4].

2.2.1 Definitions

Over the years, many definitions of software architecture have been proposed. Indeed,

the Software Engineering Institute (SEI), based in Carnegie Melon, currently lists in

excess of one hundred definitions of “software architecture” at their website:

http://www.sei.cmu.edu/architecture/definitions.html

These definitions are almost always informal and quite broad. They attempt to offer

guidelines, as opposed to rigid formal definitions, in an effort to establish a foundation

for software architecture as a viable area of research and study.

14



In developing a definition for software architecture, Shaw and Garlan [91] iden-

tified several issues associated with the structure of a software system. These issues

include: component organization, global control structures, protocols, assignment of

functionality to design elements, composition of design elements, physical distribu-

tion, scaling and performance, dimensions of evolution and selection among design

alternatives. They summarize these issues with the following description of software

architecture [91]:

“Abstractly, software architecture involves the description of elements from
which systems are built, interactions amongst those elements, patterns that
guide their composition, and constraints on these patterns. In general, a
particular system is defined in terms of a collection of components and inter-
actions amongst those components.”

This definition, while certainly comprehensive, is probably overly ambitious. For ex-

ample, the phrase “patterns that guide their composition, and constraints on these

patterns” is probably better left to the domain of architectural styles. Architectural

styles arise by applying the concepts of design patterns and idioms to software archi-

tecture. For example, architectural styles such as client/server, pipe-and-filter and

blackboard architectures are commonplace in the software community, but a defi-

nition of software architecture itself should not limit itself by enforcing a particular

pattern. A more succinct definition of software architecture was offered in a discussion

group at the SEI during 1994 [40]:

“The structure of the components of a program/system, their interrelation-
ships, and principles and guidelines governing their design and evolution over
time.”

The above definition reprises of the concept of a component and their corresponding

interactions. It also introduces the importance of the design and subsequent main-
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tenance of software systems. Once a software system has been deployed, changes to

its required operation are almost inevitable. For example, problems in the imple-

mentation have to be corrected, new requirements have to be satisfied and platform

limitations have to be overcome. A definition of software architecture should consider

the flexibility and extensibility of the software system.

Recently, more formal attempts have been made to derive a consensus on the

definition of “architecture” as it applies to the software domain. For example, the

Computer Society approved IEEE Standard 1471 which offers the following definition

of an architecture [67]:

“the fundamental organization of a system embodied in its components, their
relative relations to each other and to the environment, and the principles
guiding its design and evolution.”

This definition is only a minor variation of the SEI definition offered in 1994. IEEE 1471

attempts to standardize neither processes nor architectural description languages.

Instead, it attempts to build consensus regarding the definitions of various aspects

associated with software architecture. In addition to the above definition, this IEEE

Standard also provides a conceptual framework for software architecture which at-

tempts to show architecture in the context of its entire environment. This framework

is reproduced in Figure 2.1.

Important aspects of the conceptual framework are the notions of view and view-

points. These attributes appear to be inspired by the scenario-based approach to

software analysis and design. IEEE 1471 considers a view to be a collection of ab-

stractions or representations (i.e., models) that describe one particular aspect of a

system. A viewpoint serves as a framework to establish common terminologies and
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Figure 2.1: Conceptual framework for IEEE Standard 1471

notations upon which a view can be constructed.

Also of particular interest is the issue of stakeholders and concerns. Different

stakeholders may have different requirements with respect to a software system. By

enumerating the concerns of stakeholders and having them directly influence the

architectural description, the system produced will more likely satisfy their demands.

It should be noted that stakeholders not only include the end-users of a software

system — developers and administrators of the system also have legitimate concerns

relating to the extensibility and maintenance of the system.
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One recurring theme that occurs in many definitions of software architecture is

the concept of an entity, or, more commonly, a component. This concept will be

elaborated upon in Chapter 3.

2.2.2 Architecture Representation

A software architecture can be described using an architecture description language

(ADL) [39]. ADLs “usually provide both a conceptual framework and a concrete

syntax for characterizing software architectures.” As with software architecture, there

is no formal definition as to what constitutes an ADL or what features a language

must have in order to qualify as an ADL. Typically, however, ADLs must provide

features to represent and analyze a software system at a high-level of abstraction.

Unfortunately, as we raise the level of abstraction, we cannot help but lose some

of the precision afforded to us by more conventional and lower-level languages such

as Java and C. Any tool capable of generating an implementation directly from an

ADL must employ a certain degree of “intelligence” when translating a high-level

abstraction to a low-level executable. Therefore, ADLs which allow for the automatic

generation of a compliant implementation may choose to offer the designer access

to lower-level abstractions so as to increase the viability of the generated code. Of

course, having an unambiguous ADL whose semantics is well-defined can contribute

significantly to the automatic generation of a software system.

A framework has been created for the classification and evaluation of ADLs [71].

In order to qualify as an ADL, a language should provide support for the specifica-

tion of components, connectors and configurations (i.e., topologies). With respect
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to components and connectors, an ADL would normally support the specification of

attributes such as interfaces, types, semantics, constraints, and evolution. An ADL

configuration should provide some degree of support for many different attributes,

including understandability, compositionality, constraints, evolution and dynamism.

Note that it is not necessary for a language to support all these attributes in order for

it to be considered as an ADL. For example, dynamism, which allows for the inser-

tion, removal and replication of architectural elements during run-time, is supported

by relatively few ADLs. A toolset that supports the ADL can contribute significantly

to the overall usefulness of the ADL. Such tools can work with the ADL to gen-

erate lower level code, provide architectural analysis and refinement, offer multiple

architectural views and support dynamic execution or simulation of an architecture

described by an ADL.

Note that architecture representations are not limited to ADLs. Indeed, some

progress has been made in using the Unified Modelling Language (UML) to represent

architectures [70]. Unfortunately, UML, which has traditionally been used in the

design and analysis of object-oriented software systems, has not proven to be effec-

tive in modelling the nonfunctional aspects of an architecture. In particular, UML

offers weak support for representing architectural constraints and explicit software

connectors. Other nonfunctional aspects including portability, maintenance and con-

figuration management can also be difficult to represent in UML. However, when used

in conjunction with an existing ADL, UML diagrams may provide a more effective

visual representation of a software architecture.

Attempts have also been made to create a mathematical basis for modelling large

software systems [17]. Dynamic aspects of a software system can be modelled using
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heterogeneous algebras. Mathematical foundations offer a greater level consistency

in architectural designs and may permit environments which are more amenable to

simulation and verification strategies. However, the vocabulary of a rigidly formal

mathematical model is often beyond that of a typical software architect, thereby

discouraging strictly mathematical approaches to architecture description.

2.2.2.1 Overview of ADLs

Several ADLs have been described in the literature and each year, there are new

developments in this area. Some of the more popular ADLs include Rapide, UniCon

and Wright.

Rapide [64, 65] is an “event-based, concurrent, object-oriented language” for pro-

totyping system architectures, particularly distributed systems. There are five major

languages associated with a Rapide description. Interfaces to components are defined

using a types language; the propagation of events throughout the collection of compo-

nents is described by an architecture language; constraints on component behaviour

are represented by the specification language; executable modules are described by the

executable language and, finally, a pattern language is used to represent the various

families of events. Rapide allows for the simulation of an architecture during which it

generates a partially ordered set (poset) that enumerates the dependencies between

events prior to execution. Rapide was influenced not only by software languages such

as ML and C++, but also by hardware description languages such as VHDL and

Verilog.

UniCon [90] uses two fundamental elements in its description of a software archi-

tecture: the component (players) and the connector (roles). Components represent
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the “locus of computation and state.” The properties and specification of a compo-

nent are determined by the component’s interface. These properties represent both

functional and nonfunctional aspects of the component’s behaviour. UniCon defines a

comprehensive collection of built-in component types. These built-in components in-

clude Module types, which are used to represent a single compilation unit and Process

types which represent independently scheduled processes as defined by the underly-

ing operating system. Connectors represent the relations among components; central

to the specification of the connector is the interaction protocol. The connectors can

be used to enforce type and sequence constraints amongst the components. As with

components, there are numerous built-in connector types. For example, the connector

type Pipe represents the conventional Unix pipe connector; the type RemoteProcCall

provides a connector for making calls to procedures which may reside outside the

address space of a given component. Ideally, both components and connectors can

be hierarchical in nature and impose concepts of data abstraction and encapsulation

upon its internal elements (early specifications of the UniCon language, however, did

not provide a means to define compositional connectors).

The Wright [2] architecture description language employs formal abstractions for

the definition and subsequent analysis of an architecture. As with most other ADLs,

Wright employs the concepts of components and connectors. It also introduces the

concept of a configuration, which is a collection of component instances combined by

connectors. The configuration essentially gives rise to the topology of the architecture

being described. Components are comprised of an interface and a computation. The

interface, in turn, is comprised of an arbitrary number of ports which serve as the

conduit through which components interact with their environment. Connectors, as
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expected, serve to define the communication between components. The connectors

impose a set of requirements that must be met by a component in order for the

connection to be deemed appropriate. If the component satisfies the requirements, the

component is permitted to make certain assumptions about its operational context.

By employing formal representations of software architectures, Wright offers nu-

merous advantages since formal models are suitable for mathematical analysis and

manipulation through machine-driven techniques. However, formal representations

can become very complicated and incomprehensible, especially if they employ nota-

tions which are unfamiliar to software architects.

The use of an existing, well-established language as the basis of an architectural

description language has also been evaluated. For example, the use of Java and

JavaBeans as a potential architectural description language has been studied [100].

Unfortunately, application builders, which are commonly used to interconnect Java-

Beans, do not allow the semantics of components to be exposed and do not provide

support for the evolution of components or connections. Also, the JavaBeans con-

nection and configuration frameworks do not allow the specification of interaction

protocols or global constraints, thereby limiting the usefulness of this language as a

viable ADL.

2.3 Summary

Modern day large-scale software projects are rarely built in a monolithic fashion.

Teams of developers working independently, in accordance to (hopefully) well-defined

specifications, construct subunits of the final project which must then be subsequently
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assembled or integrated. In addition, software entities are being designed to be in-

creasingly generic in nature and are intended to be used and reused in several inde-

pendent projects.

Many of the ideas offered in the definitions of software architecture can be used

as a foundation to systematically describe the structure and dynamics of software

systems. Informally, a software architecture, at its highest level, can be represented

by three major abstractions: components, which serve as the units of functionality

for the architecture; interfaces, through which the components communicate with its

external environment; and connections which dictate the topology of the architecture

and provide context to the components.

Intuitively, a software architecture can be defined as a graph in which vertices

represent components and their respective interfaces and edges are used to represent

the connections between components and their interfaces and the connections between

communicating interfaces.

As more emphasis is being placed on the system integration phase of the software

engineering discipline, the notion of constructing fully functioning software systems

from the composition of existing disparate entities is becoming increasingly important.

In all recent development methodologies, there is always a need to “put the pieces

together”; to assemble the individually designed and implemented entities into a

fully functioning system. A formal means by which software can be automatically

integrated would, therefore, be desirable.

This thesis uses many of the fundamental tenets of component-based software en-

gineering in an attempt to lay down a framework upon which automated assembly

of software systems may occur. The following chapter discusses the pragmatic devel-
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opments behind the current state of the art in the field of component-based software

engineering.
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Chapter 3

Component-based Systems

Central to the construction of any large software project is the modularization and

decomposition of large software entities into smaller units with a well-defined function.

During this decomposition, there must exist well-defined boundaries between what

an entity does and how it actually does it. Component-based software engineering

has been proposed as a means to achieve these and other goals, so as to facilitate

the software development process [15]. Although initially proposed over thirty-five

years ago, it is only in the past decade that component-based software engineering

has become viable as a means of constructing large-scale software systems.

3.1 Components

Components are the building blocks of software systems and hence comprise the

fundamental elements of reuse in a software architecture. Informally, a component is

considered to be the primary functional unit and the fundamental data type in an

architectural design. The connections between the components serve to determine



the flow of control and to provide a context or environment for the components.

Components allow one to represent a high-level software model relatively faithfully

by closely modelling entities that occur in the context and vocabulary of the problem

space.

The idea of achieving conceptual integrity or so-called cohesion via concept anal-

ysis is an important factor when designing components. Indeed, ideas related to

module decomposition and module restructuring [105] may prove to be helpful in

attaining component conceptual integrity.

Components must be generic enough to work in a variety of contexts and in coop-

eration with other components [110]. At the same time, however, their functionality

must not be excessively vague or generic so as to inhibit reuse. During the design of a

software system, it is important to maintain a balance between the number of compo-

nents and their respective functionality. Deploying too many components at the same

level of abstraction may lead to an exponential explosion of contextual interdepen-

dencies amongst them, thereby dramatically increasing the complexity of the system.

Too few components may discourage reuse as designers would be motivated to design

their own smaller and more efficient components rather than deploy excessively large,

monolithic, uncohesive components in a given architecture.

3.2 Component Definitions and Representation

As with the term software architecture, many definitions of component exist in the

literature. In their attempt to convey the essence of what constitutes a component,

these definitions tend to be vague and sometimes even arbitrary in nature. Some
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definitions found in the literature are presented and discussed below.

Szyperski provides the following definition [102]:

“A software component is a unit of composition with contractually speci-
fied interfaces and explicit dependencies only. A software component can be
deployed independently and is subject to composition by third parties.”

This definition introduces the concept of an interface which represents the access

point to a component from external sources. Interfaces represent the notions of data

encapsulation and abstract data types, whereby access to a component’s behaviour is

restricted via the component’s interface. Well-defined and comprehensive interfaces

can also serve as a mechanism for reuse and substitutability. For example, if a software

system accesses the services of a component only through a specified interface, then

that component can be easily swapped out and replaced with another that supports

the semantics of the original interface — the underlying implementation of the new

component could be completely different. The interface serves to specify what services

a component is able to provide.

Before a component can be deployed, it must be aware of all contextual depen-

dencies, that is, what external services the component requires in order to behave

correctly. In addition to requiring other components, a component may also require

a specific deployment environment or container. This environment is dictated by the

component world or component model, which is discussed later in this section. Note

that in order to promote reuse, a component’s contextual dependencies should not be

excessive; components should be self-contained.

Also important in the above definition is the concept of independent component

deployment. This feature allows a complete software architecture to be broken down
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into its constituent components during the design and development stage of the sys-

tem. Then, instead of deploying all the components as a single monolithic executable,

the components are deployed individually into an operating environment. This mod-

ular approach to software deployment allows subsystems to be replaced or upgraded

relatively easily without having to terminate and restart the entire system.

With contractually specified interfaces and well documented contextual depen-

dencies, a third party should be able to acquire components from two independent

parties and compose them into a useful software system to perform some desired task.

This would represent the ideal world of component programming where software en-

tities can be traded as commodity items like resistors and capacitors in the hardware

world. Composition of these separate components can then take place to produce a

useful system.

The following definition reiterates the importance of component interfaces. How-

ever, it also emphasizes that a software component should aim for reusability by

narrowing the scope of the component’s behaviour [89]:

“Reusable software components are self-contained, clearly identifiable artifacts
that describe and/or perform specific functions and have clear interfaces,
appropriate documentation and a defined reuse status”

By qualifying the behaviour and the context of a component, this definition suggests

that components should limit their functionality so as to reduce the possibility of over-

lapping behaviours amongst different components. In a software system, this serves

to make the deployed components more orthogonal, thereby reducing redundancy

and enhancing efficiency. In the context of the above definition, the word artifacts

implies that components themselves can take on many forms including source code,
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an executable or a shared library. Regardless of the form, the component itself should

exist as a packaged unit, as opposed to being spread over several files, for example.

The documentation and reuse status attributes given in the above definition rep-

resent information related to the component that is necessary for effective usage and

deployment of the component by end users. This documentation should consist not

only of the component’s requirements, services and deployment issues, but should

also provide information regarding the component designer and maintainer.

Perhaps one of the most succinct component definitions originates from Brown [16]:

“An independently deliverable piece of functionality providing access to its
services through interfaces.”

This definition highlights the relatively autonomous nature of a component and again

stresses the requirement of a well-defined interface through which services are offered.

As with the previous definitions, this definition offers little in the way of mechanisms

to describe the formal semantics of a component and its interaction with its environ-

ment. The subsequent chapter will review some more formal definitions of components

and propose an alternative method for formally representing components and their

interaction with other components in the context of a software architecture.

3.3 Components and Objects

One of the issues raised in the context of components is that of “semantic overlap”

between components and objects. This section provides a comparison of the concepts

behind components and objects and also demonstrates some criteria to help distin-

guish between them. While components and objects have similarities, there are also
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important subtle differences.

The most obvious similarity between components and objects is that both support

the notion of an interface through which the external world communicates with the

component or object [110]. The concept of data encapsulation is important to both

components and objects and both of them should indicate what services they require

of and provide to the external environment. However, components, unlike objects,

may not have a persistent state [101]. As such, components may lack the concept of

identity which is integral to the Booch definition of an object [12]. Components are

also used to represent larger, coarser grained entities than objects. As a result, it is

not unusual for a component to actually be comprised of several classes, which are

instantiated to objects when the component is actually deployed. Note that while

object-oriented techniques are commonly used for component design and implemen-

tation, components can be implemented using any programming paradigm such as

functional programming or even more conventional procedural-based programming.

Component design and implementation are not restricted to object-oriented abstrac-

tions.

Component architectures, through the use of “intelligent” interconnections, are

able to provide a richer set of possibilities for component interaction [39]. Object

interaction, however, is restricted to method invocation only. While this method

invocation may be determined at run-time through polymorphism, or even made over

a network (using CORBA, for example), invocation is still relatively rudimentary

when compared to more recent advances in component architectures. Indeed, in the

context of component architectures, the connection mechanism may take a much

more pro-active role in the underlying semantics of component interaction. From the
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perspective of object-oriented programming, connections between objects via method

invocation are more passive. For example, in a traditional environment in which

the connectors are passive, a server component would typically be responsible for

prioritizing the requests it receives — the connector would simply provide the conduit

through which the requests are delivered. In an environment in which the connectors

are more active, the responsibility of prioritizing the requests could conceivably be

handled directly by the connector itself. This has the added benefit of decoupling the

prioritization of requests from the other responsibilities of the server.

Another difference between components and objects, is that an object is a unit of

instantiation whereas a component is a unit of deployment. Because of this, object-

oriented strategies usually lead to the creation of monolithic applications consisting

of many objects which all must be deployed simultaneously as a single unit in or-

der to be functional. By taking a component-based approach, a functioning system

can be deployed in a more incremental fashion. This has the added benefit in that

small changes to a deployed production system can be made simply by deploying

the appropriate components rather than deploying the entire application. Indeed,

if the component software system is well designed, it may not even be necessary to

terminate and restart the entire system during minor system upgrades.

With respect to the deployment issue above, many components are usually dis-

tributed as dynamic link libraries, shared objects or Java archive files (in the context

of Enterprise JavaBeans) whereas object-oriented programs are typically distributed

as executables. Another important aspect is the execution environment of objects

and components. Executables produced from object-oriented programming operate

in the context of an operating system environment. Components, however, typically
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operate in the context of a container. This container, which acts as an intermediary

between the component and the underlying operating system determines the lifetime

of its components.

3.4 Component-Based Software Development

New software development disciplines are emerging to address the issues associ-

ated with component software systems. In particular, component-based development

(CBD) and component-based software engineering (CBSE) have arisen to provide

a systematic approach toward the analysis and construction of software systems by

assembling prefabricated components [30, 48].

Amongst the advantages of CBD is the ability to rapidly construct and deploy

software systems which have a high degree of complexity. By acquiring and inte-

grating software components from different vendors, a software developer can rapidly

construct a fully-functioning software system. If the software components used to

build the system have been verified to be functionally correct and accurate, then the

overall system should have a similar level of quality, provided that the components

were integrated correctly.

CBD also allows software developers to substitute new components into a given

architecture so as to meet various nonfunctional requirements (for example, memory

usage). Ideally, components can be substituted for others that support an identical

interface and compatible semantics. This allows the development process to quickly

evaluate the merits of different components in the context of an existing architecture.

There are many factors, however, that are holding back component-based software
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development. For example, the lack of a viable component market limits the number

of components publicly available for reuse. As the component market matures, how-

ever, the number of components as well as the domains over which the components

operate will expand, making component-based development a more realistic option

in the development of complex software systems.

One of the reasons for the limited number of components available for purchase

is the high degree of difficulty in producing a component which is both usable and

reusable. In order for a component to be usable, the user of the component must be

able to integrate the component easily into an existing architecture. Because of this,

a component’s interface should be relatively simple and easy to understand. However,

in order for a component to be reusable, the designer of the component must make

the component as generic and as flexible as possible so as to allow the component to

operate in a wide variety of environments. As such, a generic component will typically

require a more complicated interface. A more complicated interface, while promoting

reusability, inhibits usability. Naturally, a balance between reusability and usability

must be achieved.

During component development, care must be taken to ensure that components

are both reliable and resistant to change. The component developer must also be

very clear in documenting the component’s constraints and requirements. Because a

collection of components can be deployed incrementally, the environment of a com-

ponent may be constantly changing. As a result, components must be designed to

be resistant to contextual change. With respect to the incremental component de-

ployment mentioned in the previous section, components that are fragile in their

deployment environment are more susceptible to reliability issues as adjacent com-
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ponents change around them. Component versioning and dependency strategies can

help ensure inter-component compatibility [30].

3.5 Current Component Models

In industry, components were originally introduced to handle the construction of com-

monly used graphical user interface entities. However, as the component landscape

matured, components have become more flexible to handle more general problem

domains. Component models essentially provide the foundation upon which com-

ponent deployment and communication take place. Component models provide the

infrastructure through which components can identify each other and subsequently

interact with one another. This section highlights some of the component models

prevalent in the industry.

3.5.1 Common Object Request Broker Architecture (CORBA)

CORBA is a standard put forth by the Object Management Group (OMG) [80].

As such, the standard is platform and vendor neutral. CORBA basically allows for

distributed objects to locate and interact with one another over an Object Request

Broker (ORB). Method arguments are marshalled at the client end and transmitted

over the ORB via a well-defined protocol, typically the Internet-InterORB Protocol

(IIOP). They are subsequently unmarshalled at the server end, the method is invoked

and any return values are similarly transmitted back to the client.

In order to locate objects, CORBA defines the Naming Service which allows ob-

jects to be located by name. The naming service is part of the CORBAServices
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package which also provides support for system-level services such as persistence,

events, transactions and database queries. Higher level abstractions and constructs

are defined by CORBAFacilities framework which addresses issues related to both

the horizontal and vertical application markets.

One of the strengths of CORBA is the fact that it supports multiple languages

through the use of an Interface Definition Language (IDL). This language allows the

developer to define the method signatures and object hierarchy of all the distributed

objects in a system. A translator is then used to map IDL to a conventional language,

typically C++ or Java. Hence, libraries of objects written in different languages are

able to interact with one another. Strictly speaking, because CORBA only provides

an object-oriented approach to the conventional Remote Procedure Call (RPC), it

could be argued that CORBA does not conform to the conventional definition of

component as presented above. Attempts to rectify this have begun recently with the

introduction of the CORBA Component Model (CCM) by the OMG [104].

3.5.2 J2EE / Enterprise JavaBeans

Enterprise JavaBeans (EJB) from Sun Microsystems is a more recent development

in the component model industry [88]. This component model, which is part of the

J2EE framework, offers a relatively mature platform for component deployment and

interaction. Many attributes from CORBA have been borrowed and enhanced by

EJB including the concept of a naming service and the communication protocol used

by EJB components to communicate with one another (IIOP). The J2EE framework

provides support for the 3-tier architecture in which clients (tier one) communicate
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indirectly with the EJBs residing on a server (tier two). The EJBs then interface

with backend databases (tier three) in order to satisfy the clients’ request.

EJBs reside in the context of a container on the server, therefore all communication

to the EJB must take place through a remote interceptor object which links the client

with the EJB. The container decides the life cycle of all the EJBs under its domain and

can instantiate more EJB components as required. This contributes to the scalability

of the J2EE architecture. The container can also take care of other responsibilities

such as persistence and security, therefore allowing the EJB developer to concentrate

solely on the functionality of the component without being distracted with ancillary

tasks. This separation of responsibility between the EJB and the container allows for

the construction of a more robust architecture. Parameterization of EJB components

is made possible via a deployment descriptor. This XML file is placed on the server

as part of the deployment of the component and offers a way to change the behaviour

of a system without having to recompile its constituent components.

Unfortunately, EJB, by definition, is language dependent. However, because the

EJB specification has adopted the IIOP remote communication protocol, it is possible

for EJB to communicate with other CORBA objects on a network. The J2EE archi-

tecture also has the advantage of being vendor neutral as the specification produced

by Sun may be implemented by other vendors. Indeed, other vendors such as IBM,

IONA, and BEA Systems have implemented their own versions of the J2EE architec-

ture in addition to Sun. JBoss, a freely available, open-source implementation of the

J2EE architecture is also available.

36



3.5.3 .Net

In recent years, Microsoft has proposed the so-called .Net framework. Compared

to other offerings, it is relatively immature and is intended to be platform neutral.

Claims of language neutrality have been compromised by the promotion of Microsoft-

controlled languages such as Visual Basic and C# as the basis for the .Net framework.

Despite the level of univendor control, some attempts have been made to duplicate

this framework outside the confines of the Microsoft platform. Recently, some efforts

have also been made to make the platform amenable to vendor neutral languages.

Such efforts may make this architecture worthy of further study in the future.

3.5.4 Summary

As the above discussion of component models demonstrates, there is no consistent

approach to modelling components and their interactions. There are several compet-

ing approaches each with their own advantages and disadvantages. CORBA offers

the most mature technology; however J2EE has been able to adopt many of the more

successful concepts originated by CORBA to create a viable server-side component

model.

Of particular importance is the fact that none of the pragmatic component devel-

opment models described in this chapter provides a viable way of determining com-

patibility between software components. Apart from the very limited static checking

of parameter and return types, none of the models makes any attempt to estab-

lish the dynamic consistency between components that must be present in order for

components to successfully interact with one another.
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Chapter 4

Formal Component Models

The previous chapter reviewed some popular definitions of components used in the

literature. Since all these definitions are informal, they are not suitable to formal,

automated analysis for the purposes of assessing component compatibility. Therefore,

formal definitions are required which would allow one to determine if a component-

based system satisfies the requirements, especially in terms of compatibility. Sec-

tion 4.1 provides an overview of some formal definitions of components quoted from

the literature. Section 4.2 provides formal definitions related to Petri nets. Section 4.3

and 4.4 proposes a formal model that uses Petri nets to represent the behaviour of

component interfaces. Using the concepts in this chapter, a formal definition of com-

ponent compatibility is given in the next chapter.

4.1 Formal Models of Components

Prior to laying down the foundation upon which component compatibility can be

established, a formal model of a component, and in particular its interface, must be



developed. The development of a formal model provides the possibility of automating

the interconnection of software entities which leads to a software architecture that

complies with a given software specification. A formal model for representing the

static and dynamic attributes of component interfaces is presented in subsequent

sections.

Apart from the informal definitions of components discussed earlier, more formal

definitions of components have also been proposed in the literature. Often, a compo-

nent is defined using a bnf formalism. For example, the following is a bnf description

of a component in which the component’s interface, parameters, methods, behaviour

and context are enumerated [72]:

component ::=
component component name is

interface component message interface
parameters component parameters
methods component methods
[behaviour component behaviour]
[context component context]

end component name

Definitions for other syntactical classes, including component message interface, com-

ponent methods and component behaviour are also provided. Using formal grammars

for component definitions facilitates the possibility of automatic code generation.

Also, by having a comprehensive collection of well-defined software components, the

likelihood of finding a component that accomplishes a required task is increased,

thereby promoting the potential for reuse. However, such syntactic definitions can-

not address the dynamic behavioural aspects of component descriptions.

Another avenue towards component specification and representation is to apply a

more mathematical approach [8]. For example, if Components, Interfaces and Con-
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nections denote the sets of all components, interfaces and connections, respectively,

then the relationships between these entities can be formalized through functional

descriptions. The association of an interface with a component can be described by

the function assigned :

assigned : Interfaces → Components.

Similarly, the concept of a connection between the interfaces of two components is

specified by a relation:

connIfs : {{i, j} | i, j ∈ Interface ∧ i 6= j}.

Many other aspects, such as interface and component behaviour, component compo-

sition and various constraints can also be defined similarly. This approach towards

formal component specification is sufficiently generic and can be used to define com-

ponent interaction in a variety of contexts. Unfortunately, this model results in a

very static representation of the underlying architecture implemented by the deployed

components. As a result, the model is insufficient for modelling the modification of

a component’s behaviour during runtime; the model is unable to distinguish between

design time and execution time.

As with architecture description, there have been several attempts, recently, to use

the Unified Modelling Language (UML) as a basis for component definition and rep-

resentation [58]. Indeed, version 1.5 of the UML specification provides the following

definition of a component [79]:

“A component represents a modular, deployable, and replaceable part of a
system that encapsulates implementation and exposes a set of interfaces. . . .
A component conforms to the interfaces that it exposes, where the interfaces
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represent services provided by elements that reside on the component. A
component may be implemented by one or more artifacts, such as binary,
executable, or script files. A component may be deployed on a node.”

Unfortunately, the UML specification, which was primarily designed to model

object systems, contains several semantic overlaps that make it less than ideal for

component modelling. In addition, issues regarding connection mechanisms are not

fully addressed by UML 1.5. Other problems include the inability to accurately model

all the nuances of specific component technologies, such as EJB and CCM (described

in Section 3.5). With the advent of UML 2.0 and the notion of “UML Profiles,” many

of these problems may be addressed, thereby making UML more amenable to the

description of component-based systems and software architectures, in general [84].

4.2 Petri Net Component Models

As indicated earlier, several attempts have been made to define a component: many

of these attempts have been summarized in [102]. Informally, a component can be

thought of as a cohesive logical unit of abstraction with a well-defined interface, that

provides services to its environment. In order to behave correctly, the component

would also likely require the services of other components in its environment.

Some attempts to formally define a component and its behaviour have made use

of Petri nets [108]. Component composition and compatibility assessment using Petri

net models are established in the literature [57, 92]. Related to this area is the

composition and interoperability of web services [68] and verification of workflow

composition [107]. While the method presented herein shares high-level concepts

with those presented in the literature, this method of composition and compatibility
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assessment is fundamentally different from those proposed by earlier efforts. In par-

ticular, the composition strategy is based on sharing the labels rather than elements

of net models, so the interface is composed of services rather than messages or mes-

sage channels. This work is a further refinement of an earlier composition attempt

presented in [29], in that this approach supports multi-requester and multi-provider

composition scenarios.

For verification of component compatibility, the low-level, internal details of the

component will be disregarded as they are not important in the formalism discussed

below. The focus of attention is on the behaviour at the level of the components’

interfaces and not the internal dynamics of the components themselves. While it

is certainly true that there may be an inseparable relationship between a compo-

nent’s internal behaviour and the dynamics manifested at the component’s interface,

this model will concentrate only upon the interface itself. The relevant behavioural

properties that are necessary to ensure compatibility between components manifest

themselves at the components’ interface, thereby rendering internal communications

irrelevant unless they affect the interface behaviour.

The definitions and concepts in subsections 4.2.1 and 4.2.2 are taken from [33,

78, 86, 115]. The remaining subsections introduce new structural concepts and a

deadlock detection strategy which are used in subsequent chapters to help simplify

and analyze Petri net models.

42



4.2.1 Petri Nets

Petri nets [86] have been proposed, by Carl Adam Petri, as a simple and convenient

formalism for modelling systems that exhibit concurrent actions. Traditional for-

malisms, developed for analysis of systems with sequential behaviour, are inadequate

for representation of concurrent activities and their synchronization.

Petri nets are bipartite directed graphs, in which the two types of nodes, called

places and transitions, represent conditions and events (Petri nets are sometimes

called condition-event systems). An event can occur only when all conditions as-

sociated with it, and represented by arcs directed to the event node, are satisfied.

An occurrence of an event usually satisfies some other conditions, indicated by arcs

directed from an event node. In effect, an occurrence of an event causes some other

event(s) to occur and so on.

Definition: A place/transition Petri net (sometimes also called a net structure) N is

a triple N = (P, T, A), where P is a finite set of places (which represent conditions),

T is a finite set of transitions (which represent events), and A is a set of directed arcs

connecting places with transitions and transitions with places, A ⊆ P ×T ∪T ×P . (A

is sometimes called the flow relation or causality relation, and can also be represented

in two parts, a subset of P × T and a subset of T × P .) For each place p ∈ P and

each transition t ∈ T , the input and output sets are defined as:

Inp(p) = { t ∈ T | (t, p) ∈ A },

Out(p) = { t ∈ T | (p, t) ∈ A },

Inp(t) = { p ∈ P | (p, t) ∈ A },

Out(t) = { p ∈ P | (t, p) ∈ A }.
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The structure of a net can be represented by a matrix which denotes the connectivity

between the places and transitions of the net.

Definition: A connectivity matrix (or incidence matrix ), C, of a net N = (P, T, A)

is a matrix in which the rows correspond to places, the transitions correspond to

columns, and the entries are defined by:

∀pi ∈ P ∀ti ∈ T : C[i, j] =



































−1, if pi ∈ Inp(tj) − Out(tj),

+1, if pi ∈ Out(tj) − Inp(tj),

0, otherwise.

As will be shown later, the connectivity matrix can be used to determine various

properties of nets.

The dynamic behaviour of a net is represented by marking functions which assign

a non-negative number of tokens to each place of a net.

Definition: A marked net, M, is a pair M = (N , m0), where N is a net structure,

N = (P, T, A), and m0 is the initial marking function, m0 : P → { 0, 1, . . . }. Marked

nets are also defined as M = (P, T, A, m0). A place which is assigned a nonzero

number of tokens is called a marked place. Otherwise, it is called an unmarked place.

A marking function (or, more simply, a marking) is commonly represented as a

(column) vector in which the number of elements is equal to the number of places in

the net and each element represents the number of tokens in the corresponding place

of the net.

Under certain conditions, the tokens can “move” in the net, changing one marking

into another.

Definition: In a marked net M = (P, T, A, m0), a transition t ∈ T is enabled by the

marking m0 if all its input places are marked by m0; the set of all transitions enabled
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by m0 is denoted E(m0):

E(m0) = { t ∈ T | ∀p ∈ Inp(t) : m0(p) > 0 }.

Each transition, which is enabled by a marking, can fire (or, an event represented

by this transition can occur). An occurrence of an event removes (simultaneously) a

single token from all input places of the transition representing the occurring event,

and (also simultaneously) adds a single token to all output places of this transition.

An occurrence of an event represented by transition t enabled by marking m

creates a new marking m′ which is directly reachable (i.e., reachable in one step)

from m.

Definition: In a net N = (P, T, A), a marking m′ is directly reachable from a marking

m, m 7→ m′, if there exists t ∈ E(m) such that:

∀p ∈ P : m′(p) =



































m(p) − 1, if p ∈ Inp(t) − Out(t),

m(p) + 1, if p ∈ Out(t) − Inp(t),

m(p), otherwise.

If an enabled transition tk fires in marking m, then the new marking, m′, can be

determined using the connectivity matrix: m′ = m + C[∗, k], where m and m′ are

column vectors which represent the markings before and after the firing, respectively,

and C[∗, k] represents the kth column of C, i.e., the column which corresponds to the

transition tk.

Definition: A marking m′ is generally reachable from a marking m, m
∗
7→ m′, if there

exists a sequence of (intermediate) markings mi0 , mi1 , . . . , mik such that mi0 = m,

mik = m′, and miℓ−1
7→ miℓ for ℓ = 1, . . . , k.
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Definition: The set of reachable markings of a marked net M = (P, T, A, m0),

M(M), is the set of all markings reachable from m0 in M:

M(M) = { m : P → { 0, 1, . . . } | m0
∗
7→ m }.

The set of reachable markings can be finite or infinite. If it is finite, the net is bounded,

otherwise it is unbounded. If a marked net M is bounded, there exists a constant k

(called the bound) such that:

∀m ∈ M(M) ∀p ∈ P : m(p) ≤ k.

If this bound is equal to 1, the net is called safe.

Definition: A place is shared iff its output set contains more than one transition:

p is shared ⇔ card(Out(p)) > 1.

A net which does not contain shared places is (structurally) conflict-free.

Definition: A place is (structurally) free-choice iff all transitions sharing it have

identical input sets:

p is free-choice ⇔ ∀ti, tj ∈ Out(p) : Inp(ti) = Inp(tj).

A net is free-choice if all its shared places are free-choice.

For a free choice place p in a net N , a marking m either enables all transitions

sharing p, or none of these transitions is enabled by m.

Definition: A marked net M is dynamically conflict-free iff for all reachable markings

and for each place p, at most one transition in the output set of p is enabled by m:

M is dynamically conflict-free ⇔ ∀m ∈ M(M) ∀p ∈ P : card(E(m) ∩ Out(p)) ≤ 1.
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Conflict-free nets represent systems with deterministic behaviours i.e., systems in

which the “next actions” are always uniquely determined. There are several sub-

classes of Petri nets, such as state machines and marked graphs, for example. More

information on these subclasses can be found in [78].

A sequence of transitions (ti1 , ti2 , . . . , tik) is a firing sequence at marking m if ti1

is enabled by m, ti2 is enabled by the marking obtained by firing ti1 , and so on.

Definition: A firing sequence at marking m, σ(m), in net N is defined as:

σ(m) = ti1ti2 . . . tik ⇔ ∃ mi0 , mi1, . . . , mik : mi0 = m ∧

∀ 0 < j ≤ k : tij ∈ E(mij−1
) ∧ mij−1

tij
7→ mij ,

where E(m) is the set of transitions enabled by m. The set of all firing sequences at

the initial marking m0 of Mi is denoted by F(Mi).

Each firing sequence σ can be described by a firing vector which indicates the

number of occurrences of each transition in the sequence σ.

Definition: The firing vector, fσ, of a firing sequence σ is a mapping fσ : T →

{0, 1, . . .}, where fσ(t) is the number of occurrences of t in σ. The firing vector of σ

is also known as a Parikh vector of σ.

It should be observed that a firing vector does not uniquely identify a firing se-

quence — a valid firing vector may correspond to many possible firing sequences in a

marked net.

Definition: A net M = (P, T, A, m0) is live if, for all transitions t ∈ T , and any

marking m reachable from m0, t can fire in m or some subsequent marking reachable

from m:

M is live ⇔ ∀m ∈ M(M) ∀t ∈ T ∃m′ ∈ M(M) : m
∗
7→ m′ ∧ t ∈ E(m′).
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Live nets correspond to systems in which all events can occur (eventually). Absence

of the liveness property may indicate some sort of “problem” in the system. A net

which is not live contains a deadlock or a livelock.

Definition: A marking m in net N = (P, T, A) is dead if it does not enable any

transition, i.e.,

m is dead ⇔ E(m) = ∅.

If the set of reachable markings of M = (N , m0) contains a dead marking, then M

contains a deadlock:

deadlocked(M) = ∃m ∈ M(M) : E(m) = ∅.

Deadlocks in Petri nets can be analyzed by checking the sets of reachable markings

(for bounded nets) or by studying structural properties of nets. The concepts of

siphons and traps [43] are commonly used in the structural analysis of nets.

Definition: A siphon in a net N = (P, T, A) is a subset of places S ⊆ P such

that Inp(S) ⊆ Out(S), where Inp(S) =
⋃

s∈S Inp(s) and Out(S) =
⋃

s∈S Out(s). A

minimal siphon is defined as a siphon which does not include any other siphon. A

siphon is proper if Inp(S) ⊂ Out(S). A basis siphon is a siphon that cannot be

represented as a union of other siphons.

It can be observed that any union of siphons is also a siphon and that all minimal

siphons are also basis siphons. Any siphon in a net contains one of the minimal

siphons and any siphon in a net can be represented by the union of one or more basis

siphons. In a siphon S, all input transitions are also output transitions of S, so if

S becomes unmarked, it remains unmarked for all subsequent markings. It can be

shown that for each dead marking m in a net N , the set of unmarked places is a
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siphon [74]. Algorithms for extracting basis and minimal siphons in a net are well

established in the literature [11, 52]. Unfortunately, in the general case, the running

time of these algorithms is not polynomial [28, 103].

Definition: A trap in a net N = (P, T, A) is a subset of places Q ⊆ P such that

Out(Q) ⊆ Inp(Q). A minimal trap is defined as a trap which does not include any

other trap. A marked trap is defined as a trap which has at least one of its places

marked.

If the input and output transitions of a subset of places are the same, then the

subset of places represents both a trap and a siphon. This is known as a siphon-trap.

4.2.2 Siphons and Liveness

Siphons are an important concept in determining liveness of a net. If a marking

reachable from the initial marking results in a siphon becoming unmarked, (i.e., all

places of the siphon are unmarked), then the net cannot be live. Deadlock-freeness

can be asserted by ensuring that each minimal siphon in the marked net can never

become unmarked [43].

Whether or not a minimal siphon, S, can become unmarked can be determined

by minimizing the number of tokens in the siphon. This is typically formulated as a

linear programming problem [25, 27, 74, 93, 94]:

min





∑

p∈S

m(p)



 subject to: x ≥ 0; m = m0 + Cx ≥ 0

where C is the connectivity matrix of N , x is the yet unknown firing vector that

minimizes the number of tokens in the siphon and m is the final marking obtained

from the initial marking m0 by the firing vector x. Because no place in any marking
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can ever have a negative number of tokens, all elements in the final marking vector

must be greater than or equal to zero, which is indicated in the constraints above.

The objective function can also be expressed as:

∑

p∈S

m(p) =
∑

p∈S

(m0(p) + C[p, ∗]x)

=
∑

p∈S



m0(p) +
∑

t∈Inp(p)

x[t] −
∑

t∈Out(p)

x[t]



 ,

where C[p, ∗] is the row vector of C corresponding to place p. The constraints for the

linear programming problem can be formulated as follows:

x(t) ≥ 0, t ∈ T ;

m0(p) +
∑

t∈Inp(p)

x(t) −
∑

t∈Out(p)

x(t) ≥ 0, p ∈ P.

It can be observed that the objective function is derived from rows in the connectivity

matrix that correspond to the places in the siphon, whereas the constraints are derived

from all rows (places) in the connectivity matrix, and not just those in the siphon S.

If a solution of the linear programming problem exists, it is provided as a firing vector,

which does not take into account the ordering of firing transitions. It is possible that

the solution of the linear programming problem has no corresponding firing sequence;

a simple example of such a situation is presented in the next section. Therefore, each

solution of the linear programming problem is followed by a verification step which

checks if the firing vector is feasible. This can be done by a recursive function which is

analogous to backtracking in classic AI searches [13]. An example of such a function

feasible is given in Figure 4.1. The function takes, as arguments, the net N , the initial

marking m0 and the firing vector x which is the solution of the linear programming

problem. The function returns a firing sequence that corresponds to the firing vector
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func feasible(N , m, x) : sequence
begin

var m′, /* the new marking */
x′, /* the new firing vector */
f ; /* the (partial) firing sequence */

if zero(x) then
return(<>) /* the empty sequence */

endif ;

for each t in enable(N , m) do
if x[t] > 0 then

x′ := x;
x′[t] := x′[t] − 1;
m′ := fire(N , m, t);
f := feasible(N , m′, x′);
if f 6= fail then

return(<t, f >)
endif

endif
endfor;
return(fail)

end

Figure 4.1: Function feasible

x, if one exists, or fail if one does not. The enable function in Figure 4.1 returns the

set of transitions in the net that are enabled by the given marking. The fire function

takes a net, its marking and a transition and returns the new marking that results

from firing the transition. The zero function takes a vector and returns true if all

the elements in the vector are zero.

If the firing vector is deemed feasible by the procedure, then it creates an un-

marked siphon so the net cannot be live. As with many backtracking algorithms,

this algorithm is exponential with respect to the magnitude of non-zero elements in

the initial vector x. However, in practice, the magnitude of the non-zero elements
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returned by the linear programming minimization procedure is typically quite low.

Indeed, in larger nets, the number of zero elements in the vector may be quite high,

thereby mitigating the time required to test the feasibility of the vector.

In the general case, linear programming cannot be used directly to find deadlocks

because the condition that all transitions are disabled (so there is a deadlock), can

be a nonlinear one. However, if the net is an event graph (i.e., each transition has

exactly one input and one output place), the deadlock can be determined directly

using linear programming as a solution of the following problem:

min

(

∑

t∈T

m(inp(t))

)

subject to: m0 + Cx ≥ 0, x ≥ 0,

where C is the connectivity matrix of N and inp : T → P , i.e., inp(t) determines the

single input place for a transition, t.

This property forms the basis of yet another approach to deadlock detection [55,

56, 75], which first unfolds the (general) net to a simple occurrence net (reduced

to a finite prefix which represents all important properties of the original net), and

then uses linear programming to check if this finite prefix indicates a deadlock in the

original net. It has been shown [69] that in some cases, the unfolding results in a

very compact net, but in the general case, the unfolded net can be quite complex [56].

Unfolding strategies can also be employed for reachability analysis as well [35].

4.2.3 Example One

This section provides a comprehensive example of a Petri net to demonstrate many

of the concepts introduced in the previous section. Figure 4.2 is a Petri net with five

places (represented by circles), four transitions (represented by rectangles) and eleven
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arcs. Inp(t3) = {p4, p5} and Out(p5) = {t3, t4}, for example. Its initial marking is

represented by the column vector m0 = [1, 0, 1, 0, 0]T ; the solid black circles in p1 and

p3 represent the tokens of the initial marking.

p5

t1

t3

t4t2

p1 p2

p4p3

Figure 4.2: A Petri net

The connectivity matrix of this net is as follows:

C =

















+1 −1 0 0
−1 0 0 +1
−1 0 +1 0
+1 0 −1 0

0 +1 −1 −1

















Since p5 is a shared place, the net is not conflict-free. The places p1, p2, p3 and

p4 are all (trivially) free-choice. However, place p5 is not free-choice since Inp(t3) 6=

Inp(t4). For the shown initial marking, the net is not dynamically conflict-free because

the marking [0, 0, 0, 1, 1]T , reachable from m0, enables two transitions, t3 and t4.

The only transition initially enabled in the net is t2. As it fires, the token is

removed from p1 and is added to p5, creating marking, [0, 0, 1, 0, 1]T which enables t4.

t3 is not enabled by this new marking since p4 ∈ Inp(t3) is not marked.
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When t2 fires, the marking changes from m0 = [1, 0, 1, 0, 0]T to [1, 0, 1, 0, 0]T +

[−1, 0, 0, 0, 1]T = [0, 0, 1, 0, 1]T . When t4 then fires, the new marking is [0, 0, 1, 0, 1]T +

[0, 1, 0, 0,−1]T = [0, 1, 1, 0, 0]T . The transition sequence (t2, t4, t1, t2) is a firing se-

quence for this Petri net. This firing sequence is represented by the firing vector

[1, 2, 0, 1].

The list of all reachable markings for this net is given in Table 4.1, in which

markings 5 and 6 constitute dead markings.

Table 4.1: Reachable markings of the net in Figure 4.2

Node Marked Places Firing Transition Next Marking

0 {p1, p3} t2 1
1 {p3, p5} t4 2
2 {p2, p3} t1 3
3 {p1, p4} t2 4
4 {p4, p5} t3 5

t4 6
5 {p3} – –
6 {p2, p4} – –

An alternative way to assess deadlock-freeness is to perform structural analysis

and linear programming. The siphons and traps of this net, as well as their minimal

counterparts and the basis siphons, are presented in Table 4.2. The subsets of places

{p1, p2, p3, p5} and {p3, p4} are both siphon-traps.

The test for deadlock-freeness is initially based on the minimal siphons, {p1, p2, p5},

{p1, p3, p5}. For S = {p1, p2, p5}, the minimization objective function is:

∑

p∈S

m(p) = 1 + (xt1 − xt2) + (−xt1 + xt4) + (xt2 − xt3 − xt4)

= 1 − xt3
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Table 4.2: Siphons/traps in Figure 4.2

Siphons: {p1, p2, p3, p4, p5}, {p1, p2, p3, p5}, {p1, p2, p4, p5},
{p1, p2, p5}, {p1, p3, p4}, {p1, p3, p4, p5}, {p1, p3, p5},
{p3, p4}

Minimal Siphons: {p1, p2, p5}, {p1, p3, p5}, {p3, p4}
Traps: {p1, p2, p3, p4, p5}, {p1, p2, p3, p5}, {p2, p3, p4},

{p2, p3, p4, p5}, {p3, p4}
Minimal Traps: {p1, p2, p3, p5}, {p3, p4}
Basis Siphons: {p1, p2, p4, p5}, {p1, p2, p5}, {p1, p3, p4}, {p1, p3, p5},

{p3, p4}

This objective function is derived by adding all rows of the connectivity matrix that

correspond to each place in the siphon {p1, p2, p5}. For example, the (xt1 − xt2) term

corresponds to the first row (p1) of the matrix and the subsequent terms correspond

to the second and fifth rows (p2 and p5). The number of tokens in the siphon at the

initial marking is added to the objective function.

Hence, the linear programming problem is to minimize 1 − xt3 , subject to the

constraints:

p1 : xt1 − xt2 + 1 ≥ 0,

p2 : −xt1 + xt4 ≥ 0,

p3 : −xt1 + xt3 + 1 ≥ 0,

p4 : xt1 − xt3 ≥ 0,

p5 : xt2 − xt3 − xt4 ≥ 0,

xt1 ≥ 0, xt2 ≥ 0, xt3 ≥ 0, xt4 ≥ 0.

The first five constraints correspond to places of the net and specify that the number

of tokens in each place cannot be negative. The final group of constraints simply

states that all transitions cannot fire a negative number of times.

Solving this problem gives the vector [1, 2, 1, 1], which can be verified by the fea-
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sible function to correspond to the firing sequence: (t2, t4, t1, t2, t3) which empties the

siphon and also results in the net becoming deadlocked. Using the same technique on

the other siphon, {p1, p3, p5}, results in the firing vector [1, 2, 0, 2], which corresponds

to the firing sequence (t2, t4, t1, t2, t4). This provides another means of creating a

deadlock. In this particular example, it is not necessary to examine the basis siphons

in order to determine if a deadlock is present. However, as will be shown in a subse-

quent example, examination of the basis siphons may be needed to obtain a deadlock

in the net. If a deadlock cannot be obtained by minimizing the number of tokens in

any sequence of basis siphons, then the net is deadlock-free.

To illustrate an example in which linear programming can yield an infeasible

vector, consider the simple net given in Figure 4.3. The objective function associated

t2
p3p2

p1

t1

t3

Figure 4.3: A Petri net with an infeasible firing vector

with the minimal siphon {p2} is 1 − xt2 − xt3 . The constraints obtained from the
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connectivity matrix are:

p1 : xt1 + xt2 − xt3 ≥ 0,

p2 : 1 − xt2 − xt3 ≥ 0,

p3 : −xt1 + xt3 ≥ 0,

xt1 ≥ 0, xt2 ≥ 0, xt3 ≥ 0.

The firing vector [1, 0, 1] satisfies the constraints while minimizing the objective func-

tion to zero. However, this vector violates the feasibility test (because in the initial

marking, neither t1 nor t3 can fire) and this vector must therefore be rejected during

deadlock analysis.

For larger net models, the extraction of the minimal and basis siphons can become

more troublesome because of the time complexity. This can be mitigated by elim-

inating “similar” siphons of the net while still preserving the underlying structural

properties of the net that may generate a deadlock. This is the topic of the next

section.

4.2.4 Similar and Essential Siphons

In many net models, the number of siphons increases very quickly with the size of

the model. It appears, however, that for deadlock detection, only a small number of

siphons is needed. The concepts of essential siphons and siphon similarity are intro-

duced to determine which siphons are important and which are not when determining

deadlock in a Petri net.

Definition: Two siphons S1 and S2 in a net M are similar, S1 ∼ S2, if for all
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reachable markings either both are marked or both are unmarked:

S1 ∼ S2 ⇔ ∀m ∈ M(M) : mark(S1, m) = 0 ⇔ mark(S2, m) = 0

where mark(S, m) =
∑

p∈S m(p).

Corollary 4.1 The relation of siphon similarity is an equivalence relation on the set

of siphons of a marked net M, so it implies a partition of this set into classes of

similar siphons.

The corollary is a straightforward consequence of the definition of similar siphons. 2

Definition: Set S = {S1, S2, . . . , Sn} is the set of essential siphons for M if no two

siphons in S are similar and if any other siphon of M is similar to one of the siphons

in S.

Corollary 4.2 The set of essential siphons of a net M contains one siphon from

each equivalence class of the siphon similarity relation.

The corollary is a straightforward consequence of the definition of essential siphons.

2

As a consequence of this corollary, non-essential siphons of M can be eliminated

by removing from M elements which create similar siphons.

Definition: A simple path in a net N is a sequence of transitions and places

ti0pi1ti1pi2 . . . piktik , such that:

(∀1 ≤ j ≤ k : Inp(pij) = {tij−1
} ∧ Out(pij ) = {tij}) ∧

(∀1 ≤ j < k : Inp(tij ) = {pij} ∧ Out(tij ) = {pij+1
}).
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Each simple path is denoted path(ti0 , tik), though there can be several simple paths

connecting ti0 and tik . In order to represent the places along a path, the places

function can be used to “extract” the places for a given path, π:

places(π) =



































{p} ∪ places(σ), if π = pσ,

places(σ), if π = tσ,

∅, if π = ε.

There are two classes of paths in a net that can lead to simplifications that do not

adversely affect the net’s behavioural properties with respect to deadlock analysis.

These paths are called parallel paths and alternate paths and are defined in the

following subsections.

4.2.4.1 Parallel Paths

Informally, parallel paths are represented by a pair of delimiting transitions that

encompass two (or more) simple paths, as illustrated in Figure 4.4.

Definition: Parallel paths are any two simple paths which connect the same transi-

tions ti and tj.

ti tj

. . .

. . .

Figure 4.4: Parallel paths in a Petri net
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Definition: Two or more simple paths are equally marked if they all possess at least

one token or if they all possess no tokens in the initial marking.

It can be observed that if two or more parallel paths are equally marked, then if

a siphon contains the set of places in one of the parallel paths, then similar siphons

exist that contain places in each of the other parallel paths.

Corollary 4.3 For equally marked parallel paths π1 and π2, if places(π1) is a subset

of siphon Si in M, then places(π2) is a subset of another siphon Sj which is similar

to Si, Si ∼ Sj.

This corollary follows as a consequence of the definition of siphons and similar siphons.

2

Corollary 4.4 If a net M has parallel paths, then the set of essential siphons for

M′, a net obtained from M by removing one of the parallel paths, is also a set of

essential siphons for M.

This corollary is a straightforward consequence of Corollary 4.3 and the definition of

essential siphons. 2

Eliminating nonessential siphons for M can thus be performed by first reducing M

until it has no parallel paths, and then finding minimal/basis siphons in the reduced

net. A procedure that identifies parallel paths in a given net is shown in Appendix C.

4.2.4.2 Alternate Paths

Informally, alternate paths are delimited by two or more pairs of transitions which

envelop simple paths. In addition, all of the transition pairs share a common simple

path, known as the base, as illustrated in Figure 4.5.
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Definition: An alternate path in a net N = (P, T, A) is a collection of disjoint,

simple paths path(ti1 , tj1), path(ti2 , tj2), . . . , path(tin , tjn
), tiℓ 6= tik , tjℓ

6= tjk
, for 1 ≤

ℓ < k ≤ n, with an additional simple path (called the base), path(pi, pj) connected to

all tiℓ and tjℓ
, (tiℓ , pi) ∈ A, (pj , tjℓ

) ∈ A, 1 ≤ ℓ ≤ n.

. . .

. . .

. . .

pi pj

ti1

tin

tj1

tjn

Base

Figure 4.5: Alternate paths in a Petri net

Corollary 4.5 For alternate paths π1, . . . , πk with base π0, if places(πi) is a subset

of a siphon Sj in M, then places(π0) is a subset of another siphon Sℓ which is similar

to Sj, Sj ∼ Sℓ.

This corollary is a straightforward consequence of the definition of essential siphons

and alternate paths. 2

An algorithm to identify all alternate paths in a net N is described in detail in

Appendix C.

Corollary 4.6 If a net M has alternate paths, then the set of essential siphons for

M′, a net obtained from M by removing the base of alternate paths, is also a set of

essential siphons for M.
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This corollary is a straightforward consequence of the definition of essential siphons

and alternate paths. 2

By removing the bases of all alternate paths in a net, siphon extraction becomes

less troublesome since the number of (inessential) siphons is reduced.

4.2.5 Deadlock Checking

The reduction of parallel and alternate paths preserves the deadlocks of the original

model, so a simpler, reduced net can be examined for deadlock. If none of the minimal

siphons can be emptied of their tokens, then the net is deadlock-free. If, however,

(some) minimal siphons can be emptied and the resulting marking is not dead, then

further analysis is required to determine whether or not a deadlock actually exists

in the net. Therefore, a systematic, siphon-based verification of deadlocks in marked

Petri nets recursively tries to empty as many siphons as possible. The performance of

this procedure is improved if only essential siphons are considered, but this essentiality

of siphons is not necessary.

The recursive algorithm to detect the presence of a deadlock is presented in Fig-

ure 4.6. While this deadlock detection algorithm is believed to be original, other

techniques related to deadlock prevention and avoidance are also available [63]. The

algorithm takes a marked net (N , m) and the set of minimal and basis siphons, S

and Sb, respectively, and determines if there is a sequence in which the siphons can

be emptied to produce a deadlock.

The deadlock function initially tests the marking of the net to determine if it is

dead. If so, the function returns immediately, terminating any recursion. If not, the
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func deadlock(N , m, S, Sb) : boolean
begin

var m′, /* the new marking */
S ′, /* the new siphon set */
n, /* the minimum number of tokens in a siphon */
v; /* the minimizing firing vector */

if enable(N , m) = ∅ then
return true

endif ;
if S 6= ∅ then

for each s in S do
v, n := lp minimize(N , m, s);
if not zero(v) and n = 0 and feasible(N , m, v) then

m′ := m + C × v;
S ′ := marked(m′, S);
if deadlock(N , m′, S ′, Sb) then

return true

endif
endif

endfor
endif ;
if Sb 6= ∅ then

return deadlock(N , m, Sb, ∅)
endif ;
return false

end

Figure 4.6: Function deadlock

function iterates over each marked siphon, testing if the siphon can become empty.

The lp minimize function takes a marked net and a siphon and attempts to minimize

the number of tokens in the siphon using linear programming. This function returns

the minimum number of tokens that the siphon can possess (n) as well as a firing

vector which minimized the tokens (v). If the siphon can be emptied and the vector

is feasible, the marking of the net is updated and the marked function is used to
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determine the subset of siphons that still possess tokens under the new marking. The

deadlock function is then called recursively to try to empty other siphons, if necessary.

Because the number of minimal siphons is typically quite small, the deadlock

function is initially run on the set of minimal siphons to determine if they can be

emptied to produce a deadlock. The initial invocation of the function is as follows:

deadlock(N , m0, Sm, Sb)

where m0 is the initial marking Sm is the set of minimal siphons and Sb is the set of

basis siphons. If a deadlock is not obtained by analyzing minimal siphons, the function

undergoes a second round of recursion, as shown near the bottom of Figure 4.6:

deadlock(N , m, Sb, ∅)

The same algorithm is used to identify a deadlock, but this time the basis siphons, Sb

are used instead of the minimal siphons. If no sequence of basis siphons can be found

which, when emptied, results in a deadlock, then the net is deadlock-free. In the

worst case, due to the implicit backtracking, the complexity of the deadlock function

is exponential with respect to the number of siphons. But because a deadlock can

usually be reached by several paths, even large net models can be analyzed quite

efficiently as illustrated in Chapter 6.

4.2.6 Example Two

To demonstrate other features of the deadlock algorithm, the unbounded net pre-

sented in Figure 4.7 is analyzed. This net has several parallel paths and an alternate

path. The eliminated parallel paths and the base of the alternate path are denoted
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p1 p2 p3

t2t1

p4 p5
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t4 t5
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t7t6

t9
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p11

p7
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p15

p17
t12

p16
t13

p20
t15

p19
t14

p12

p9

p18

t11

Figure 4.7: Petri net for example two

by dashed and dotted lines, respectively, in Figure 4.8. Elimination of these paths

does not adversely affect the deadlock analysis of the net.

The original net has a total of 91 basis siphons, 15 of which are minimal siphons,

and another 15 of which are siphon-traps. Although the number of siphons is not

particularly large, removing the parallel and alternate paths can dramatically reduce

the number of siphons in the net that need to be analyzed. After simplification,

the reduced net has just four basis siphons, two of which are minimal. The other

two siphons are actually (marked) siphon-traps, so they can be disregarded for the
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Figure 4.8: A Petri net with parallel and alternate paths identified

purposes of deadlock analysis as they cannot become empty. As a result, the relevant

basis siphons and the minimal siphons are identical in this case. The basis and

minimal siphons are shown in Table 4.3 and the minimal siphons are illustrated in

Figure 4.9. The constraints, as deduced from the connectivity matrix of the reduced

net are presented in Table 4.4. (The constraint that each transition must fire a

non-negative number of times is not explicitly given in the table.) Note that the

“self-loops” between the place/transition pairs p7/t6, p12/t6 and p14/t9 result in extra

constraints that must be satisfied by the linear programming minimization.
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Table 4.3: Siphons in Figure 4.9

Minimal Siphons: S1 = {p6, p8, p9},
S2 = {p12, p13, p15}

Basis Siphons: S3 = {p6, p8, p9},
S4 = {p6, p7, p8, p9},
S5 = {p12, p13, p15},
S6 = {p12, p13, p14, p15}

p6

t5

t10

t7t6

t9

p14

t3

p7

t11 t13

p12

p9

p8

p13

p15

S1

S2

Figure 4.9: A Petri net with parallel and alternate paths removed

The marked net and the minimal siphons (S1, S2), both of which are marked, are

passed into the deadlock function. The objective function 1 − xt6 , corresponding to

S1, can be minimized to zero by the firing vector [1, 1, 1, 1, 0, 0, 0, 0] which corresponds
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Table 4.4: Constraints for the Petri net of Figure 4.9

Place Constraint

p6 xt3 − xt5 ≥ 0
p7 xt5 + xt6 ≥ 0
p7 xt5 − xt6 ≥ 0
p8 xt5 − xt7 ≥ 0
p9 −xt3 − xt6 + xt7 + 1 ≥ 0

p12 xt6 − xt9 + xt10 − xt11 + 1 ≥ 0
p12 −xt6 − xt9 + xt10 − xt11 + 1 ≥ 0
p13 −xt10 + xt13 ≥ 0
p14 xt9 + xt13 ≥ 0
p14 −xt9 + xt13 ≥ 0
p15 xt11 − xt13 ≥ 0

to the feasible firing sequence (t3, t5, t7, t6). This firing sequence marks places p7 and

p12. The function then recurses, checking the updated siphon set {S2} and the new

marking. The objective function corresponding to S2, i.e., 1−xt9 , is then minimized to

zero by the firing vector [0, 0, 0, 0, 1, 1, 1, 1]. The corresponding feasible firing sequence

is (t11, t13, t10, t9), which marks p7 and p14. This is a dead marking which causes the

recursion to unfold.

This example also shows that the ordering of siphons can influence the behaviour of

the deadlock algorithm. If the siphons are analyzed by the deadlock function in reverse

order (i.e., first S2 then S1) then S2 would become empty by firing (t11, t13, t10, t9)

resulting in p9 and p14 becoming marked. However, at this point, S1 cannot be

emptied of its token since t6 can never fire. Therefore, the function would return

false, causing the recursion to unfold and an attempt would then be made to empty

the next siphon, S1, in the original marking. This attempt would be successful and

the function would recurse with the new siphon set {S2}. The remaining siphon in

this set, S2, could also be emptied, producing the same deadlock as demonstrated
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earlier.

A further example in which the set of relevant basis siphons is different than the

set of minimal siphons is presented in Chapter 6.

The existence of deadlock is used to assess component compatibility, as will be

described in Chapter 5. Prior to this, the fundamental notions of interface models

and interface languages are needed, which are described in the next section.

4.3 Interface Models

Component interfaces are represented by cyclic Petri nets in which labels are associ-

ated with transitions.

Definition: A model of a component’s interface is a labelled Petri net:

Mi = (Pi, Ti, Ai, Li, ℓi, mi, Fi)

where (Pi, Ti, Ai, mi) is a deadlock-free, marked Petri net, Li is an alphabet repre-

senting a set of services which are associated with transitions by a labelling function

ℓi : Ti → Li∪{ε}, where ε is the empty label, ε 6∈ Li, and Fi is a set of final markings,

Fi ⊆ M(Mi). Final markings are used to indicate sequences of firings in cyclic nets.

This is somewhat similar to the concept of final states in finite automata.

It is believed that requiring an interface net to be live is overly restrictive, hence

only the weaker condition of deadlock-freeness is imposed upon the net. While this

may mean that some of the services may become disabled, this may have been the

intention of the original interface designer, particularly if some services can be used

just once or a limited number of times. A component interface is usually represented
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by a net in which Fi = {mi}, i.e., the set of final markings contains just the initial

marking. A simple example of an appropriately marked and labelled interface is

presented in Figure 4.10.

cb

da

Figure 4.10: A component interface with services a,b,c and d

In any software system, there will naturally be many components and each com-

ponent can have several interfaces. In order to represent communication between

components, the interfaces are divided into provider interfaces (p-interfaces) and re-

quester interfaces (r-interfaces) [77].1

In the context of a provider interface, a labelled transition can be thought of as a

service provided by that component. Each transition provides only one service. La-

belled transitions on the provider essentially denote entry points into the component.

It should be noted that it is possible to have unlabelled transitions on an interface

(i.e., labelled by ε). Such transitions may be needed to implement behavioural logic

of the interface and do not actually constitute a service.

Since the services provided by a component need to be uniquely identified, it is

1Note that this model does not prevent a component from having a provider interact with a

requester interface belonging to the same component. This would be an example of a recursive or

feedback component.
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required that each service in each p-interface has exactly one labelled representation:

∀ti, tj ∈ T : ℓ(ti) = ℓ(tj) 6= ε ⇒ ti = tj .

In addition to the uniqueness of the labelled transitions in each p-interface, all

providers must be ε−conflict-free:

∀t ∈ T ∀p ∈ Inp(t) : Out(p) 6= {t} ⇒ ℓ(t) 6= ε.

The label assigned to a transition represents a service or some unit of behaviour.

For example, the label could conceivably represent a conventional function or method

call. The return type and parameters are all encapsulated or abstracted by the

label and are of no concern to the model as a whole. It is assumed that if the p-

interface requires parameters from the r-interface, then the appropriate number and

types parameters are delivered by the r-interface. Similarly, it is assumed that the

p-interface generates an appropriate return value to the r-interface, if required.

Another assumption is that if an r-interface requests an arbitrary service a of a

provider component that supports that particular service via its p-interface, then the

provider component will be able to satisfy that service (i.e., the component servicing

the request will not fail due to lack of resources or software faults, for example).

4.4 Interface Languages

Some proposals have restricted interface behaviour to regular languages, or modest

variations thereof [85, 87]. However, by employing Petri nets, this model allows for

significant flexibility in the protocol language between components [78]. For example,

the protocol languages could conceivably be context-free, which, in the context of
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modelling the behaviour of a relatively simple data structure such as a stack, could

be quite useful. It is known that Petri net languages include all regular languages, a

subset of context-free languages and a subset of context-sensitive languages [78].

Possible sequences of services provided by a p-interface are determined by the

transition labels of all possible firing sequences in the Petri net model of an interface.

Definition: The language of Mi = (Pi, Ti, Ai, Li, ℓi, mi, Fi), denoted by L(Mi), is

the set of all strings over Li obtained by labelling firing sequences which begin with

mi and end at one of the final markings:

L(Mi) = { ℓ(σ) | σ ∈ F(Mi) ∧ mi
σ
→ m ∧ m ∈ Fi}

where ℓ(ti1 . . . tik) = ℓ(ti1) . . . ℓ(tik).

As an example, the language describing the behaviour of the interface presented

in Figure 4.10 with F = {mi} is defined by the regular expression (a(b|c)∗d)∗.

4.5 Summary

A formal model representing the interface of a component by a labelled Petri net has

been introduced. This model captures the behavioural properties of a component’s

interface which can also be characterized as the language generated by the model. In

the next chapter, this model is used to assess the compatibility between a provider

and requester component by studying the structural and linguistic properties of the

respective interface models.
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Chapter 5

Component Composition and

Compatibility

As described earlier, in the context of software architectures and component-based

programming, there is increasing emphasis on the integration phase of the software

development process. This chapter uses the concept of Petri nets (introduced in the

previous chapter) to propose a foundation upon which the composition of two or more

components can be analyzed.

Such a composition must enforce a compatible sequence of operations between

components providing services (provider components) and components that request

them (requester components). For the purposes of this chapter, the component that

initiates the interaction and issues the operations will be deemed the requester and the

other component will become the provider. The structural properties of the resulting

composition can be analyzed to verify the compatibility of the component integration.

With a formal method of establishing component compatibility, it may be possible



to provide some level of automation to the tedious but important process of system

integration.

5.1 Component Compatibility

Compatibility of two components is determined by the behaviour at their respective

interfaces. For two components to interact, the provided services must be compatible

with requested ones. This means that not only must all the services required by the

requester be made available by the provider, but also that any sequence of services

demanded by the requester must be satisfied by the provider.

Definition: A requester interface Mi and a provider interface Mj are compatible iff

L(Mi) ⊆ L(Mj).

This definition implies that the provider’s alphabet Lj must be a superset of the

requester’s alphabet Li, Li ⊆ Lj , although usually it will be assumed that Li = Lj

because the symbols in Li − Lj obviously have no influence on the compatibility of

the components. If the nets representing the requester and provider interfaces are

bounded, and a provider interface is interacting with a single requester interface,

the compatibility can be verified directly on the basis of the definition of interface

compatibility.

Corollary 5.1 The language of a bounded interface Mi is regular, so it can be rep-

resented by a deterministic finite automaton.

Proof: A nondeterministic finite automaton, A, is usually defined as A = (S, A, ∆, s0, F )

where S is a set of states, A is the alphabet, ∆ is the transition relation and is a
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subset of S × (A ∪ ε) × S, s0 ∈ S is the initial state and F ⊆ S is the set of final, or

accepting, states.

If the interface Mi = (Pi, Ti, Ai, Li, ℓi, mi, Fi) is bounded, its reachability set,

R(Mi) = (M(Mi), A, m0), is finite, so it can be used as the set of states of a finite

automaton defining the language L(Mi):

A(Mi) = (M(Mi), Li, ∆, m0, Fi)

where:

∆ ⊆ M(Mi) × (A ∪ {ε}) × M(Mi) and

(m, a, m′) ∈ ∆ ⇔ ∃t ∈ T : m
t
7→ m′ ∧ ℓi(t) = a and

(m, ε, m′) ∈ ∆ ⇔ ∃t ∈ T : m
t
7→ m′ ∧ ℓi(t) = ε.

The construction of A(Mi) guarantees that L(Mi) = L(A(Mi)). 2

A(Mi) is, in general, a nondeterministic automaton with ε-transitions, which,

however, can be converted to an equivalent deterministic finite automaton [62].

In many cases, the finite automaton defining the language of an interface can

be derived directly from the net representing the interface. For bounded nets, the

compatibility can be verified by simple operations on the interface languages.

Corollary 5.2 Bounded requester and provider interfaces Mi and Mj, respectively,

are compatible iff

L(Mi) ∩ L(Mj) = ∅,

where L is the complement of L.

Proof: L1 ⊆ L2 ⇔ L1 ∩ L2 = ∅. 2

For regular languages L1 and L2, the condition L1∩L2 = ∅ can be checked because

regular languages are closed under complementation and intersection, so checking the
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emptiness of a language is equivalent to checking if the set of accepting (or final)

states in the finite automaton defining the language is empty.

The states that are present in an automaton that accepts the intersection of the

two languages can be determined by the algorithm shown in Figure 5.1. The function

takes two automata A1 = (S1, A, δ1, s1, F1) and A2 = (S2, A, δ2, s2, F2) with common

alphabets and disjoint sets of states (S1 ∩ S2 = ∅). In the worst case, this function

func product(A1,A2) : state list
begin

var states := {(s1, s2)};
new :=< (s1, s2) >;

while new 6=<> do
s := head(new);
new := tail(new);
for each a in A do

s′ := (δ1(s.one, a), δ2(s.two, a));
if s′ 6∈ states then

states := states
⋃

{s′};
new := append(new , s′)

endif
endfor

endwhile;
return states

end;

Figure 5.1: Function product

will return a list containing |S1| × |S2| states. However, pragmatically, the number of

states will be less, depending upon the number of transitions in each automaton.

If the interfaces are unbounded or if a provider interface interacts with several

requester interfaces, a different approach to verifying the compatibility is needed,

in which the inclusion of requester and provider languages is checked indirectly, by
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checking properties of the composition of requester and provider interfaces.

5.2 Component Composition

This section provides an overview of attempts to compose two or more interface nets

together under a variety of circumstances. Some of the advantages and disadvantages

of these strategies are discussed. A new model of composition is then proposed which

addresses the issues that arise from the discussed composition attempts.

5.2.1 Simple Composition Models

The composition of a requester and provider nets, Mi and Mj, respectively, can be

defined in many ways, and several versions of composition have been proposed in the

literature [57, 92]. In its simplest form, composition can be performed by “fusing”

(some) transitions in the two nets; this fusion performs the synchronization of the

corresponding operations.

For the purpose of component composition, the fusion of transitions with the

same labels is possible in simple cases, as outlined in Figure 5.2 [24]. This technique

is very straightforward and can be useful in a wide variety of circumstances. This

strategy can also be used to compose components when the requester interface uses

the same operation more than once as described by the COSY approach [51]. Un-

fortunately, this results in a proliferation of labelled transitions, which may make

subsequent analysis of the composed net challenging. This can be especially true

when a requester uses a provider’s service many times or when repetition occurs over

two or more components. Also, if two or more requesters are involved in the com-
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Requester Interface
Mi

Provider Interface
Mj

a aa

Composed Interfaces

Figure 5.2: Fusion of a requester and provider service

position, the requesters themselves would have to be connected together. This may

be problematic in cases in which the requesters are to maintain independence from

one another. To alleviate these issues, it is desirable to have each provider’s service

appear only once in the composed net. This can be done by extending the composi-

tion model slightly, as illustrated in Figure 5.3. Each transition representing a service

operation to be employed during the composition is “extracted” from the provider

and the corresponding transitions in the requester’s interface are replaced with syn-

chronizing transitions to coordinate their interaction with the shared transition of the

provider. A very similar strategy can be used when fusing multiple requester inter-

faces to a provider, as illustrated in Figure 5.4. Moreover, the operation a may be

composed of some other operations, as in a hierarchical approach [37]. For example,

Figure 5.5 shows the operation a implemented as a simple sequence of a1 and a2 in

a requester. This requester can be hierarchically decomposed into its underlying net

prior to composition with a provider.

More complex hierarchical constructs are possible. For example, if the hierarchical
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Requester Interface
Mi

Provider Interface
Mj

Provider Interface
Mj

a a

ε

ε

ε

ε

...
...

a

a

Requester Interface
Mi

Figure 5.3: Fusion with the same operation requested two times

Requester Interfaces
Mi

a

a

Requester Interfaces
Mi

Provider Interface
Mj

Provider Interface
Mj

a a

ε

ε

ε

ε

Figure 5.4: Fusion with multiple requesters
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Mi

(low-level representation)

Mj

(low-level representation)

a

Mj

(high-level representation)

a1

a2

a

Mi

(high-level representation)

Requester Interface

Provider Interface

Figure 5.5: Elementary hierarchical composition

sequence is used more than once in the composition, then this can be implemented

by factoring the high-level operation a (i.e., the transition labelled by a) from all

participants involved in the composition. The composition is shown in Figure 5.6.

Similarity with Figure 5.3 should be observed.

Performing composition in this manner allows for several different modes of in-

teraction to occur between interfaces. In addition, this composition model resolves

some ambiguity with respect to the semantics of the composed net since there is only

one instance of the transition representing the service operation after the composition

has taken place. Indeed, this method of composition is structurally similar to that

described by Lauer and Campbell [60] which uses Petri nets to represent path pro-

grams. This method is also described further in the COSY-style approach [51]. While
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Requester Interface
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ε
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ε

ε

...

Mj

Provider Interface

ε

ε

a

Figure 5.6: Hierarchical composition with the same operation requested twice.

this strategy of composition is reasonably flexible, it suffers from some drawbacks.

This method appears to assume a semantic symmetry between programs which may

not be strictly true in the context of the composition of provider and requester soft-

ware components. For example, in the case when a free-choice structure exists in the

requester, this model of composition can cause the provider to artificially impose its

sequence of operations upon any requesters. For example, Figure 5.7 demonstrates

a simple example in which a requester has a free-choice structure that allows it to

invoke a or b operations in any order. However, after composition, it is denied the

ability to invoke the b operation before the a operation due to the structure of the

provider. Consequently, this composition model is inadequate, since the sequencing

constraint of the provider is incompatible with that of the requester. A model of com-

position must ensure that the sequence of operations of the provider cannot affect the
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Requester Interface
Mi

b

Provider Interface
Mj

a

Requester Interface
Mi

Provider Interface
Mj

a

b

ε

ε

ε

ε

b

a

Figure 5.7: Provider imposing sequence order on a requester

sequence of requested operations.

5.2.2 Proposed Composition Model

In order to address the issues presented in the previous section, a new model of in-

terface composition is proposed and formalized. In this model, the composition is

performed by “melding” an r-interface Mi = (Pi, Ti, Ai, Li, ℓi, mi, Fi) and a corre-

sponding p-interface Mj = (Pj, Tj , Aj, Lj , ℓj, mj, Fj) into a single labelled Petri net

Mij = (Pij , Tij, Aij , Li, ℓij, mij , Fij), assuming Pi ∩ Pj = Ti ∩ Tj = ∅. While the com-

position strategy defined below addresses the issues described earlier, other possible

approaches for composing interface nets, with possibly different properties, may exist.

The definition of Mij is based on those transitions in the p-interface and r-interface

82



that have non-empty labels, i.e., the service transitions. Let:

T̂i = { t ∈ Ti : ℓi(t) 6= ε },

T̂j = { t ∈ Tj : ℓj(t) 6= ε }.

The composition strategy is visually demonstrated by Figures 5.8 and 5.9 which show

a requester and provider interface before and after composition, respectively.

...

p′j p′′jtj

a

......

ti

a

Provider
Mj

Requester
Mi

...

p′i p′′i

Figure 5.8: A requester and provider interface before composition

Overall, the composition of a requester and a provider interface introduces four

new places and three new transitions for each common service transition, while the

requester’s corresponding service transitions are removed. Two of the new places (pti

and p′ti in Figure 5.9) and the three new transitions (t′i, t′′i and t′′′i in Figure 5.9) are

created for each service request in the r-interface, and the transition/place pair t′′′i

and p′ti allows the requester to initiate the interaction with the provider and to direct
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......
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ε
R-section

Provider

Mi

p′tjp′j p′′tj p′′j

pti

tj

Requester

Mj

p′i

p′′i

...

...

a

Figure 5.9: A requester and provider interface after composition

the ensuing sequence of operations. This prevents the “requester free-choice” problem

described earlier. The other place (pti) and transitions (t′i and t′′i ) serve to coordinate

and serialize the requesters’ interaction with the provider at the service point. The

remaining pair of new places are introduced for each service of the provider interface

(p′tj and p′′tj in Figure 5.9) are situated on either side of the service transition and

serve to coordinate the access to the service itself.

The composition of a single requester with a single provider can be formally defined

as follows:

Definition: Let Pi ∩ Pj = Ti ∩ Tj = ∅. A composition of an r-interface Mi =

(Pi, Ti, Ai, L, ℓi, mi, Fi) and a p-interface Mj = (Pj, Tj , Aj, L, ℓj, mj , Fj), denoted
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Mi � Mj, is a net Mij = (Pij , Tij, Aij, L, ℓij , mij, Fij) where:

Pij = Pi ∪ Pj ∪ { pti , p
′
ti

: ti ∈ T̂i } ∪ { p′tj , p
′′
tj

: tj ∈ T̂j };

Tij = Ti ∪ Tj − T̂i ∪ { t′i, t
′′
i , t

′′′
i : ti ∈ T̂i };

Aij = Ai ∪ Aj − Pi × T̂i − T̂i × Pi − Pj × T̂j − T̂j × Pj ∪

{ (p′i, t
′′′
i ), (t′′′i , p′ti), (p

′
ti
, t′i), (t

′
i, pti), (pti, t

′′
i ), (t

′′
i , p

′′
i ) :

ti ∈ T̂i ∧ p′i ∈ Inp(ti) ∧ p′′i ∈ Out(ti) } ∪

{ (p′j, t
′
i), (t

′
i, p

′
tj
), (p′tj , tj), (tj, p

′′
tj
), (p′′tj , t

′′
i ), (t

′′
i , p

′′
j ) :

ti ∈ T̂i ∧ tj ∈ T̂j ∧ ℓj(tj) = ℓi(ti) ∧

p′j ∈ Inp(tj) ∧ p′′j ∈ Out(tj) };

∀t ∈ Tij : ℓij(t) =



































ℓi(t), if t ∈ Ti,

ℓj(t), if t ∈ Tj ,

ε, otherwise;

∀p ∈ Pij : mij(p) =



































mi(p), if p ∈ Pi,

mj(p), if p ∈ Pj,

0, otherwise;

Fij = {mij : Pij → {0, 1, . . .} |

mij ↽ Pi ∈ Fi ∧ mij ↽ Pj ∈ Fj ∧

∀p ∈ Pij − Pi − Pj : mij(p) = 0}.

All new transitions introduced by the composition are assigned empty labels, and all

labelled transitions of the requester are merged with the corresponding transitions

of the provider. Consequently, there is no duplication of service names in the com-

posed model. The marking function of the composition is based upon the markings

of the interface nets of the underlying pair of interacting components — the new
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places introduced by the composition do not have any tokens initially. The set of

final markings, Fij , of the composed net is obtained from the final markings of the

component nets. The symbol ↽ is used as the “restriction” operator (of the marking

functions) in this context.

The discussion of some properties of the composition uses the concepts of R-

section and P-section of the composition, which correspond to slightly modified r-

interface and p-interface models. The R-section of this composition is defined to be

Mi = (PR, TR, AR, L, ℓR, mR, Fi), where:

PR = Pi ∪ { pti , p
′
ti

: ti ∈ T̂i } ∪ { p′tj , p
′′
tj

: tj ∈ T̂j };

TR = Ti − T̂i ∪ { t′i, t
′′
i , t

′′′
i : ti ∈ T̂i } ∪ T̂j ;

AR = Ai − Pi × T̂i − T̂i × Pi ∪

{ (p′i, t
′′′
i ), (t′′′i , p′ti), (p

′
ti
, t′i), (t

′
i, pti), (t

′
i, p

′
tj
),

(p′tj , tj), (tj, p
′′
tj
), (p′′tj , t

′′
i ), (pti, t

′′
i ), (t

′′
i , p

′′
i ) :

ti ∈ T̂i ∧ (p′i, ti) ∈ Ai ∧ (ti, p
′′
i ) ∈ Ai ∧

tj ∈ T̂j ∧ (p′j , tj) ∈ Aj ∧ (tj , p
′′
j ) ∈ Aj };

∀t ∈ TR : ℓR(t) =



































ℓi(t), if t ∈ Ti,

ℓj(t), if t ∈ T̂j,

ε, otherwise;

∀p ∈ PR : mR(p) =















mi(p), if p ∈ Pi,

0, otherwise.

and the set Fi does not change.
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The P-section of this composition is Mj = (PP , TP , AP , L, ℓP , mP , Fj), where

PP = Pj ∪ { p′tj , p
′′
tj

: tj ∈ T̂j };

TP = Tj ∪ { t′i, t
′′
i : ti ∈ T̂i };

AP = Aj − Pj × T̂j − T̂j × Pj ∪

{ (p′j , t
′
i), (t

′
i, p

′
tj
), (p′tj , tj), (tj, p

′′
tj
), (p′′tj , t

′′
i ), (t

′′
i , p

′′
j ) :

tj ∈ T̂j ∧ (p′j, tj) ∈ Aj ∧ (tj , p
′′
j ) ∈ Aj };

∀t ∈ TP : ℓP(t) =















ℓj(t), if t ∈ Tj ,

ε, otherwise;

∀p ∈ PP : mP(p) =















mj(p), if p ∈ Pj,

0, otherwise;

and the set Fj does not change.

The R-section and P-section are shown in Figure 5.9. Some elements near the bound-

ary of the two interfaces are common to the R-section and P-section.

5.3 Compatibility Verification

Compatibility of an r-interface and a p-interface is verified by checking properties of

their composition. In particular, as will be shown later in this section, if the net

resulting from the composition of two component interfaces is deadlock-free, then the

two components are indeed compatible with one another. The compatibility of an

r-interface and a p-interface can also be described in terms of their languages.

Corollary 5.3 For composition of an r-interface Mi and a p-interface Mj, the lan-

guage of the R-section Mi is the same as that of Mi and the language of the P-section
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Mj is the same as that of Mj:

L(Mi) = L(Mi),

L(Mj) = L(Mj).

The corollary follows from the observation that the structures of Mi and Mi (and

of Mj and Mj) are the same (i.e., the additional elements are introduced as simple

paths replacing single transitions), so for each firing sequence σ in Mi, there exists a

firing sequence σ in Mi such that ℓi(σ) = ℓi(σ). Similarly for Mj and Mj. 2

Corollary 5.4 For composition of an r-interface Mi and a p-interface Mj, the lan-

guage of the composed model Mij = Mi � Mj is a subset of the language of the

requester, L(Mij) ⊆ L(Mi).

Proof by contradiction: The corollary is not true, so there is a string x ∈ L(Mij)

such that x /∈ L(Mi). Let a be the first symbol in x which is not generated by Mi

and let a be the label of ti, a = ℓij(ti). Since ti is enabled in Mij, and it also is an

element of Mi, it must also be enabled in Mi by the same firing sequence as in Mij

(restricted to Mi) which contradicts the assumption. 2

Corollary 5.5 For composition of an r-interface Mi and a p-interface Mj, the lan-

guage of the composed model Mij = Mi � Mj is a subset of the language of the

provider, L(Mij) ⊆ L(Mj).

The justification is the same as for Corollary 5.4. 2

Before introducing the next result, the notion of merging (or interleaving) se-

quences of symbols is introduced. Let symb(x) represent the set of symbols in se-

quence x.
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Definition: If symb(x)∩ symb(y) = ∅, then the merging of strings x and y is a set of

strings merge(x, y) defined as follows:

merge(x, y) = {z ∈ (symb(x) ∪ symb(y))∗ | hx(z) = x ∧ hy(z) = y}

where

h(a1a2 . . . an) = h(a1)h(a2) . . . h(an)

and

∀a ∈ symb(x) ∪ symb(y) : hx(a) =















a, if a ∈ symb(x),

ε, otherwise,

and

∀a ∈ symb(x) ∪ symb(y) : hy(a) =















a, if a ∈ symb(y),

ε, otherwise.

The operation merge(x, y) is sometimes called the shuffle of sequences x and y.

If symb(x) ∩ symb(y) = A 6= ∅, the strings x and y can be merged only if their

substrings composed of common symbols are identical:

merge(x, y) = {z ∈ (symb(x)∪ symb(y))∗ | hx(z) = x ∧ hy(z) = y ∧ hA(x) = hA(y)}

where

hA(a) =















a, if a ∈ A,

ε, otherwise.

For example, merge(“abc”, “12”) = { “abc12”, “ab1c2”, “ab12c”, “a1bc2”, “a1b2c”,

“a12bc”, “1abc2”, “1ab2c”, “1a2bc”, “12abc” } and merge(“1ab23c”, “a45b6c”) =

{ “1a45b623c”, “1a45b263c”, “1a45b236c” }.

However, the second definition of merge is equivalent to the previous one, as

illustrated by the following proof:1 If A = symb(x) ∩ symb(y) 6= ∅, then for each

1Proof courtesy of Dr. R. Janicki.
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merged string z, hA(z) = hx(hy(z)) = hy(hx(z)), so (hx(z) = x and hy(z) = y) imply

hy(hx(z)) = hy(x), which is equivalent to hx(hy(z)) = hy(x). Since hy(z) = y, we

have hx(y) = hy(x). Obviously, hx(x) = x and hy(y) = y, so hx(y) = hy(x) implies

hx(hy(y)) = hy(hx(x)), i.e., hA(y) = hA(x). Consequently, hx(z) = x and hy(z) = y

imply that hA(y) = hA(x), making the latter equality unnecessary in the second

definition. The merge function is a special case of the “restriction” or “concurrency”

operator (||) which has been used in the past by Hoare to denote two processes

interacting in lock-step synchronization with one another [47]. This operation has also

been used by Janicki and Lauer in the preliminary development of COSY systems [51]

and in the context of Petri net languages by Hack and Starke [44, 97].

Theorem 5.1 The language of the composition of two interfaces with the same al-

phabet L, an r-interface Mi and a p-interface Mj is the intersection of L(Mi) and

L(Mj):

L(Mi � Mj) = L(Mi) ∩ L(Mj).

By Corollaries 5.4 and 5.5, L(Mi � Mj) ⊆ L(Mi) ∩ L(Mj). What remains to be

shown is that L(Mi) ∩ L(Mj) ⊆ L(Mi � Mj).

Proof by contradiction: The theorem is not true, so there exists a string x such

that x ∈ L(Mi)∩L(Mj) and x /∈ L(Mi�Mj). Let a be the first symbol in x which is

not generated by Mi�Mj , and let a be the label of t, a = ℓij(t). Since t is an element

of Mi and is enabled in Mi by an initial firing sequence σi (such a sequence must exist

since x ∈ L(Mi)), and since t is also an element of Mj and is enabled in Mj by an

initial firing sequence σj (such a sequence must exist since x ∈ L(Mj)), any sequence

σij ∈ merge(σi, σj), enables t in Mi � Mj , which contradicts the assumption. 2
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Theorem 5.2 Two interfaces with the same alphabet L, an r-interface Mi and a

p-interface Mj, are compatible iff the language of the composition, L(Mi � Mj), is

equal to the language of the r-interface L(Mi).

The theorem is a consequence of Theorem 5.1 and the definition of interface compat-

ibility:

L(Mi) ⊆ L(Mj) ⇔ L(Mi) ∩ L(Mj) = L(Mi) ⇔ L(Mi � Mj) = L(Mi).

The first equivalence above follows from set theory. 2

Theorem 5.3 Two interfaces with the same alphabet L, an r-interface Mi and a

p-interface Mj, are incompatible iff the composition Mij = Mi � Mj contains a

deadlock.

An r-interface Mi is incompatible with a p-interface Mj if L(Mi) 6⊆ L(Mj). It needs

to be shown that such incompatibility is represented by a deadlock in Mij.

1. L(Mi) 6⊆ L(Mj) ⇒ Mij contains a deadlock.

If L(Mi) 6⊆ L(Mj), there exists a string x ∈ L(Mi), such that x /∈ L(Mij).

Let a be the first symbol of x which is not generated by Mij, and let a = ℓ(tk),

tk ∈ Tij . Since tk is enabled in Mi but is not enabled in Mij, the requested

service a cannot be satisfied by Mj, so Mj must be waiting for some other

requested service and this creates a deadlock in Mij

2. Mij contains a deadlock ⇒ L(Mi) 6⊆ L(Mj).

Proof by contradiction: The claim is not true, so Mij = Mi � Mj contains

a deadlock and L(Mi) ⊆ L(Mj). If Mij contains a deadlock, then there
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exists an initial finite firing sequence σ = ti1ti2 . . . tik such that E(mk) = ∅.

However, in Mi, σi, the firing sequence obtained by restricting σ to Ti, can be

continued (Mi does not contain a deadlock), so the deadlock can be due only

to composition with Mj, i.e., ℓ(σ) /∈ L(Mj), which contradicts the assumption

L(Mi) ⊆ L(Mj). 2

In summary, the issue of component interface compatibility can be reduced to a

problem of detecting deadlocks in a net that results from the composition of two in-

terfaces. This model is extended (in subsequent sections) to handle several requesters

interacting with a single provider as well as several requesters interacting with several

providers.

5.3.1 Compatibility and Deadlock Detection

The most straightforward and most robust approach to deadlock detection is based

on exhaustive exploration of the marking space of a net M (i.e., the exploration of

the set of reachable markings, M(M)), and checking if it contains any dead marking

(which represents a deadlock). However, such an approach can be used only for

bounded models and even for bounded models, this marking space can be huge due

to the so called state space explosion [106]. An alternative approach can be based

on structural properties of net models, and in particular, on siphons (Section 4.2).

Since an unmarked siphon is a necessary condition for a deadlock (and a sufficient

condition for non-liveness), verification of component compatibility can be performed

by checking if any combination of the minimal and/or basis siphons of the composed

net can be emptied so as to produce a deadlock. Of all such siphons, only essential
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siphons, as defined in Section 4.2.4, should be checked. Although the number of

essential siphons depends upon the structure of the net, practical experience indicates

that usually there are just a few essential siphons, which makes compatibility checking

more efficient.

5.3.2 Requester and Provider Alphabets

In the definition of component composition, it is assumed that the alphabets of com-

posed interfaces are the same or that the requester alphabet is a subset of the provider

alphabet, Li ⊆ Lj . If Lj ⊃ Li, the operations which are provided but not requested

have no effect on the composition, so they can all be replaced by ε. On the other

hand, if the alphabet of the requester Li is a superset of the provider Lj , Li ⊃ Lj ,

then the interfaces cannot be compatible because all requested operations in the sub-

set Li − Lj cannot be satisfied. Consequently, if a component has several requester

interfaces with different sets of requested services, each such interface is considered

separately, with its set of services.

5.4 Multicomponent Composition

The previous section described the composition of a single requester interface with a

single provider interface. In practice, however, a provider may have several requesters

demanding its services concurrently; or a requester may demand the services of sev-

eral providers. This section describes how the previous composition model can be

extended to describe a variety of multicomponent interactions and compositions.
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5.4.1 Multirequester Composition

In multirequester composition, several requester interfaces interact with the same

provider interface. For example, multiple web clients connecting to a web service

would constitute a multirequester composition. Multirequester composition is a

straightforward generalization of the approach presented in Section 5.2. Figures 5.10

and 5.11 show a simple example of two requesters composed with a single provider.

For clarity, the multiple arcs to and from the transition in the requesters have been

removed. The composition of multiple requesters MI = {M1,M2, . . . ,Mk}, with

p′j p′′jtj

a

... ...

p′k p′′k

... ...

... ...

p′i p′′i

ti

tk

a

a

Provider

Requesteri

Requesterk

Figure 5.10: Multirequester interaction (before composition)
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a single provider Mj is denoted by MI � Mj. Moreover, for each requester Mi,

i = 1, 2, . . . , k, let T̂i denote the set of labelled transitions of a single requester:

T̂i = { t ∈ Ti : ℓ(t) 6= ε }, i ∈ I.

The set of all labelled transitions of all the requesters involved in the composition is:

T̂I =
⋃

i∈I

T̂i.

... ...

... ...

p′k p′′k

ptk

εε

p′tk

... ...

p′i p′′i

pti
εε

p′ti

p′j p′′j

t′k t′′k

ε

ε

t′i t′′i

t′′′i

t′′′k

Requesteri

Provider

Requesterk

p′tj

tj

a

p′′tj

Figure 5.11: Multirequester interaction (after composition)

Finally, let the set of all the requesters’ transitions (both labelled and unlabelled),
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all places, all arcs and all final markings be denoted, respectively, as:

TI =
⋃

i∈I

Ti, PI =
⋃

i∈I

Pi, AI =
⋃

i∈I

Ai, FI =
⋃

i∈I

Fi.

Definition: Let MI = {M1,M2, . . . ,Mk} be a family of r-interfaces with the same

alphabet L and with disjoint sets of places and transitions, and let Mj be a p-

interface also with the same alphabet L. The composition of MI with Mj , denoted

by MI � Mj, is a net MIj = (PIj, TIj, AIj , L, ℓIj, mIj, FIj) where:

PIj = PI ∪ Pj ∪ { pti , p
′
ti

: ti ∈ T̂i ∧ i ∈ I } ∪ { p′tj , p
′′
tj

: tj ∈ T̂j };

TIj = TI ∪ Tj − T̂I ∪ { t′i, t
′′
i , t

′′′
i : ti ∈ T̂i ∧ i ∈ I };

AIj = AI ∪ Aj − PI × T̂I − T̂I × PI − Pj × T̂j − T̂j × Pj ∪

{ (p′i, t
′′′
i ), (t′′′i , p′ti), (p

′
ti
, t′i), (t

′
i, pti), (pti, t

′′
i ), (t

′′
i , p

′′
i ) :

ti ∈ T̂i ∧ i ∈ I ∧ p′i ∈ Inp(ti) ∧ p′′i ∈ Out(ti) } ∪

{ (p′j, t
′
i), (t

′
i, p

′
tj
), (p′tj , tj), (tj , p

′′
tj
), (p′′tj , t

′′
i ), (t

′′
i , p

′′
j ) :

tj ∈ T̂j ∧ ti ∈ T̂i ∧ i ∈ I ∧ ℓj(tj) = ℓi(ti) ∧

p′j ∈ Inp(tj) ∧ p′′j ∈ Out(tj) };

∀t ∈ TIj : ℓIj(t) =



































ℓi(t), if t ∈ Ti ∧ i ∈ I,

ℓj(t), if t ∈ Tj ,

ε, otherwise;

∀p ∈ PIj : mIj(p) =



































mi(p), if p ∈ Pi ∧ i ∈ I,

mj(p), if p ∈ Pj ,

0, otherwise;

FIj = {mIj : PIj → {0, 1, . . .} | mIj ↽ PI ∈ FI ∧ mIj ↽ Pj ∈ Fj ∧

∀p ∈ PIj − PI − Pj : mIj(p) = 0}.
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The multirequester composition model described above is able to represent prag-

matic features of traditional software architectures. For example, the notion of re-

source exhaustion can be represented by initially marking a provider with a finite

number of tokens in the place connected to its first operation. As requesters connect

with the provider, the provider’s tokens are transfered from this place to implement

the interaction. When this place becomes unmarked, the provider is operating at

full capacity and cannot serve more requests concurrently. Any future requesters

connecting with the provider would have to wait until an earlier requester completes

interacting with the provider.

Another observation is that the nature of the composition makes it impossible

for a requester to perform its operations in any order that is different from the one

imposed by the provider. Although the service transitions are ultimately shared by

all requesters, the orders in which each requester can access the services is consistent

with the order imposed by the provider.

The multirequester composition must take into account concurrency of requests

from different r-interfaces. Therefore, the compatibility is checked for the worst case

scenario, i.e., the composition of all r-interfaces with the p-interface.

Definition: A family of r-interfaces MI = {M1,M2, . . . ,Mk}, is compatible with a

p-interface Mj iff any sequence of requests that can be issued by MI can be provided

by Mj .

Theorem 5.4 If a family of r-interfaces MI = {M1,M2, . . . ,Mk} is compatible

with a p-interface, Mj, then each r-interface Mi, i = 1, 2, . . . , k, is also compatible

with Mj.
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Proof by contradiction: The theorem is not true, so there is an r-interface Mi

which is incompatible with Mj if MI is compatible with Mj. Consequently, there

exists a sequence of service requests x ∈ L(Mi) such that x /∈ L(Mj). However, the

compatibility of MI with Mj means that an arbitrary sequence of requests of MI is

satisfied by Mj, so, in particular, a sequence z of requests starting with the requests

of Mi, z = xy, is satisfied by Mj, which contradicts the assumption that x /∈ L(Mj).

2

Corollary 5.6 If MI = {M1,M2, . . . ,Mk} is compatible with Mj, then any subset

MI′ ⊂ MI is also compatible with Mj.

The proof is a straightforward adaptation of the previous proof. 2

Theorem 5.5 For a family MI if r-interfaces, MI = {M1,M2, . . . ,Mk}, the com-

patibility of each r-interface Mi, i = 1, 2, . . . , k, with the same p-interface Mj is not

a sufficient condition for compatibility of MI with Mj :

(∀Mi ∈ MI : Mi � Mj) 6⇒ MI � Mj

Proof : Let MI = {M1,M2} and L(M1) = L((aa)∗), L(M2) = L((bb)∗). Then

L((abab|baba)) ⊂ L(MI). Let L(Mj) = L((aa|bb)∗). Mj is compatible with M1 as

well as with M2, but is incompatible with MI . 2

Consequently, for multirequester composition, the maximum configuration of re-

questers needs to be verified for compatibility with the provider interface. Incompat-

ibility arises if this maximum configuration introduces a deadlock in the composed

net, as described in Section 5.3.
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5.4.2 Multiprovider Composition

The composition discussed in the previous sections can be easily applied to the case

when several providers interact with a single requester (or multiple requesters). This

could take the form, for example, of a requester component that queries several

databases simultaneously. In the case when a single requester interacts with several

providers, the model can be split into a collection of independent requester-provider

pairs in which each provider has its unique alphabet, and each such pair can then be

analyzed independently.

In formal terms, it is possible that the same r-interface, Mi, is composed with

two p-interfaces M′
j and M′′

j , such that L′
j ∩ L′′

j = ∅. In such cases, Mi could be

split into two r-interfaces, M′
i interacting with M′

j, and M′′
i interacting with M′′

j .

Alternatively, Mi can be directly composed with both M′
j and M′′

j , provided that

the composition uses a relevant subset of Li, i.e., Li ∩ L′
j for composition with M′

j

and Li ∩ L′′
j for composition with M′′

j . If M′
i is compatible with M′

j and M′′
i with

M′′
j , then Mi is compatible with M′

j and M′′
j and vice versa, so the two approaches

are equivalent.

Theorem 5.6 Let MJ = {M1,M2, . . . ,Mk} be a family of p-interfaces and Mi be

an r-interface. If Mi is compatible with each Mj p-interface, j = 1, 2, . . . , k, then

Mi is compatible with MJ .

Proof by contradiction: If each p-interface, Mj , j = 1, . . . , k is compatible with

Mi, then MJ is not compatible with Mi, so there exists an interface, say Mj, and

a sequence of requests s ∈ L(Mi) such that Mj is deadlocked for s. Let σj = h(s),
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where

∀a ∈ Li : h(a) =















a, if a ∈ Lj,

ε, otherwise.

Since Mj is compatible with Mi, σj must be accepted by Mi�Mj , which contradicts

that Mj is deadlocked on σj . 2

5.4.3 Multiprovider/Multirequester Composition

The case of multiple requesters interacting with several providers (many-to-many) can

be converted to a family of multiple requester/single provider cases, and analyzed as

discussed earlier. The following theorem and its proof are essentially an amalgamation

of the two earlier theorems.

Theorem 5.7 Let MI = {M1,M2, . . . ,Mk} be a family of r-interfaces, and MJ =

{M′
1,M

′
2, . . . ,M

′
ℓ} be a family of p-interfaces. If MI is compatible with each M′

j, j =

1, 2, . . . , ℓ, then MI is compatible with MJ .

Proof: The theorem is a straightforward extension of Theorems 5.4 and 5.6. 2

The strategy discussed earlier can be used for compositions that involve multi-

ple requesters and multiple providers. For example, Figure 5.12 shows two simple

providers and two requesters that require the services of each provider. The composi-

tion of all four interfaces is shown in Figure 5.13. The same model of composition can

be used to compose several interfaces into a single net. Because the net is bounded,

reachability analysis can be used to test the net for deadlocks. Reachability analysis

shows that the bottom-most requester causes the net to deadlock, for example, when

it attempts to invoke operation b two consecutive times from the provider on the
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Figure 5.12: Two requester and two provider interfaces

right. This is a violation of the provider which imposes a strict ordering on the ser-

vices that can be demanded of it by a requester. The deadlock can also be identified

through structural analysis.

A more sophisticated example demonstrating multiprovider/multirequester inter-

action is presented in the following chapter.

5.5 Mixed Requester-Provider Interfaces

Normally, requester and provider interfaces are disjoint because of different logical

requirements on “requested” and “provided” operations. However, if an interface

M0 = (P0, T0, A0, L0, ℓ0, m0, F0) contains some “request” operations, Lor ⊂ L0, and

some “provider” operations, Lop ⊂ L0, Lor∩Lop = ∅, it can be split into two interfaces
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b ca

Figure 5.13: Composition of two requester and two provider interfaces

Mor = (P0, T0, A0, Lor, ℓor, m0, F0) and Mop = (P0, T0, A0, Lop, ℓop, m0, F0), where

∀t ∈ T : ℓor(t) =















ℓ0(t), if ℓ0(t) ∈ Lor,

ε, otherwise,

and

∀t ∈ T : ℓop(t) =















ℓ0(t), if ℓ0(t) ∈ Lop,

ε, otherwise.

Theorem 5.8 If an interface M0 is compatible with an r-interface Mi and a p-

interface Mj, then Mop is compatible with Mi and Mor is compatible with Mj.

Proof by contradiction: The theorem is not true, so if an interface M0 is com-

patible with an r-interface Mi and a p-interface Mj, then Mop is incompatible with

Mi or Mor is incompatible with Mj and there exists a sequence σ ∈ L(Mi �Mop)∪

L(Mor � Mj) which deadlocks Mor or Mop. If Mop is deadlocked on σ, then there

102



must exist a sequence σ′ ∈ L∗
0 such that σ = h′(σ′) where:

∀a ∈ L0 : h′(a) =















a, if a ∈ Lop,

ε, otherwise,

and σ′ deadlocks M0, which contradicts compatibility of Mi and M0. A similar

argument can be used for a deadlocked Mor. 2

5.6 Examples

This section provides examples which illustrate the composition of provider and re-

quester component interfaces using the construction technique presented in the pre-

vious sections. To demonstrate the concepts, the example of a database client in-

teracting with a database server will be used. The examples will also highlight the

importance of being able to represent interface protocols whose languages are not

regular.

5.6.1 Database Transactions

As a simple example of the composition of a requester and provider interface mod-

elled as Petri nets, Figure 5.14 represents a simple database client (requester) and a

database server (provider).

The first requested service is denoted by a which could represent an operation

that opens the database and prepares it for queries, for example. The interface

then requests a sequence of operations in which each operation b is followed by a

corresponding operation c (these could represent read and write operations to the

database, respectively). Finally, the requester invokes service d which could represent
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c
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da

cb

Figure 5.14: Database requester and provider interfaces

the closing of the database. If there is only one final marking which is the initial

marking, i.e., F = {m0}, the cyclic behaviour of the model is represented by the

regular expression (a(bc)∗d)∗. The provider interface, which represents the database

server, imposes the restriction that the a service must be invoked first followed by any

sequence of b and/or c services, followed finally by the d service. Again, if the initial

marking is the only final marking, the behaviour of the database server is described

by the expression (a(b|c)∗d)∗.

The composition of interfaces shown in Figure 5.14 creates the net shown in Fig-

ure 5.15. This composition is achieved by using the construction technique presented

in Section 5.2. The composed net can be simplified as described in Section 4.2.4, so

as to facilitate structural analysis. The reduced net is shown in Figure 5.16.
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Requester

Provider

a

b c

d

Figure 5.15: Composition of compatible database requester and provider interfaces

It should be noted that the composition given in Figure 5.15 enforces the restric-

tion that the database must be opened by the client (requester) before any operations

take place upon the database server (provider). Similarly, the requester must close

the database in order to satisfy the constraints of the provider.

The condition L(MRequester) ⊆ L(MProvider) is obviously satisfied in this case and

it can be checked that the model shown in Figure 5.15 is deadlock-free (the unreduced

model is bounded and its marking space contains fifteen markings, none of which

is dead). From a structural perspective, when the composed net is simplified, the

reduced net contains just two minimal siphons, as denoted by the places containing

the diagonal line patterns in Figure 5.16; five of the places belong to both siphons and

therefore contain a crosshatch pattern. Further analysis reveals that these siphons are

actually marked siphon-traps, so the net is deadlock-free since neither of the minimal
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Figure 5.16: Composition of compatible database requester and provider interfaces

after simplification

siphons can become empty.

As an example of incompatibility, consider the case where the roles of the p-

interface and r-interface from the previous example are swapped (so the requester’s

language is described by (a(b|c)∗d)∗, and the provider’s language by (a(bc)∗d)∗) and

the interfaces recomposed. The resulting net exhibits deadlock as demonstrated by

the composition shown in Figure 5.17. The dotted arcs, lines and transitions rep-

resented elements of the net which can be eliminated so as to simplify structural

analysis. A deadlock situation occurs when the requester invokes service c imme-

diately after invoking a but the provider requires that service b be invoked before

service c can be requested. Hence the resulting net is deadlocked, demonstrating in-

compatibility between the two interfaces. In this case, the language of the requester

is a superset of the language of the provider. Other deadlocks result if the requester

attempts to perform operations b or d immediately after performing operation b.
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This is contrary to the provider which insists that the invocation of a b operation be

followed by a c operation.
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Figure 5.17: Composition of incompatible database requester and provider interfaces

In this particular case, the deadlock can be easily detected by reachability analy-

sis since, in the original, unreduced composition, there are a total of only 18 possible

markings, three of which result in deadlock. Alternatively, siphons can be used to

identify the deadlock. The reduced net contains two minimal siphons that are not

marked traps: S1 = {p2, p3, p4, p6, p7, p9, p10, p15, p21} and S2 = {p2, p3, p4, p7, p8, p9, p18,

p21}. The objective functions corresponding to these siphons are −x2−x4+x6+x10+1

and −x3 + x8 + 1, respectively. To empty the siphons, linear programming is used

to determine if there is a way to minimize the number of tokens in a siphon to zero

subject to the constraints in Table 5.1, as obtained from the connectivity matrix of
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the reduced net.

Table 5.1: Constraints for the Petri net of Figure 5.17

Place Constraint

p2 −xt2 − xt3 − xt4 + xt6 + xt8 + xt10 ≥ 0
p3 xt5 − xt6 ≥ 0
p4 xt11 − xt12 ≥ 0
p6 xt2 − xt7 ≥ 0
p7 xt7 − xt8 ≥ 0
p8 xt3 − xt9 ≥ 0
p9 xt9 − xt10 ≥ 0

p10 xt4 − xt11 ≥ 0
p15 xt8 − xt9 ≥ 0
p18 xt6 − xt7 + xt10 − xt11 ≥ 0
p21 −xt5 + xt12 + 1 ≥ 0

Attempting to drain S1 is successful and results in deadlock. The resulting firing

vector is [0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0]. (In the context of the reduced net, each element in

the firing vector corresponds to transitions t2, . . . , t12.) This firing vector corresponds

to the firing sequence (t5, t6, t3) in the reduced net. The final marking of this sequence

is shown in Figure 5.17. S2 can also be emptied to produce a deadlock. The firing vec-

tor that minimizes this siphon’s objective function to zero is [2, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]

which corresponds to the firing sequence (t5, t6, t2, t7, t8, t2). Because a deadlock was

identified by analyzing the minimal siphons, there is no need the analyze the basis

siphons of the reduced net in this particular case.

5.6.2 Database with Nested Transactions

The example discussed in the previous subsection models a transaction system in

which open and close pairs cannot nest. Client interaction with a database component
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that supports nested transactions can also be represented by a simple modification of

the previous model. This highlights the importance of a model being able to represent

the context-free nature of the interactions between the client and server in which each

“opening” of a nested transaction must be matched against a corresponding “closing”

of the transaction. This behaviour cannot be described by a regular language.

A requester and provider interface that employ nested database transactions can

be represented by the Petri nets given in Figure 5.18.2 The provider interface keeps

track of the number of opened transactions by accumulating a corresponding number

p21

Requester

Provider

a d

a

b c

b c d

p16

p2

p8

p1

Figure 5.18: Database requester and provider interfaces using nested transactions

2Note that in the figure, the requester Petri net prohibits the opening of a new transaction in

between the b service and c service. This can be easily changed by introducing a new arc from the

b transition to the top-most place in the requester.
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of tokens in its top-most place (p16) . Similarly, the number of tokens in the bottom-

most place of the requester (p2) indicates how many transactions have been opened.

The composed net, shown in Figure 5.19, does not exhibit any deadlock, implying
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c
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a

b
p12
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Figure 5.19: Composition of requester and provider interfaces using nested transac-

tions

that the interfaces are indeed compatible. Because the net is unbounded, reachability

analysis is not a viable method to show deadlock-freeness. Instead, deadlock-freeness

can be verified by using structural analysis. After reducing the net, the only proper

minimal siphon is {p1, p3, p6, p7, p9, p10, p16}, which corresponds to the objective func-

tion 1−x2−x3+x6+x10. The constraints, obtained from the connectivity matrix, are

shown in Table 5.2 Linear programming shows that the minimum number of tokens
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Table 5.2: Constraints for the Petri net of Figure 5.19

Place Constraint

p1 −xt1 − xt2 − xt3 + xt6 + xt10 + xt12 + 1 ≥ 0
p3 xt5 − xt6 ≥ 0
p2 −xt2 − xt3 + xt6 + xt10 ≥ 0
p4 xt2 − xt7 ≥ 0
p5 xt3 − xt11 ≥ 0
p6 xt11 − xt12 ≥ 0
p7 xt1 − xt5 ≥ 0
p8 −xt4 + xt8 ≥ 0
p9 xt7 − xt8 ≥ 0

p10 xt9 − xt10 ≥ 0
p11 xt4 − xt9 ≥ 0
p16 xt6 − xt7 + xt8 − xt9 + xt10 − xt11 ≥ 0
p21 −xt5 + xt6 − xt11 + xt12 + 1 ≥ 0

in the minimal siphon cannot be reduced to zero thereby showing that the composed

net is deadlock-free. The two nets are indeed compatible.

5.7 Summary

This chapter has presented a formal model for the composition of software components

and the verification of their compatibility. Various strategies for the composition of

multiple components in a software architecture have also been addressed. The exam-

ples in this chapter have demonstrated the viability of the presented compatibility

verification technique. More advanced examples which demonstrate multicomponent

composition, compatibility checking and multiple interfaces are presented in the next

chapter.
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Chapter 6

Example of Application

To demonstrate the practicality of the approach described earlier, an extended, non-

trivial example involving an electronic prescribing system is presented in this chapter.

The purpose of this example is to demonstrate the composition of more substantial

components. To this effect, this chapter first provides the system model describ-

ing how the components interact at a high-level. Each of the nets representing the

components’ interfaces are then described in detail and finally, their composition is

provided and analyzed.

It should be noted that many of the lower-level details regarding the interface

behaviours are not fully specified. They include details related to aspects specific

to a particular implementation of the application and are not pertinent to interface

compatibility. For example, whether the notion of authentication requires a swipe

card or a password (or both) is irrelevant to the actual interaction between the com-

ponents. The same applies to the user interface issues and the location of the data

repositories accessed by each component. Also, some of the interfaces are simplified



for pedagogical purposes. It should be noted that the composition strategy proposed

in the previous chapter can be used to integrate components of arbitrary complexity;

however, the net resulting from complex compositions can become quite complicated.

6.1 System Model and Events

There are three primary components involved in the system: the physician, patient

and prescription server. An ancillary authentication component may also be present

to verify the identities of the system participants, but is not explicitly included in

the example. As can be seen from Figure 6.1, all three components interact with one

another at some point during their respective lifetimes.

physician

patient prescription
server

Figure 6.1: Component model of an e-prescription system

The basic sequence of events, or use-case, in which a physician creates a prescrip-

tion and a patient subsequently fills the prescription can be outlined as follows:

1. A patient visits a physician; during this visit all relevant medical data is ex-

changed electronically. From an implementation perspective, the patient com-
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ponent could take the form of a smart card with embedded software and hard-

ware that allow access to all information relevant to the patient’s medical record.

Since the patient initiates the interaction, he/she is the requester and the physi-

cian is the provider.

2. The physician component interacts with the prescription server in order to ob-

tain (or verify) the patient’s drug history. During this phase, the role of the

physician changes to that of a requester and the prescription server becomes

the provider.

3. Once the physician has all the pertinent information, a diagnosis is made. In

the context of this example, the diagnosis may be computer-assisted but the

final diagnosis would have to be approved by the physician. If a prescription

is necessary, then the physician relays details of the prescription to the patient

and the prescription server (potential drug interaction difficulties could also be

detected at this point). If no prescription is necessary, then the patient is so

advised and no further interaction with the prescription server is necessary.

4. Finally, if a prescription was granted, the patient interacts (indirectly via the

pharmacy) with the prescription server to fill and pay for the prescription.

The interfaces implemented by each of these components are described in the

following subsections.
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6.1.1 Patient Component Interfaces

Each patient component has two interfaces — one for interacting with a physician

and another for communicating with a prescription server. A model of a patient

interface for interaction with a physician is shown in Figure 6.2. In practice, this is

the patient interface that would be used by a computer in the physician’s office to

access the relevant data on the card, and to relay information related to the final

diagnosis. Naturally, the information obtained from the interaction between the two

electronic components would be complemented by a more thorough examination of

the patient by the physician. Such data could be provided to the system manually

prior to the diagnosis.

authenticate allergies

family history

family history update

symptoms

end symptoms diagnosis discharge

no prescription

prescription

Figure 6.2: Patient component interface for physician components

The “standard” first step in the patient-physician interaction is authentication.

As mentioned earlier, a separate authentication component can be used, but for the

purposes of this example, it is assumed that the authentication mechanism is self-

contained within the domain of the interacting components.
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After authentication, the patient interface may transmit the patient’s entire family

history if this is the first time the physician is examining the patient. Alternatively, if

the physician already has the patients family history on record, then only updates are

sent, for efficiency. Services for the transmission of allergies and symptoms are then

invoked. While both services can be implemented iteratively, the allergies service will

transmit the allergies to the physician in bulk, whereas the symptoms service will

deliver the symptoms incrementally, for demonstration purposes. Because symptoms

are transmitted in an iterative manner, an end symptoms service is used so as to

ensure that both the provider and requester exit the iteration synchronously. (The

end symptoms service could also have be named no more symptoms.) Upon trans-

mission of all the relevant medical data, the physician component has all the needed

information, at which point the diagnosis service is invoked. The resulting diagnosis

may or may not result in a prescription — the interface handles both cases. Finally,

the communication between the patient and physician ends with the discharge op-

eration which effectively terminates the authenticated session. A more complicated

implementation could allow an arbitrary ordering of the allergies and symptoms ser-

vices.

A patient component has a second interface to interact with the prescription

server. This interface would have services for authenticating, filling a prescription

and one or more payment methods. If the patient component supports only one

payment option, for example, a debit account which would be maintained on the

smart card, then the service invocation could be very linear in nature, as shown in

Figure 6.3.

Alternatively, a patient component may support more than one payment option
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debit end payment disconnectauthenticate fill

Figure 6.3: Patient component interface for prescription server (one payment option)

end payment disconnectauthenticate fill debit

insurance

insufficient

Figure 6.4: Patient component interface for prescription server (multiple payment

methods)

to cover the cost of the prescription, as shown in Figure 6.4. For example, a patient

could cover some or all of the cost with an insurance plan. Also, the payment portion

of the interface allows for a loop to consider the possibility that the insurance may

not cover the entire cost of the drug (the insufficient service would be used at this

point), thereby requiring the rest of the cost to be made up for via (one or more)

invocations of the debit service.
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Additional payment methods, such as credit card, or borrowing, could also be

implemented by the interface.

6.1.2 Physician Component Interface

Unlike the patient interface, the physician interface shown in Figure 6.5 does not

impose any constraints on the order in which the allergies and symptoms are given

by the patient component, but requires that all three steps, symptoms, allergies

and drug history, are performed in some order. As long as the diagnosis service is

not activated prior to providing all relevant details, the component interfaces have

the potential to be compatible. Another major difference between the patient and

physician interfaces is that the physician interface requires an ability to obtain the

drug history of the patient prior to the diagnosis and prescription services so as to

prevent a patient from receiving two identical prescriptions from two different doctors.

The drug history could conceivably be supplied by the patient component. However,

to reduce the possibility of tampering, the physician interface should satisfy this

service by consulting an external source, such as the prescription server itself.

authenticate

family history

family history update

allergies

diagnosis

prescription disconnectauthenticate

no prescription

dischargeend symptoms

eprescription

drug history

authenticate disconnect

symptoms

Figure 6.5: Physician component interface
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Once all the relevant information is available, the diagnosis service can be activated

and a prescription, if necessary, can be created by the physician interface reconnecting

with the prescription server. If no prescription is necessary, then no further interaction

with prescription server is required.

It should be observed that this particular physician interface may require two

separate connections with the prescription server. This could be alleviated by having

one authentication/disconnect pair instead of two, essentially leaving the connection

to the prescription server interface “open” for the entire duration of the interaction

between the physician and patient. The prescription server, described in the next sec-

tion, does not allow for multiple operations to take place in a single session; however,

this could be changed, if necessary.

6.1.3 Prescription Server Component Interface

The provider interface of the prescription server, presented in Figure 6.6, is relatively

simple when compared with the patient and physician interfaces. After authentica-

tion, three primary services may be activated by the requester: with the appropriate

credentials, a drug history can be requested, an e-prescription can be requested, or

an e-prescription can be filled by paying via debit card and/or insurance. Only one

of these three choices may be used during any single interaction.

With respect to authentication, it can be common to all subsequent services offered

by the prescription server. The operations that a requester can perform on the pre-

scription server depend upon the permissions level of the requester itself. For example,

a component that is authenticated as a patient would have the ability to request that
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disconnect

fill

drug history

insurance

authenticate

end payment

debit

insufficient

eprescription

Figure 6.6: Prescription server interface

a prescription be filled. It would not have permission to make e-prescriptions, but it

should have the ability to request its own drug history and not the history of oth-

ers. The implementation would ultimately have to confirm that the requester has the

appropriate credentials to carry out each service that it requests of the prescription

server. However, if it is required that different types of authentication be used for

each branch of services offered by the prescription server, then the server interface

could be separated into three separate interfaces, if desired, each one with its unique

authentication mechanism. The compositions described below will be the same. Also,

the authentication required by a patient to debit his or her bank account would likely

be different than the authentication required to access the prescription server to fill a
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prescription. The authentication to access the bank account would be encompassed

by the debit transition itself.

In order to illustrate some elements of concurrency, the prescription server shown

in Figure 6.6 can handle two requests simultaneously, which is represented by two

tokens in the place of the prescription server that leads to the authenticate service

transition.

Compatibility testing between a patient and prescription server is possible only

when a patient has acquired a prescription from a physician. The validation of the

prescription could be done as part of the authentication service. Upon completion of

the interaction, the prescription server can then disconnect from the requester, allow-

ing for any resources employed during the interaction to be appropriately deallocated,

and used for serving subsequent requests.

6.2 Composition of Interfaces

This section describes the composition of the various interfaces. The resulting com-

posed models are analyzed for compatibility using reachability analysis and linear

programming.

6.2.1 Patient-Physician-Prescription Server Composition

An overview of the composition of one patient requester, one physician and two

prescription server interfaces is outlined in Figure 6.7. The left and right portions

of the composed net, as delimited by the dashed boxes, are shown magnified, with

corresponding transition labels, in Figures 6.8 and 6.9, respectively.
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Figure 6.7: Overview of patient-physician-prescription server composition

In the context of the patient-physician composition, the patient (Figure 6.2) is

the requester and the physician (Figure 6.5) is the provider since it is the patient

that initiates the interaction. The composition of the authentication and the fam-

ily history/family history update free choice structure is a direct application of the

rules presented earlier. After this point, the patient requester interface imposes an

order on its two subsequent services (symptoms and allergies), which the physician

provider interface is able to accommodate since it places no restriction on the relative

order of these two service invocations. The drug history service is not available in the

patient interface but does exist in the prescription server interface. In order to sat-

isfy this service, the physician provider interface becomes a requester interface when

demanding the drug history service of the prescription server provider interface.

Even though there are two prescription server interfaces in the composition, they

would likely represent the same prescription server with the same data repository. As
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disconnect

authenticate

family history

family history update

allergies

symptoms

authenticate

end symptons

drug history

. . .

Figure 6.8: Left part of Figure 6.7
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eprescription disconnect

. . .

diagnosis

no prescription

prescription

authenticate

discharge

Figure 6.9: Right part of Figure 6.7
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mentioned above, the composition could have been accomplished using a single pre-

scription server interface if the server permitted more than one prescription-related

service to be performed during a single session. Also note that there is no direct

interaction between the prescription server interface and the patient interface — the

patient interface used in this composition is intended to interact only with the physi-

cian interface. As a result, the fill and debit service transitions of the prescription

server are unused in the composition. Interaction between patient interfaces and the

prescription server interface is described in the next subsection.

Once all the components have their services satisfied by the composition, the

resulting net can be analyzed. Although the model is quite complex, it is sequential,

so a small number of reachable markings is expected. Indeed, reachability analysis

reveals that there are 221 reachable markings of the net, none of which is dead. The

absence of deadlocks demonstrates the compatibility of the four interfaces.

The model shown in Figure 6.7 has several parallel and alternate paths as de-

scribed in Section 4.2.4; the redundant paths can be removed without adversely af-

fecting subsequent deadlock analysis of the model. The simplified net, after removing

all appropriate elements associated with the parallel and alternate paths, is shown in

Figure 6.10; it has 74 minimal siphons, all of which are also marked traps. Conse-

quently, the net is deadlock-free since none of the minimal siphons can ever become

empty. It can be shown that the number of minimal siphons appears to roughly dou-

ble each time an alternate or parallel path is re-introduced, so elimination of parallel

and alternate paths can substantially reduce the number of minimal siphons.
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Figure 6.10: Simplified patient-physician-prescription server composition

6.2.2 Patient-Prescription Server Composition

To demonstrate multi-requester composition, the two patient interfaces (from Fig-

ures 6.3 and 6.4) and prescription server interface (Figure 6.6) are composed. One of

the patient interfaces provides for only one payment option, while the other allows

for two such options (debit and insurance). Combining these nets results in the net

shown in Figure 6.11.

Reachability analysis of this composed net reveals that there are 515 distinct

markings. Although the number of markings is higher than for the previous composi-

tion, it is still relatively small considering the complexity of the composed net. Again,

the resulting net is bounded (the bound is equal to two) thereby making reachability

analysis straightforward in this case.

As with the previous example, siphon extraction can be simplified by removing

the elements associated with numerous parallel and alternate paths, creating the net

shown in Figure 6.12. Analysis of this simplified net reveals five minimal siphons, all

126



authenticate fill end payment disconnectdebit

insurance

insufficient

Figure 6.11: Patient-prescription server composition
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of which are also marked traps. The resulting composed net is thus deadlock-free and

the composition of the prescription server with the two different patient requesters is

indeed compatible.

Figure 6.12: Simplified patient-prescription server composition

6.2.3 Incompatible Composition

To demonstrate a case where deadlock arises, a patient requester component interface

similar to Figure 6.4 is modified by reversing the arcs connected to the insufficient

transition. Intuitively, this new patient requester interface cannot be compatible

with the prescription server provider since the latter interface requires that either an

insurance or debit service be invoked prior to using the insufficient operation. This

restriction is not obeyed by the modified patient interface. Figure 6.13 shows the
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composition of this modified interface with the other patient and prescription server

interfaces.

authenticate fill end payment disconnectdebit

insurance

insufficient

Figure 6.13: Incompatible composition between patient-prescription server interfaces

The incompatibility that results from the new component can be demonstrated

using reachability analysis. There are 483 unique markings, one of which is dead, as

shown in Figure 6.14. Hence the resulting composition is incompatible.

Using siphons extraction and linear programming to isolate the deadlock is also

possible. Deadlock does not result by emptying either of the two minimal siphons

present in the simplified net. However, when the algorithm of Figure 4.6 analyzes

the 17 basis siphons, a siphon sequence can be identified which, when followed in

the minimization process, does result in a deadlock situation. A detailed analysis

and some further discussion of deadlock determination in this net is presented in
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authenticate fill end payment disconnectdebit

insurance

insufficient

Figure 6.14: Dead marking of patient-prescription server composition

Appendix A.

6.2.4 Analysis of Unbounded Component Compositions

As a final example of compatibility assessment, consider the case in which a physician

may issue a patient more than one prescription. The physician and patient interfaces

can be modified as shown in Figures 6.15 and 6.16, respectively. (These figures show

only the changes necessary to the interfaces in Figures 6.2 and 6.5 — the remainder

of the interfaces are unchanged.)

The patient interface keeps track of the number of prescriptions assigned to it by

the shaded place in Figure 6.15. This place is shared between the patient interface that

communicates with the physician and the patient interface that communicates with

the prescription server. The modifications required in the latter patient interface to
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discharge

. . .

prescription

no prescription

morediagnosis

. . .

. . .

Figure 6.15: Modifications to the patient interface of Figure 6.2

no prescription

more

prescription disconnect

. . . . . .

authenticate

eprescription

diagnosis discharge

Figure 6.16: Modifications to the physician interface of Figure 6.5

handle multiple prescriptions is presented in Figure 6.17. To keep the example simple,

only the patient interface of Figure 6.3 will be used in the composition. The addition

of a more service can also be made to the prescription server interface of Figure 6.6

in a similar manner.

To test for compatibility, all interfaces are composed into one net using the com-

position strategy presented in the previous chapter. For the purposes of this example,

the prescription server will be limited to servicing the requests of only one patient.
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more

fill

authenticate debit

. . . . . .

. . .

Figure 6.17: Modifications to the patient interface of Figure 6.3

The entire composition is shown in Figure 6.18. The place that is shared between the

two patient interfaces is shaded in the figure. The fact that this place can accumulate

an arbitrary number of tokens implies that the markings for this net are unlimited,

thereby making the net unbounded — an arbitrary number of prescriptions may be

assigned to a patient. Consequently, reachability analysis cannot be used to test

deadlock-freeness; structural analysis can be performed instead. After removing the

parallel and alternate paths the reduced net has 78 minimal siphons. All of these

siphons are also marked traps so the composition of the modified interfaces is indeed

deadlock-free.

In addition to demonstrating how compositions resulting in unbounded nets can

be analyzed, this example also demonstrates how one interface can influence the

interactions of another via a shared place. Other extensions to the model involve

allowing multiple patients to visit a physician. Because a physician can service only

one patient at a time, extra transitions and places are necessary in the respective in-

terfaces to simulate the notion of a “waiting room,” and to coordinate the appropriate

“prescription counter” places. While these extra net elements would obviously make

the composed net more complicated, the same analysis strategy can be employed as
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Figure 6.18: Composition of physician, patient and prescription server interfaces
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demonstrated by this chapter.

6.3 Summary

This chapter provided a non-trivial example to demonstrate how compatibility be-

tween two or more interfaces can be determined formally by representing the dynamic

behaviour of the interfaces as Petri nets and studying the resulting composition for

deadlock. While reachability analysis may appear to be the most straightforward op-

tion for the analysis, siphon extraction and linear programming can be used when the

model is unbounded or the space of reachable markings becomes excessively large. In

order to simplify siphon extraction, the composed net can be reduced by eliminating

inessential siphons introduced by parallel and alternate paths.
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Chapter 7

Concluding Remarks

Determining the degree to which components are compatible with one another in a

software architecture is a multi-faceted issue that, in the general case, requires a com-

prehensive understanding of both the static and dynamic nature of the components

involved. By abstracting away the internal, low-level behaviour of components and

concentrating upon the dynamic nature exhibited at the respective components’ inter-

faces, one can establish whether or not the components are compatible, i.e., whether

or not they can communicate effectively and reliably.

This work presented a formal approach for composing two or more components by

integrating the Petri nets that represent their interfaces into a single net. The dynamic

compatibility is assessed by determining if the resulting net exhibits deadlock. In

order to identify deadlocks, two methods were discussed, one based on analysis of

reachable states and the second based upon analysis of net structural properties

(combined with linear programming). The relative strengths and weaknesses of these

methods were also discussed.



7.1 Potential Applications

This work has several possible applications in the areas of construction and deploy-

ment of software systems. It is also believed that the compatibility assessment strat-

egy may help promote the reuse of existing software components and may provide

a metric to measure whether one component can be substituted for another in a

deployed system. The composition and compatibility techniques may also have ap-

plications in the development of large-scale, distributed software systems.

7.1.1 Software Development and Deployment

The composition strategy described in this work has potential applications in the

software development life-cycle. In particular, during the design and implementation

phase, this composition strategy may serve to encourage component reuse by pro-

viding designers and developers a formal means of identifying external components

which can successfully satisfy the requirements of the components that they build.

Also, the compatibility of components imply the (minimal) requirements on those

new components which are supposed to interact with the existing components.

In addition to the design and implementation phase, the composition technique

may also be used during the deployment phase to allow a component to dynamically

discover compatible components. If a component determines that it is compatible with

more than one component, other discriminating factors, such as latency or memory

requirements, can be used to choose the preferred component for interaction.
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7.1.2 Substitutability and Reuse

All practical software systems are in a constant state of change as functionality is

enhanced, errors are corrected and efficiency is improved. As part of the evolution

of a software system, it is sometimes necessary to replace existing subsystems with

newer subsystems; usually these replacements are intended to improve the behaviour

of the entire system in some way. Two criteria have been identified which define the

problem of substitutability [23]: (1) the component that is being used for replacement

must provide all the services that its previous counterpart provided (it may also

provide more services, if desired) and (2) any correctness properties that existed in

the previous system must still be preserved after the substitution has taken place.

In this context, the model presented in this work can assist in determining the

feasibility of replacing an existing component with a new component in a software

architecture during maintenance cycles. In particular, the notion of provider services

are central to the interface model described by this work and any additions or deletions

to these services are easily identified. While this model does not ensure that all low-

level semantic behaviours related to a component’s state are retained, correctness

criteria with respect to the preservation of service invocations can be evaluated by the

compatibility checking procedure prior to a component substitution actually taking

place. A very simple substitutability criterion can be formulated on the basis of

interface languages (introduced in Section 4.4): Component A can be substituted by

component B, if for all corresponding interfaces I
(A)
j and I

(B)
j , j = 1, . . . , k: L(I

(A)
j ) ⊆

L(I
(B)
j ).

This substitutability aspect can serve to make the upgrading and subsequent main-
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tenance of existing systems easier and may also help promote reuse in a software

architecture [41, 42, 81]. When new provider components are deployed in an en-

vironment, requester components can evaluate them for compatibility and abandon

their previous providers if the new providers offer better performance. This would

naturally require a means for components to evaluate the performance of others.

7.1.3 Web Services

Related to this work is the increasingly important areas of web-services [9, 19, 50]

and the more general areas of Service-Oriented Architectures (SOA) [49] and agent-

oriented methodologies [32]. Much research is currently being done in these two fields,

both of which involve the exchange of messages between machines in large-scale,

distributed software architectures. The need to assess compatibility between client

and provider services is important to the success of these two development models

and it is believed that the model presented in this dissertation can be adapted for

these methodologies.

7.2 Future Work

While the applications of the proposed technique for compatibility verification are

apparent in the software development process, further work and study are necessary

to enhance the model so as to make it more robust in the context of challenges that

can be present in the construction of “real-world” software architectures.
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7.2.1 Deadlock Detection

The primary challenges facing this model are the aspects related to the deadlock

detection of the composed net. Reachability analysis, has, surprisingly, been very

effective at identifying the presence of deadlocks in the composed (bounded) nets of

the previous chapter. Unfortunately, assessing the reachability of unbounded nets

is more challenging, but there may be ways to address this problem. In particular,

the concept of modified reachability trees (MRT) [109] may be helpful in dealing with

this issue. Alternatively, unbounded nets exhibit a “pumping” effect which can be

represented by vector addition systems [73].

7.2.2 Siphon Extraction

Structural analysis and linear programming are ideally suited for unbounded nets in

which the number of places in the composed net is not too large. As the number

of places in a composed net increases, the extraction of basis and minimal siphons

becomes much more challenging using currently known algorithms. Additionally, the

deadlock algorithm and the feasibility check for firing vectors both employ backtrack-

ing strategies which increase the complexity of the proposed compatibility verification

technique. Further empirical evidence is required to fully understand the practical

complexity of the algorithms proposed in this work. It has been demonstrated that

the aforementioned complexity concerns can be mitigated by removing parallel and

alternate paths from the composed net; most likely, the number of siphons in a net can

be reduced by identifying additional redundant structures in the net and removing

the corresponding net elements. Alternative algorithms to finding basis and minimal
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siphons and/or to identify deadlock should also be investigated [28, 75, 103]. Some

research has recently been published that describes a strategy to assesses component

behavioural compatibility without encountering the state explosion problem [3]. De-

termining if this technique can be adapted to the composition model presented in this

work may be beneficial.

Ideally, siphon extraction and linear programming should only be attempted on

composed nets when reachability analysis is unreasonable, for example, in the context

of an unbounded net.

7.2.3 Semantic Compatibility

The presented research addresses only one aspect in the broad area of component com-

patibility. There are many other issues related to compatibility which are not fully

addressed. The notion of compatibility proposed by the model in this work provides a

means to determine the potential for two or more components to interact successfully.

In particular, this model provides a viable method to assess the structural compatibil-

ity of two different interfaces but does not provide a means to determine the semantic

compatibility. Returning to the example given in Section 6.2.2, if the actual amount

of money from the both debit card and insurance combined were insufficient to pay

for the prescription, then this could be regarded as a form of semantic incompatibility

which cannot be detected by this model. Another example would be a component’s

failure to authenticate because of an invalid password. If authentication fails during

runtime for example, this does not mean that the two components were incompati-

ble. These failures relate to the actual values interchanged between components and
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are therefore below the level of abstraction of the compatibility model proposed in

this work. Their effect, however, could be included in the models by introducing

free-choice structures for more than one outcome of an operation.

7.2.4 Asynchronous Interaction

While the composition model does allow for concurrency when multiple requesters

are simultaneously communicating with a single provider, there is no support for

spontaneous events or asynchronous behaviours in the composition. Therefore, this

model may not be particularly amenable to implementing events such as interrupts

and exceptions arising from serious software faults, such as overflows of arithmetic

operations. Some representation of such effects could be introduced by additional

free-choice structures, as indicated above, but a more systematic approach is needed

in the general case.

Interfaces whose behaviours are much more complex than that presented in the

previous chapter can also be represented by the model. Indeed, with the introduction

of inhibitor arcs in the Petri net model of an interface, an arbitrary protocol can

be modelled (the modelling power of Petri nets with inhibitor arcs is equivalent to

Turing machines). Unfortunately, as the number of elements in the composed net

increases, detecting deadlock becomes more computationally intensive. Moreover, the

introduction of inhibitor arcs renders the compatibility assessment based on structural

properties inapplicable (except for some special cases).
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7.2.5 Temporal Aspects

Many conventional applications involving interactions amongst components are not

time dependent and modest latencies between component interaction (whether due to

hardware or network limitations) are usually acceptable. However, in the case of em-

bedded real-time systems, timing issues are of paramount importance. The proposed

model does not address temporal compatibility of two components. Fortunately,

through the use of extensions such as timed Petri nets [114, 115, 116], such timing

aspects may be added to the model and may serve as a means to assess compatibility

based upon various performance evaluation metrics.

7.2.6 Model Building

Another issue not fully addressed by this work is how one can construct the Petri

net for an interface when given the corresponding requester client code and library

that implements the interface in the provider. Static analysis of the code can, at the

very least, enumerate the services provided or requested by a component’s interface.

Static analysis may also reveal, to a limited degree, the sequence of service invocations.

However, to accurately determine the complete set of sequences in which the services

occur, a dynamic approach can be taken during which all branches of execution

are exercised during a run-time simulation so as to deduce the complete Petri net

structure for an interface. An alternative method for determining the nets is through

the use of formal specification languages such as JML [20] which can be used to specify

various pre- and post-conditions in the code via well-defined, structured comments

prefacing each service definition. By chaining services with corresponding pre- and
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post-conditions, it may be possible to deduce the net using a code base whose services

have been appropriately adorned with a complete set of specifications. For example,

in the extended example of the previous chapter, all services after the authentication

would require that an authenticated attribute be set to true. A post-condition of

the authenticate service would be to set this attribute to true in the specification,

therefore dictating that the authentication service must be performed before any other

services are invoked.

7.2.7 Component Discovery

This model does not provide a formal mechanism for components to discover one

another in a pragmatic context. Other technologies exist to accomplish this such

as UDDI, CORBA Naming services and JNDI. The question remains, however, as

to how an initially unconnected component can attempt to intelligently query the

interfaces of thousands of other interfaces to determine compatibility and to interact

successfully with other components in a deployment environment. The labels speci-

fying the services could be used for preliminary discovery of potentially compatible

components. Additionally, a hierarchical decomposition of the deployed component

space on the basis of the linguistic properties of their interfaces may help to alleviate

some of the complexity of discovery.

While verifying compatibility during the deployment phase poses some challenges,

it may also lead to some benefits. For example, it may allow for the possibility of

a software architecture that can dynamically reconfigure itself [6], potentially giving

rise to autonomous, self-assembling software systems. It may also lead to the possi-

143



bility of removing a component from a running system and plugging in a compatible

component without adversely affecting the operation of the system. Naturally, issues

related to state transfer from an old component to a new component would have to

be addressed before this possibility can become a reality.

7.2.8 Measures of Compatibility

Currently, the existing model of compatibility amounts to a decision problem —

either two or more components are compatible, or they are not. The model does

not allow for a continuum of compatibility measures [112]. Such a measure may

be helpful especially during maintenance of software systems, when components and

their interfaces are subject to modifications to improve performance or to provide

additional functionality. Changes to a component may result in an interface which is,

for example, 99% compatible with its peer components instead of 100% (which may

mean that some infrequently used service is not being used in a compatible context).

If the compatibility measure is relatively high, then it may be possible to introduce

a facade interface that maintains backwards compatibility with the old interface.

This would allow for interactions between components that “almost” successfully

interact with one another. The facade could later be dropped as other components

are updated. Some work in this general area, using interface automata, has already

been performed [59].
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7.2.9 Design Quality

The proposed model does not describe the attributes of a well-designed interface or,

indeed, how to build such an interface. However, there are some qualitative guidelines

which can be followed. It is known that components with complex interactions are

difficult to design and implement, especially when not all requirements are known.

Therefore, interface development may be performed in an incremental or step-wise

fashion for subsets of related operations. These subsets may then be clustered into a

single “super-service,” thereby facilitating the reachability or structural analysis. It is

also the duty of the interface designer to ensure that the interface is “well-behaved,”

for example, it must not contain deadlocks (non-liveness, however, is acceptable). If

two poorly designed interfaces are created and successfully composed in accordance

with the model proposed in this work, this does not necessarily mean that the com-

position will result in the composed net exhibiting desirable or correct behaviour.

7.3 Epilogue

The research described in this thesis represents an important step in the continu-

ing evolution of the design and construction of software systems. Establishing a

well-defined and formal method for determining the extent to which two or more

components are able to successfully interact can serve to significantly enhance the

integration of software components in a given software architecture. Ultimately, this

may contribute to the reliable evolution of a deployed component-based software sys-

tem.

In addition, the formal models proposed in this work constitute a foundation which
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may enable the automation of some of the tedious aspects of component integration

and deployment. This work could lead to the formation of autonomous software sys-

tems in which each component possesses the knowledge of the services it requires and

provides via each of its interfaces. By giving components the ability to independently

determine other compatible components in the context of its deployment, we allow for

the potential of self-assembling software systems, thereby allowing for an increasing

degree of automation in the field of software development. Although many practical

aspects of such systems must be studied extensively, the work presented in this thesis

provides a possible foundation for such research.
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Appendix A

Deadlock Detection

This appendix provides a detailed demonstration of how structural properties and

linear programming can be used to analyze the Petri net in Figure 6.13 presented

in Chapter 6. The net exhibits a deadlock, as shown by the reachability analysis in

Section 6.2.3. The deadlock can also be determined by simplifying the composed net

and using linear programming, as will be demonstrated in this Appendix.

To employ linear programming, the basis and minimal siphons must be extracted

so that objective functions can be determined. Since the original net has a large

number of siphons, the concepts of similar and essential siphons, as well as parallel

and alternate paths can be used to reduce the number of siphons (and to simplify

their extraction).

Removing parallel paths and the bases of alternate paths from the net in Fig-

ure 6.13 results in the net shown in Figure A.1. The reduced net still preserves the

deadlock properties of the original net (as discussed in Section 4.2.4); the reduced

net will deadlock if and only if the original net deadlocks. This simplified model has
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23 basis siphons, all of which are marked. These basis siphons include five mini-

mal siphons and six marked traps, as shown in Table A.1. (The minimal siphons are

S1, S2, S18, S19 and S20.) The marked traps can be disregarded because they can never

become empty to create a deadlock. Therefore, only 17 siphons must be examined

using linear programming (S1, . . . , S17), the first two of which are minimal siphons.

The deadlock detection algorithm presented in Figure 4.6 of Chapter 4 first at-

tempts to determine if there is a firing sequence which removes tokens from one of

the minimal siphons (in order to produce a deadlock). The objective function for

each minimal siphon is determined from the places constituting the siphon and their

marking, while linear programming is used to determine if a firing vector exists which

minimizes the objective function to zero while observing the constraints presented in

Table A.2. These constraints are derived from the structure of the analyzed net and

represent the requirement that the number of tokens assigned to the place cannot be

negative. It should be noted that as siphons are emptied, new markings are obtained

and the constraints can change accordingly. In particular, the constant in each con-

straint can change as siphons are emptied of their tokens. (This constant describes

the marking of a particular place.) Additional constraints include the fact that all

transitions must fire zero or more times (i.e. xti , 1 ≤ i ≤ 36, must all be greater than

or equal to zero).
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Figure A.1: Simplified incompatible composition between patient-prescription server interfaces
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Table A.1: Marked basis siphons in Figure A.1

S1 = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p13, p14, p15, p16, p17, p18, p20, p22, p24, p25, p26, p27, p28, p29, p31, p32, p33, p34, p35, p36}
S2 = {p1, p2, p3, p4, p5, p7, p8, p9, p10, p11, p12, p13, p15, p18, p19, p21, p22, p23, p25, p26, p27, p28, p29, p30, p31, p33, p34, p35, p36}
S3 = {p1, p2, p3, p4, p5, p7, p8, p9, p10, p11, p13, p15, p17, p18, p20, p21, p22, p25, p26, p27, p28, p29, p31, p33, p34, p35, p36}
S4 = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p15, p17, p18, p19, p21, p22, p23, p25, p26, p27, p28, p29, p30, p31, p33, p34, p35, p36}
S5 = {p1, p2, p3, p4, p6, p7, p8, p9, p10, p11, p13, p15, p17, p18, p20, p21, p22, p25, p26, p27, p28, p29, p31, p33, p34, p35, p36}
S6 = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p20, p22, p24, p25, p26, p27, p28, p29, p31, p32, p33, p34, p35, p36}
S7 = {p1, p2, p3, p4, p5, p7, p8, p9, p10, p11, p12, p13, p15, p17, p18, p20, p21, p22, p25, p26, p27, p28, p29, p31, p33, p34, p35, p36}
S8 = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p17, p18, p19, p21, p22, p23, p25, p26, p27, p28, p29, p30, p31, p33, p34, p35, p36}
S9 = {p1, p2, p3, p4, p5, p7, p8, p9, p10, p11, p12, p13, p15, p16, p18, p19, p21, p22, p23, p25, p26, p27, p28, p29, p30, p31, p33, p34, p35, p36}
S10 = {p1, p2, p3, p4, p5, p7, p8, p9, p10, p11, p13, p15, p16, p17, p18, p20, p21, p22, p25, p26, p27, p28, p29, p31, p33, p34, p35, p36}
S11 = {p1, p2, p3, p4, p5, p7, p8, p9, p10, p11, p12, p13, p15, p17, p18, p19, p21, p22, p23, p25, p26, p27, p28, p29, p30, p31, p33, p34, p35, p36}
S12 = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p13, p14, p15, p16, p17, p18, p19, p20, p22, p24, p25, p26, p27, p28, p29, p31, p32, p33, p34, p35, p36}
S13 = {p1, p2, p3, p4, p5, p7, p8, p9, p10, p11, p13, p15, p17, p18, p19, p20, p21, p22, p25, p26, p27, p28, p29, p31, p33, p34, p35, p36}
S14 = {p1, p2, p3, p4, p7, p8, p9, p10, p11, p13, p15, p17, p18, p20, p21, p22, p25, p26, p27, p28, p29, p30, p31, p33, p34, p35, p36}
S15 = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p13, p14, p15, p16, p17, p18, p20, p22, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36}
S16 = {p1, p2, p3, p4, p7, p8, p9, p10, p11, p13, p15, p17, p18, p20, p21, p22, p25, p26, p27, p28, p29, p31, p32, p33, p34, p35, p36}
S17 = {p1, p2, p3, p4, p5, p7, p8, p9, p10, p11, p12, p13, p15, p18, p19, p21, p22, p23, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36}

Siphon-traps
S18 = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19}
S19 = {p1, p2, p3, p4, p7, p8, p9, p10, p11, p13, p15, p17, p18, p20, p21, p22, p25, p26, p27, p28, p29, p31, p33, p34, p35, p36}
S20 = {p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36}
S21 = {p1, p2, p3, p4, p6, p7, p8, p9, p10, p11, p13, p14, p15, p17, p18, p20, p21, p22, p25, p26, p27, p28, p29, p31, p33, p34, p35, p36}
S22 = {p1, p2, p3, p4, p7, p8, p9, p10, p11, p13, p15, p17, p18, p20, p21, p22, p23, p25, p26, p27, p28, p29, p30, p31, p33, p34, p35, p36}
S23 = {p1, p2, p3, p4, p7, p8, p9, p10, p11, p13, p15, p17, p18, p20, p21, p22, p24, p25, p26, p27, p28, p29, p31, p32, p33, p34, p35, p36}
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Table A.2: Constraints for Figure A.1

Place Constraint Place Constraint
p1 −xt1 + xt18 + 1 ≥ 0 p19 xt19 − xt20 ≥ 0
p2 xt11 − xt12 ≥ 0 p20 −xt6 + xt9 + xt14 − xt20 + xt25 − xt26 ≥ 0
p3 −xt3 + xt12 ≥ 0 p21 xt7 − xt10 − xt15 + xt21 + xt27 − xt28 ≥ 0
p4 xt13 − xt14 ≥ 0 p22 −xt24 + xt32 ≥ 0
p5 −xt2 − xt8 + xt14 − xt19 ≥ 0 p23 −xt26 + xt33 ≥ 0
p6 −xt4 + xt7 + xt9 + xt21 ≥ 0 p24 −xt28 + xt34 ≥ 0
p7 xt15 − xt16 ≥ 0 p25 −xt30 + xt35 ≥ 0
p8 −xt5 + xt16 ≥ 0 p26 −xt22 + xt36 ≥ 0
p9 xt17 − xt18 ≥ 0 p27 xt22 − xt23 ≥ 0
p10 xt1 − xt11 ≥ 0 p28 xt23 − xt32 ≥ 0
p11 xt6 − xt7 ≥ 0 p29 xt24 − xt25 ≥ 0
p12 xt2 − xt6 ≥ 0 p30 xt25 − xt33 ≥ 0
p13 xt3 − xt13 ≥ 0 p31 xt26 − xt27 ≥ 0
p14 xt4 − xt15 ≥ 0 p32 xt27 − xt34 ≥ 0
p15 xt5 − xt17 ≥ 0 p33 xt28 − xt29 ≥ 0
p16 xt8 − xt10 ≥ 0 p34 xt29 − xt35 ≥ 0
p17 −xt9 + xt10 ≥ 0 p35 xt30 − xt31 ≥ 0
p18 xt20 − xt21 ≥ 0 p36 xt31 − xt36 + 1 ≥ 0

Linear programming shows that the numbers of tokens in S2 (in Table A.1), which

is represented by the objective function 2− xt8 − xt10 , can be minimized to zero with

the firing vector:

[1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1].

This vector is feasible and corresponds to the firing sequence

(t1, t11, t12, t3, t13, t14, t8, t36, t22, t23, t32, t24, t25, t33, t26, t27, t10).

However, emptying this siphon does not result in a deadlock. Furthermore, the first

minimal siphon, represented by the objective function 2−xt2 +xt9 +xt14 −xt19 , cannot

be emptied. Therefore, the algorithm must continue to test all 17 basis siphons to

(recursively) determine a siphon draining sequence that results in deadlock.
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Using the deadlock algorithm, it can be determined that draining the basis siphons

in the sequence of (S2, S4, S17) results in the dead marking shown in Figure 6.14. The

corresponding objective function for each siphon, the firing vector that minimizes

each objective function to zero and the firing sequence that corresponds to the firing

vector are presented in Table A.3.

Table A.3: Siphons, objective functions and firing vectors/sequences

Siphon Objective function, firing vector and firing sequence

S2 2 − xt8 − xt10 ,
[1,0,1,0,0,0,0,1,0,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,0,0,1],
(t1, t11, t12, t3, t13, t14, t8, t36, t22, t23, t32, t24, t25, t33, t26, t27, t10)

S4 1 − xt4 + xt7 − xt8 + xt21 ,
[0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(t9, t4)

S17 1 − xt8 − xt10 + xt27 − xt34 ,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0],
(t34)

The siphon sequence (S2, S4, S17) is not unique — other sequences exist which also

result in the same deadlock. Some of these siphon sequences and the corresponding

transition firing sequences that result in a deadlock, are shown in Table A.4. These

siphon sequences were obtained by randomizing the order of the basis siphons and

running the same algorithm as above.

The presence of several siphon sequences may help to lessen the time complexity

of the algorithm in pragmatic cases — the siphons can be ordered in such a way

that the most likely candidates are analyzed first. Also helping to mitigate the com-

plexity of the algorithm is the fact that when a siphon’s tokens are fully drained,

other “overlapping” siphons could also have become empty. These additional empty
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Table A.4: Other siphons emptying sequences and their corresponding firing sequences
that result in deadlock

Siphon Firing sequence

S11 (t1, t11, t12, t3, t13, t14, t8, t36, t22, t23, t32, t24, t25, t33, t26, t27, t10, t9)
S17 (t34)
S4 (t4)
S2 (t1, t11, t12, t3, t13, t14, t8, t36, t22, t23, t32, t24, t25, t33, t26, t27, t10)
S11 (t9)
S4 (t4)
S17 (t34)
S9 (t1, t11, t12, t3, t13, t14, t8, t36, t22, t23, t32, t24, t25, t33, t26, t27, t10)
S17 (t34)
S4 (t9, t4)
S17 (t1, t11, t12, t3, t13, t14, t8, t36, t22, t23, t32, t24, t25, t33, t26, t27, t10, t34)
S11 (t9)
S4 (t4)
S17 (t1, t11, t12, t3, t13, t14, t8, t36, t22, t23, t32, t24, t25, t33, t26, t27, t10, t34)
S4 (t9, t4)

siphons effectively prune the recursive search space since the algorithm does not ex-

plore siphons that have become emptied as it progresses through its analysis of the

set of basis siphons.

169



Appendix B

Petri Net File Format

This appendix describes a file format that can be used to textually describe the nets

presented in this thesis. The file structure consists of individual sections listing the

places, the transitions/connectivity, and finally the initial marking. Each of these

three sections are described in more detail in the following sections. For convenience,

software has been written which can convert graphical descriptions of the nets (in

xfig format) into the format described by this Appendix.

B.1 Places

The places are specified by a comma-separated list of the place names. Each place

name has the syntax of a traditional identifier (an alphabetic character followed by

zero or more alphanumeric characters) and each name must be unique. The list of

places is prefixed by pdef=. The resulting string is then enclosed by net[ and ].
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B.2 Transitions/Connectivity

The transitions are then provided in a semi-colon separated list in which each list item

consists of the transition identifier (preceded by ‘#’) followed by a comma-separated

list of the identifiers representing the input places of the transition followed by a

comma-separated list of identifiers representing the output places of the transition.

The transition identifier is separated from the two lists of places by ‘=’ and the

input/output places are separated from each other by ‘/’.

B.3 Initial Marking

The initial marking is specified by providing all the places that have tokens in a

comma-separated list. By default, places in this list will have exactly one token in

the initial marking. More than one token can be assigned to a place by specifying

the number of tokens after the place name. A colon separates the place name from

the number of tokens.

B.4 Grammar

A grammar for the textual description of nets is given below:

Net ::= net[pdef= Places ]

( Transitions );

mark( Markings );

Places ::= Id-List

Transitions ::= Trans {; Trans}∗

Trans ::= #id = Id-List/Id-List

Markings ::= mark(id[:num]{,id[:num]}∗)
Id-List ::= id {, id}∗
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B.5 Example

Using the above grammar, the Petri net given in Figure A.1 has the following textual

description:

net[pdef=p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,

p16,p17,p18,p19,p20,p21,p22,p23,p24,p25,p26,p27,p28,p29,p30,

p31,p32,p33,p34,p35,p36]

(#t1=p1/p10;

#t2=p5/p12;

#t3=p3/p13;

#t4=p6/p14;

#t5=p8/p15;

#t6=p20,p12/p11;

#t7=p11/p6,p21;

#t8=p5/p16;

#t9=p17/p20,p6;

#t10=p21,p16/p17;

#t11=p10/p2;

#t12=p2/p3;

#t13=p13/p4;

#t14=p4/p20,p5;

#t15=p14,p21/p7;

#t16=p7/p8;

#t17=p15/p9;

#t18=p9/p1;

#t19=p5/p19;

#t20=p20,p19/p18;

#t21=p18/p21,p6;

#t22=p26/p27;

#t23=p27/p28;

#t24=p22/p29;

#t25=p29/p30,p20;

#t26=p23,p20/p31;

#t27=p31/p32,p21;

#t28=p24,p21/p33;

#t29=p33/p34;

#t30=p25/p35;

#t31=p35/p36;

#t32=p28/p22;

#t33=p30/p23;
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#t34=p32/p24;

#t35=p34/p25;

#t36=p36/p26);

mark(p1,p36);
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Appendix C

Parallel/Alternate Path

Algorithms

This appendix presents algorithms used in Section 4.2.4 (Chapter 4) in the structural

analysis of Petri nets. In particular, the algorithms identify parallel and alternate

paths which can be used to reduce the number of inessential siphons and to simplify

deadlock detection.

C.1 Parallel Paths

The procedure to identify the transitions that delimit parallel paths in a net is pre-

sented in Figure C.1. The procedure examines all transitions in the given net that

have more than one output place (by definition, a transition that has less than two

output places cannot act as the origin of a parallel path). Each of the output places

is then analyzed to determine if there exists more than one simple path that extends

from the originating transition to the same terminating transition. Each output of
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the same pair of transitions denotes another parallel path between the two transitions

(which can be removed from the net).

proc parallel-paths(N )
begin

for each t in Transitions(N ) do
if |Out(t)| > 1 then

T := { };
for each p in Out(t) do

t′ := endtpath(N , p);
if t′ 6= nil then

if t′ ∈ T then
output(t, t′)

else
T := T ∪ t′

endif
endif

endfor
endif

endfor
end

Figure C.1: Procedure parallel-paths

The parallel-paths algorithm makes use of an auxiliary function called endtpath,

presented in Figure C.2, which identifies the terminating transition at the end of a

simple path that starts from the place given as its argument. If the place is not part

of a simple path, then the function returns nil. The function steps through each

place and transition along the path ensuring that their respective input and output

sets are all singletons. The assignment of cont := p 6= first prevents infinite looping

which may occur if the net contains a cycle. In this function, Out(p) is the set of

all transitions in the output set of p, whereas out(p) represents the single output

transition of the given place. The same idea applies to the difference between Out(t)
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and out(t). The complexity of this algorithm is linear with respect to the sum of the

number places and transitions.

func endtpath(N , p) : transition
begin

t := nil;
first := p;
cont := true;
while cont do

cont := false;
if |Inp(p)| = 1 and |Out(p)| = 1 then

t := out(p);
if |Inp(t)| = 1 and |Out(t)| = 1 then

p := out(t);
cont := p 6= first

endif
else

t := nil

endif
endwhile;
return t

end

Figure C.2: Function endtpath

C.2 Alternate Paths

A procedure that identifies the base portion of alternate paths is presented in Fig-

ure C.3. The procedure iterates over the places attempting to identify a place which

is the starting point of the base of an alternate path. Places whose input sets contain

only one transition are rejected as they cannot be part of a base path. For all other

places, the endppath function, described below, is then used to determine if the place

is the start of a simple path (with the result from endppath being the last place of
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the simple path). If a place is the start of a simple path, then the sets of transitions

that lead into and out of the base path are identified. A check is then made (using

the endtpath function of Figure C.2) to ensure that the two sets of transitions can be

paired off completely by identifying simple paths between them. If this is successful,

the two places identified earlier constitute the starting and ending points of a base

path.

proc alternate-paths(N )
begin

for each p in Places(N ) do
if |Inp(p)| > 1 then

base := nil;
p′ := endppath(N , p);
if p′ 6= nil then

T1 := Inp(p);
T2 := Out(p′);
for each t in T1 do

for each p′′ in Out(t) do
t′ := endtpath(p′′);
if t′ 6= nil and t′ ∈ T2 then

T2 := T2 − {t′};
T1 := T1 − {t};
base := (p, p′)

endif
endfor

endfor;
if T1 = ∅ and T2 = ∅ and base 6= nil then

output(base)
endif

endif
endif

endfor
end

Figure C.3: Procedure alternate-paths

The algorithm for the endppath function, used by the alternate-paths function
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above, is shown in Figure C.4. This function works similarly to endtpath, but instead

of returning the last transition of a simple path, it returns the last place. The only

other major difference is that the endppath algorithm must take into account the fact

that the input set of the starting place of the base and the output set of the final place

are not necessarily singleton sets. As with endtpath, the complexity of this algorithm

is linear with respect to the sum of the number places and transitions.

func endppath(N , p) : place
begin

p′ := p;
first := p;
cont := true;
while cont do

cont := false;
if |Out(p′)| = 1 then

t := out(p′);
if |Inp(t)| = 1 and |Out(t)| = 1 then

p′ := out(t);
if |Inp(p′)| = 1 then

cont := p′ 6= first
else

p′ := nil

endif
else

p′ := nil

endif
endif

endwhile;
return p′

end

Figure C.4: Function endppath

178


