
A Formal Model for Representing
Component Interfaces and Their Interaction

Donald C. Craig

Department of Computer Science
Memorial University of Newfoundland

St. John’s, Canada A1B 3X5

Abstract— The field of Component Based Software En-
gineering (CBSE) is emerging as a means of mitigating
the complexity faced by software architects during the
design and maintenance of software systems. Unfortunately,
successfully determining compatible interaction amongst
components can be a difficult problem to solve. Estab-
lishing whether two components are compatible with one
another may be facilitated by developing a formal model
to describe component interfaces and, in particular, how
they interact with each other. This model can be extended
to represent the interaction between an arbitrary number
of components and may also be used to model the com-
ponents hierarchically in the context of a larger software
architecture.

This paper establishes a formal model of component
interaction by representing component interfaces as Petri
nets. Interface compatibility can be established by deter-
mining those interfaces that, when connected, are free
of deadlock. Such work could lead to the formation of
autonomous software systems in which each component is
endowed with a meta-knowledge of the services it requires
and provides. By giving software the ability to self-connect
to other components in its environment, we allow for
the possibility of self-assembling software systems; thereby
potentially increasing the degree of automation in the
construction of software systems.

I. INTRODUCTION

The difficulties involved in the development of large-
scale software architectures are well documented and,
over the years, numerous strategies have been developed
to help mitigate these difficulties [1]. Object-oriented
programming [2] and numerous architectural description
languages [3] have been introduced in order to make the
development of software systems more tractable. Dur-
ing recent years, component based software engineering
(CBSE) has been emerging as viable means of software
construction whereby pre-manufactured software sub-
structures with well-defined interfaces are designed and
implemented and subsequently incorporated into larger
software systems [4]. While this approach has met with
some degree of success, there remains the problem of de-
termining compatibility between components. Classical
techniques of determining compatibility have typically
focused on compile-time metrics such as consistency

between the numbers and types of method arguments and
on appropriate use of a method return type. While such
static checks are clearly important, they are insufficient
in establishing the dynamic or behavioural compatibility
between two software components. This paper provides
the foundation for a formal model of component inter-
action by representing component interfaces using Petri
nets [5], [6]. Interface compatibility is established by
determining those interfaces that, when connected, are
free of deadlock. By treating component behaviour as
a language, compatibility between components can be
tested and verified.

A model of component interfaces that employs Petri
nets and the notion of interface languages are introduced
in Section II. Section III describes the composition of
component interfaces and provides a formal framework
for establishing compatibility between two components
using the Petri net model and deadlock detection. In
Section IV, some examples that demonstrate the model
are provided. Finally, Section V discusses some of the
pragmatic issues that arise as a result of the proposed
model.

II. PETRI NET COMPONENT MODELS

Informally, a component can be thought of as a
cohesive logical unit of abstraction with a well-defined
interface that provides services to its environment. For
the purposes of the model presented in this paper, the
low-level, internal behaviour of the component will be
disregarded as it is not important in the formalism
discussed below. While it is certainly true that there may
be an inseparable relationship between a component’s
internal behaviour and the dynamics manifested at the
component’s interface, this model will concentrate only
upon the interface itself. Therefore, this proposal is not
so much a model of a component as it is a model of a
component’s interface.

A component’s interface is defined in terms of a
labelled Petri net:

Mi = (Pi, Ti, Ai, Si, `i, mi).

b c

d
a

Fig. 1. A component interface with services a,b,c and d

In this definition, Pi and Ti are disjoint sets of places
and transitions, respectively, Ai ⊆ Pi × Ti ∪ Ti × Pi is
a set of directed arcs, Si is an alphabet representing a set
of services which are associated with labelled transitions,
`i : Ti → Si ∪ {ε} is a labelling function (ε is the
empty label), finally, mi : Pi → { 0, 1, . . . } is the initial
marking function. The Petri net model representing an
individual interface must be deadlock-free. Although it
is not necessary for the presented approach, it is assumed
that the interfaces are represented by cyclic nets. A
simple example of an appropriately marked and labelled
interface is presented in Figure 1.

In a given software system, there will typically be
several components. In order to represent communication
between components, the interfaces are partitioned into
provider interfaces (p-interfaces) that supply services
and requester interfaces (r-interfaces) that require ser-
vices [7].

In the context of a provider interface, a labelled
transition can be thought of as a service provided by
that component. Labelled transitions on the provider
essentially denote an entry point into the component.
It should be noted that it is possible to have unlabelled
transitions on an interface (denoted by ε in the labelling
function `i above). Such transitions may be needed to
implement behavioural logic of the interface and do not
actually constitute a service.

It is assumed that each service in each p-interface
has exactly one labelled representation, so as to prevent
ambiguity in the interaction of the component interfaces:

∀ti, tj ∈ T : `(ti) = `(tj) ⇒ ti = tj .

As mentioned, the label assigned to a transition repre-
sents a service or some unit of behaviour. For example,
the label could conceivably represent a conventional
function or method call. The return type and parameters
are all encapsulated or abstracted by the label and are
of no concern to the model as a whole. It will be
assumed that if the p-interface requires parameters from
the r-interface, then the appropriate number and types
parameters will be delivered by the r-interface. Another
assumption is that if an r-interface requests any arbitrary
service a of a provider component that supports that

particular service via its p-interface, then the provider
component will be able to satisfy that service (i.e. the
component servicing the request will not fail due to lack
of resources or software faults, for example).

Possible sequences of services provided by a p-
interface are determined by firing sequences in the Petri
net model of an interface, Mi = (Pi, Ti, Ai, Si, `i, mi).
That is to say, σ = ti1 ti2 . . . tik

is an initial firing
sequence in Mi iff there exists a sequence of markings
mi0 , mi1 , . . . , mik

such that ti`
is enabled (or fireable)

by mi`−1
, mi`

is obtained by firing ti`
in mi`−1

for
i = 1, 2, . . . , k, and mi0 = mi is the initial marking
function of Mi. The set of all initial firing sequences of
Mi is denoted by F(Mi).

The language of Mi, denoted by L(Mi), is the set
of all strings over Si obtained by labelling complete
initial firing sequences: L(Mi) = { `(σ) | σ ∈
F (Mi) ∧ `(σ) is a complete sequence of operations }
where `(ti1 . . . tik

) = `(ti1) . . . `(tik
) and a complete

sequence of operations represents a firing of all rele-
vant transitions involved in a provider/requester inter-
action. As an example, the language associated with
the behaviour of the interface presented in Figure 1
is (a(b|c)∗d)∗. In this case, a complete sequence in a
provider/requester interaction would be any repetition of
a sequence which started with a and ended with d and
had any number of intervening b or c operations.

III. COMPONENT COMPOSITION AND

COMPATIBILITY

Some prior work has already been attempted in the
areas of component composition and compatibility as-
sessment using Petri net models [8], [9]. Related to this
area is the composition and interoperability of web ser-
vices [10] and verification of workflow composition [11].
While the method presented herein shares concepts
with those presented in the literature, especially with
respect to the deadlock-free nature of the composition
of compatible nets, this paper proposes another method
of composition and compatibility assessment that is
fundamentally different from those proposed by earlier
efforts. In particular, the composition strategy is based
on sharing the labels rather than elements of net models,
so the interface is composed of services rather than
messages or message channels. Interface compatibility is
determined by studying the languages generated by the
labelled transitions of the provider and requester Petri
net interfaces.

Compatibility of two components is dictated primar-
ily by the behaviour at their respective interfaces. For
two components to interact, the provided and requested
services must be compatible with one another. This
means that not only must all the services required by the
requester be made available by the provider, but that the

sequence of services that the requester demands must be
compatible with the sequence that the provider imposes
upon the services being invoked. This leads to the
following observation regarding compatible interfaces:
The interface models of requester Mi and provider Mj

are compatible iff L(Mi) ⊆ L(Mj). Observe that this
definition implies that the alphabet Sj must be a superset
of Si, Si ⊆ Sj .

Informally, the composition can be modelled by
“melding” the r-interface, Mi, and p-interface, Mj ,
together into a single Petri net:

Mij = (Pij , Tij , Aij , Si, `ij , mij),

assuming Pi ∩ Pj = Ti ∩ Tj = ∅. The composition is
denoted by Mi�Mj with an r-interface as the left-hand
argument and a p-interface as the right-hand argument.
The definition of Mij is based on those transitions
in the p-interface and r-interface that have non-empty
labels. First, we define T̂i and T̂j to be the transitions in
the requester and provider, respectively, that have labels
assigned to them:

T̂i = { t ∈ Ti : `i(t) 6= ε },

T̂j = { t ∈ Tj : `j(t) 6= ε }.

In the composed net, in addition to the existing places
in the two interfaces, three more places are added for
each requested/provided service. One place is added to
the r-interface domain of the resulting net and two places
are added to the p-interface domain of the combined net.
The purpose of these three places is to act as synchro-
nization points between the requester and provider:

Pij = Pi ∪Pj ∪ { pti
: ti ∈ T̂i }∪ { p′tj

, p′′tj
: tj ∈ T̂j }.

The pairs of places added to the p-interface limit the
number of additional places introduced during compo-
sition when multiple r-interfaces are allowed to interact
with a single p-interface.

With respect to the transitions, all those transitions in
the r-interface that have non-empty labels are replaced by
a pair of transitions which envelop the additional place
introduced in the r-interface domain above:

Tij = Ti ∪ Tj − T̂i ∪ { t′i, t
′′

i : ti ∈ T̂i }.

The new places are connected to the transitions as
shown in Figure 2; Aij is defined as follows:

Aij = Ai ∪ Aj − Pi × T̂i − T̂i × Pi ∪

{ (pi, t
′

i), (t
′

i, pti
), (pti

, t′′i), (t′′i , pk),

(t′i, p
′

tj
), (p′tj

, tj), (tj , p
′′

tj
), (p′′tj

, t′′i) :

ti ∈ T̂i ∧ tj ∈ T̂j ∧ `i(ti) = `j(tj)

∧ (pi, ti) ∈ Ai ∧ (ti, pk) ∈ Ai }.

a

ti

pkpi

a

tj

ptipi pk

t′i t′′i

a

tj

AfterBefore

Requester

.

.

.

Provider

p′tj p′′tj

Fig. 2. Composing component interfaces

The labelling function of the composed net is defined
by combining the labelling functions of the p- and r-
interfaces. The marking of the composite net is based
upon the markings of the interface nets of the underlying
pair of interacting components:

∀t ∈ Tij : `ij(t) =

`i(t), if t ∈ Ti,

`j(t), if t ∈ Tj ,

ε, otherwise.

∀p ∈ Pij : mij(p) =

mi(p), if p ∈ Pi,

mj(p), if p ∈ Pj ,

0, otherwise.

Interface compatibility means that each sequence of
service requests (from an r-interface) is matched by
a sequence of identical services in the corresponding
p-interface. The language of the composition of two
interfaces with the same alphabet S, an r-interface Mi

and a p-interface Mj , Mi � Mj , is the intersection of
L(Mi) and L(Mj):

L(Mi � Mj) = L(Mi) ∩ L(Mj).

This observation is a straightforward consequence of
the definition of interface composition. In particular, note
that the composition technique leaves the structure of
both interfaces essentially intact. The primary difference
is that token firing is interleaved over the sequence of
services of each interface. Ultimately, within the isolated
context of each interface, the flow relation remains
undisturbed as a result of the composition. Therefore
any string generated by the resulting composition can
also be generated by each interface. It can also be
observed that two deadlock-free interfaces with the same
alphabet S, an r-interface Mi and a p-interface Mj

are incompatible iff the composition Mij = Mi � Mj

contains a deadlock. In essence, the issue of component
interface compatibility can be reduced to a problem

cb

a d

Requester

Provider

b c

a d

Fig. 3. Database requester and provider interfaces

cb

a d

Requester

Provider

Fig. 4. Interface composition

of detecting deadlocks in a net that results from the
composition of two interfaces.

IV. EXAMPLE

As a simple example consider Figure 3 which repre-
sents a simple database client (requester) and a database
server (provider). The first operation or requested service
is denoted by a which could represent a service that
opens the database and prepares it for queries, for exam-
ple. The interface then requests a sequence of operations
in which each operation b is followed by a corresponding
operation c (these could represent read and write opera-
tions to the database, respectively). Finally, the requester
invokes service d which could represent the closing of
the database. The behaviour of the requester interface
can therefore be represented by the regular language
(a(bc)∗d)∗. The provider interface, which represents the
database server, imposes the restriction that the a service
must be invoked first followed by any sequence of b
and/or c services, followed finally by the d service. The
behaviour of the database server is therefore denoted by
the language (a(b|c)∗d)∗. The composition of interfaces
is shown in Figure 4.

As an example of a deadlock situation, consider the
case where the p-interface and r-interface from the pre-
vious example are swapped and then recomposed. The
resulting net would exhibit deadlock as demonstrated by

cb

a d

Provider

Requester

Fig. 5. Deadlock in incompatible interfaces

the composition shown in Figure 5. This results in a
deadlock situation when the requester invokes service c
immediately after invoking a but the provider requires
that service b be invoked before service c can be
requested. This deadlock demonstrates incompatibility
between the two interfaces. In this case, the language of
the requester is a superset of the language of the provider.

The composition strategy can also be used to model
nested database transactions in which the open and close
pairs can be nested. The protocol in this case would be
context free and not regular. Interfaces whose behaviours
are much more complicated can also be represented by
the model. Indeed, with the introduction of inhibitor arcs
in the Petri net of an interface, any interface protocol
whose language is recognizable by a Turing machine can
be modelled by this approach. This feature allows for
the modelling of a wide variety of protocol interactions
between components in a software system.

V. PRAGMATIC CONSIDERATIONS

An issue not fully addressed by this paper is how can
one construct the Petri net for an interface when given
the corresponding code that implements the interface?
Static analysis of the code can, at the very least enumer-
ate the services provided or requested by a component’s
interface. Static analysis may also reveal, to a limited
degree, the sequence of service invocations. However, to
accurately determine the complete set of sequences in
which the services occur, a dynamic approach must be
taken during which all branches of execution must be
exercised before a complete Petri net can be deduced.

Many conventional applications are not overly time
dependent with respect the interactions amongst compo-
nents and modest latencies between component interac-
tion (whether due to hardware or network limitations) are
usually acceptable. However, in the case of embedded
real-time systems, for example, timing issues are of
paramount importance. The model proposed above is
insufficient in determining temporal compatibility of two
components. Fortunately, through the use of timed Petri

nets [12], such timing aspects can be easily added to the
model.

Hierarchical composition of components may be rep-
resented in this model by constructing a hierarchy of
Petri net interfaces [13]. Instead of acting as peers, inter-
faces can serve as mediators between different levels of a
software hierarchy leading to both vertical and horizontal
communication within a deployment environment. This
hierarchical strategy more accurately reflects the design
and development of large software systems. Another
important pragmatic concern that has yet to be resolved
is when should the compatibility check occur. If the com-
patibility check can be deferred as late as when the com-
ponent is deployed into a running environment, then this
could allow for the possibility of a software architecture
that can dynamically reconfigure itself, potentially giving
rise to autonomous, self-assembling software systems
that exhibit behaviours that are consistent with a formal
requirements specification. Naturally, issues related to
state transfer from an old component to a new component
would have to be addressed before this possibility can
become a reality.

VI. CONCLUDING REMARKS

Determining the degree to which components are
compatible with one another is a multi-faceted prob-
lem that, in the general case, requires a comprehensive
understanding of both the static and dynamic nature
of the components involved. However, by abstracting
away the internal, low-level behaviour of components
and concentrating solely upon the static and dynamic
nature exhibited at their respective interfaces, one can
establish whether or not the two components will be able
to communicate effectively. This paper presents a formal
strategy for composing two components by integrating
the Petri nets that represent their interfaces into a single
net. If the resulting net does not exhibit deadlock, then
the two components are compatible and can function
effectively together. Establishing a well defined and
formal method for determining the extent to which two
components are able to successfully interact will serve
to significantly enhance reuse of software components
in a given software architecture and can contribute to
the reliable evolution of a deployed component-based
software system.

ACKNOWLEDGEMENT

The author wishes to thank Dr. Wlodek Zuberek for
providing guidance on the composition strategy and for
providing numerous suggestions on an earlier version of
this paper.

Partial support from the Natural Sciences and En-
gineering Research Council of Canada, through grant
RGPIN 8222, is gratefully acknowledged.

REFERENCES

[1] I. Sommerville, Software Engineering, 6th edition. Addison-
Wesley, 2001.

[2] G. Booch, Object-Oriented Analysis and Design with Applica-
tions, 2nd edition. Benjamin/Cummings Publishing Company,
Inc., 1994.

[3] N. Medvidovic and R. Taylor, “A framework for classifying
and comparing architecture description languages,” in Software
Engineering — ESEC/FSE ’97, ser. Lecture Notes in Computer
Science. Springer-Verlag, 1997, vol. 1301, pp. 60–76.

[4] G. Heineman and W. Council, Component Based Software Engi-
neering: Putting the Pieces together. Addison-Wesley, 2001.

[5] W. Reisig, Petri-Nets: An Introduction. Springer-Verlag, 1985.
[6] T. Murata, “Petri nets: Properties, analysis and applications,”

Proceedings of the IEEE, vol. 77, no. 4, pp. 541–580, Apr 1989.
[7] S. Moschoyiannis and M. Shields, “Component-based design: To-

wards guided composition,” in Proceedings of Third International
Conference on Application of Concurrency to System Design,
J. Lilius, F. Balarin, and R. J. Machado, Eds. IEEE Computer
Society, Jun 2003, pp. 112–131.

[8] C. Sibertin-Blanc, “A compositional partial order semantics for
petri net components,” in Application and Theory of Petri Nets
1993, ser. Lecture Notes in Computer Science, M. Marsan, Ed.
Springer-Verlag, 1993, vol. 691, pp. 377–396.

[9] E. Kindler, “A compositional partial order semantics for petri net
components,” in Application and Theory of Petri Nets 1997, ser.
Lecture Notes in Computer Science, P. Azéma and G. Balbo,
Eds. Springer-Verlag, 1997, vol. 1248, pp. 235–252.

[10] A. Martens, “Usability of web services,” in Proceedings of the
Fourth International Conference on Web Information Systems
Engineering Workshops. IEEE Computer Society, 2003, pp.
182–190.

[11] W. van der Aalst, “Workflow verification: Finding control-flow
errors using petri-net-based techniques,” in Business Process
Management: Models, Techniques, and Empircal Studies, ser.
Lecture Notes in Computer Science, W. van der Aalst, J. Desel,
and A. Oberweis, Eds. Springer-Verlag, 2000, vol. 1806, pp.
161–183.

[12] W. Zuberek, “Petri nets and timed petri nets in modeling and
analysis of concurrent systems,” November 2003, faculty Re-
search Forum — 25th Anniversary of the Department of Com-
puter Science at Memorial University, St. John’s, Newfoundland
and Labrador, Canada A1B 3X5.

[13] R. Fehling, “A concept of hierarchical petri nets with building
blocks,” in Advances in Petri Nets 1993, ser. Lecture Notes in
Computer Science, G. Rozenberg, Ed. Springer-Verlag, 1993,
vol. 674, pp. 148–169.

