
Verification of component behavioral compatibility

Donald Craig Wlodek Zuberek

1Department of Computer Science
Memorial University of Newfoundland

Canada

2Department of Computer Science
Memorial University of Newfoundland

Canada

Second International Conference on
Dependability of Computer Systems

Szklarska Poreba, Poland, June 14-16, 2007

Components

Informal definitions of components are numerous. For example:
“An independently deliverable piece of functionality providing access to its
services through interfaces.”

Alan W. Brown (2001) An Overview of Components and Component-Based Development.

“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third parties.”

Clemens Szyperski (2002) Component Software : Beyond Object-Oriented Programming (second edition).

Almost all informal definitions mention the concept of an interface,
through which components interact with the external world.
Before an attempt can be made to verify component compatibility, formal
definitions of component must be proposed.
Petri nets can be used to model components — in particular, their
interface behaviors.

Donald Craig, Wlodek Zuberek (MUN and MUN) Verification of component behavioral compatibility DepCoS 2007 2 / 16

Petri Nets

A (marked) Petri net is a bipartite graph,
M = (P, T, A, m0), where P, T and A are a
set of places, transitions and arcs,
respectively, and m0 is the initial marking
function, m0 : P → {0, 1, ...}.
A transition, t, is enabled by marking m iff
∀p ∈ Inp(t) : m(p) > 0. An enabled
transition can fire — this removes one
token from each of the transition’s input
places and adds one token to each of its
output places.
The reachability graph of a marked net
can be derived by exhaustively exploring
all possible markings.
When no transition is enabled by a
marking, the net is deadlocked.

t1 t2 t3

p5

p6

p2

p1 p3

p4

t4

t1

[0,1,1,0,2,0]

t4

t3

t1t4

t3

[1,0,1,0,2,0]
[1,0,0,1,2,0]

t2t2

[0,1,1,0,1,1]

[1,0,1,0,0,2]

t1

t1t4

t1 t4 [0,1,1,0,0,2]

[1,0,0,1,1,1]

[1,0,0,1,0,2]
[0,1,0,1,0,2]

t4

t2

t3 t3

t2

[0,1,0,1,2,0]

t4
[1,0,1,0,1,1]

[0,1,0,1,1,1]
t1

Donald Craig, Wlodek Zuberek (MUN and MUN) Verification of component behavioral compatibility DepCoS 2007 3 / 16

Petri Net Interface Model

A model of a component’s interface is a labelled Petri net:

Mi = (Pi, Ti, Ai, Li, `i, mi, Fi)

where (Pi, Ti, Ai, mi) is a (cyclic) deadlock-free, marked Petri net, Li is an
alphabet representing a set of services which are associated with transitions
by a labelling function `i : Ti → Li ∪ {ε}, where ε is the empty label, ε 6∈ Li, and
Fi is a set of final markings, Fi ⊆ M(Mi).

cb

d
a

Component interactions occur between requester interfaces (r-interfaces) and
provider interfaces (p-interfaces). The same component may have several
r-interfaces and several p-interfaces. Provider models have some restrictions
reflecting their reactive nature (unique service labels, ε-conflict-freeness).

Donald Craig, Wlodek Zuberek (MUN and MUN) Verification of component behavioral compatibility DepCoS 2007 4 / 16

Interface Languages

The language of Mi = (Pi, Ti, Ai, Li, `i, mi, Fi), denoted by L(Mi), is the set of
all strings over Li obtained by labelling firing sequences which begin with mi
and end at one of the final markings:

L(Mi) = { `(σ) | σ ∈ F(Mi) ∧ mi
σ→ m ∧ m ∈ Fi}

where `(ti1 . . . tik) = `(ti1) . . . `(tik).
For example, for the previous interface model:

cb

d
a

For Fi = {mi}, the language describing the behaviour of this interface is:

(a(b+ c)∗d)∗.

Donald Craig, Wlodek Zuberek (MUN and MUN) Verification of component behavioral compatibility DepCoS 2007 5 / 16

Component Compatibility

In order for two components to be compatible, the set of services
required by the requester, Li must be made available by the provider, Li,
i.e.,

Li ⊆ Lj.

In addition, any sequence of services that the requester may demand
must be satisfied by the provider.
Interface models of requester and provider, Mi and Mj, respectively, are
compatible iff

L(Mi) ⊆ L(Mj).

Compatibility relation can be verified by analyzing the interacting Petri net
interface models.
Models of interacting components are obtained by composing requester
and provider models. Such a composition can be performed in several
ways, creating nets with different properties. In the proposed
composition, a requester can affect the behavior of a provider, but a
provider cannot affect the behavior of its requester.

Donald Craig, Wlodek Zuberek (MUN and MUN) Verification of component behavioral compatibility DepCoS 2007 6 / 16

Interface Composition

The composition of two interfaces is performed by the following transformation
at their common service points:

tj

a

ti

a

p′′j
...

...

p′j
...

...

p′′ip′i

t′i t′′i

εε

......

p′ti

t′′′iε

p′tjp′j p′′tj p′′j

pti

tj

p′i
...

...

p′′i

Before Composition

Requester Mi

Provider Mj

Provider Mj

Requester Mi

After Composition

a

Donald Craig, Wlodek Zuberek (MUN and MUN) Verification of component behavioral compatibility DepCoS 2007 7 / 16

Multiple Requesters, Single Provider

Multiple requesters are composed with a single provider in a similar way:

...

p′i

Before Composition

tj

a

ti

tk

a

a

Requesteri

Requesterk

p′j
Provider

... ...

p′′j

...

p′′i

... ...
p′k p′′k

... ...

... ...

p′k p′′k

ptk

εε

p′tk

... ...

p′i p′′i

pti
εε

p′ti

p′j p′′j

t′k t′′k

ε

ε

t′i t′′i

t′′′i

t′′′k

Requesteri

Provider

Requesterk...

After Composition

p′tj

tj

a

p′′tj

Donald Craig, Wlodek Zuberek (MUN and MUN) Verification of component behavioral compatibility DepCoS 2007 8 / 16

Component Compatibility Verification

For the proposed composition, component incompatibilities results in
deadlocks; component compatibility verification is thus performed by
deadlock analysis of the composed model.
Testing for deadlock can use structural analysis combined with linear
programming. Other approaches to deadlock detection include
reachability analysis, net unfolding, etc.
Structural analysis identifies net substructures called siphons and uses
linear programming to check if tokens can be removed from siphons.
A siphon is a subset of places, S, such that Inp(S) ⊆ Out(S). Minimal
siphons are siphons which do not contain other siphons. Basis siphons
are siphons from which all other siphons can be obtained by the union
operation.
If a net is deadlocked, then all unmarked places constitute a siphon. This
siphon is composed of (one or more) unmarked basis siphons and (one
or more) unmarked minimal siphons.

Donald Craig, Wlodek Zuberek (MUN and MUN) Verification of component behavioral compatibility DepCoS 2007 9 / 16

Equivalent siphons

The drawback of siphon–based analysis is that in some net models the
number of (basis) siphons can be quite large.
Siphon equivalence can be used to reduce this number. Two siphons are
equivalent iff for each marking reachable from the initial marking either
both siphons are marked or are both are unmarked.
For deadlock analysis, only one siphon from each equivalence class of
(basis and minimal) siphons is needed.
Elimination of equivalent siphons preserves the existence (or absence) of
deadlocks.
Parallel and alternate paths introduce equivalent siphons.

Donald Craig, Wlodek Zuberek (MUN and MUN) Verification of component behavioral compatibility DepCoS 2007 10 / 16

Parallel and Alternate Paths

p1 p2 p3

t2t1

p4 p5

p6

t4 t5

p8

p10

t10

t7t6

t9

p14

t3

t8
p11

p7

p13

p15

p17

t12
p16

t13

p20

t15
p19

t14

p12

p9

p18

t11

original net reduced net
76 proper basis siphons 2 proper basis siphons
15 proper minimal siphons 2 proper minimal siphons

Donald Craig, Wlodek Zuberek (MUN and MUN) Verification of component behavioral compatibility DepCoS 2007 11 / 16

Deadlock Detection

The invocation is deadlock(m0, Sm, Sb), where Sm is the (reduced) set of minimal
siphons and Sb is the (reduced) set of basis siphons:

function deadlock(m, X, Y) : boolean;
begin

if enable(m) = ∅ then return TRUE fi;
if X 6= ∅ then

for each x in X do
(v, n) := LPminimize(x, m);
if nonzero(v) ∧ n = 0 ∧ feasible(v, m) then

m′ := m + C× v;
X′ := marked(X, m′);
if deadlock(m′, X′, Y) then return TRUE fi

fi
do

fi;
if Y 6= ∅ then return deadlock(m, Y, ∅) fi;
return FALSE

end

Donald Craig, Wlodek Zuberek (MUN and MUN) Verification of component behavioral compatibility DepCoS 2007 12 / 16

Feasibility Check

The linear programming procedure returns a firing vector minimizing the
number of tokens in the analyzed siphon. Such a firing vector may have no
implementation in the form of a firing sequence, i.e., it may be infeasible for a
given marking m. Therefore the feasibility of firing vectors is checked by the
following recursive (boolean) function:

function feasible(v, m) : boolean;
begin

if zero(v) then return TRUE fi;
for each t in enable(m) do

if v[t] > 0 then
v′ := v;
v′[t] := v′[t]− 1;
m′ := fire(m, t);
if feasible(v′, m′) then return TRUE fi

fi
od;
return FALSE

end
Donald Craig, Wlodek Zuberek (MUN and MUN) Verification of component behavioral compatibility DepCoS 2007 13 / 16

Deadlock Detection

p6

t5

t10

t7t6

t9

p14

t3

p7

t11 t13

p12

p9

p8

p13

p15

S1

S2

siphon S1 becomes unmarked by sequence {t3, t5, t7, t6}, and
then siphon S2 becomes unmarked by sequence {t11, t13.t10, t9}.

Donald Craig, Wlodek Zuberek (MUN and MUN) Verification of component behavioral compatibility DepCoS 2007 14 / 16

Single-Provider/Multi-Requester Example

Provider

Requester

Before Composition

a

Requester

a

a

b

b

b

a
b

After Composition

t1

t3 t4

t2
t5 t6

t12

t11

t8t7 t9 t10

Reducing the net by eliminating several equivalent siphons results in a
net which has seven basis siphons, one of which is minimal.
The firing sequence that results in the dead marking shown in the
composed net is: (t1, t3, a, t4, t2, t11, t9, b, t10, t11).

Donald Craig, Wlodek Zuberek (MUN and MUN) Verification of component behavioral compatibility DepCoS 2007 15 / 16

Concluding Remarks

Using appropriate definitions of components, composition and
compatibility, this work has presented a formal model which allows one to
compose components and to verify their compatibility.
Component compatibility can be checked by representing the interface
behaviours as Petri nets and then composing them.

If the resulting net exhibits a deadlock, the components are not compatible.
Deadlock detection can be done using structural propoerties and linear
programming or other techniques developed for deadlock detection.

Component compatibility can be used in integrating software systems
from independently developed components, in substitutability analysis,
and other aspects of component-based software development.
Although open questions remain (i.e., how to get interface models), it is
believed that the proposed approach constitutes an interesting
contribution to the area of software design and development.

Donald Craig, Wlodek Zuberek (MUN and MUN) Verification of component behavioral compatibility DepCoS 2007 16 / 16

