
Modeling and Analysis of Simultaneous
Multithreading

Wlodek Zuberek

Department of Computer Science
Memorial University

St.John’s, Canada A1B 3X5

14th International Conference on
Analytical and Stochastic Modeling Techniques and Applications

Prague, Czech Republic, June 4-6, 2007

Instruction-Level Multithreading

MULTITHREADING – an architectural approach to tolerating long
latencies (e.g., memory accesses or synchronization delays).

In a traditional architecture, when a processor accesses memory, it
waits for the result of this access, possibly after executing a few
instructions that are independent of the access operation. In a
modern microprocessors, this wait may involve more than a hundred
processor cycles (when the required information is not in cache), so
the utilization of the processor tends to be low. Alternatively, if a
processor maintains multiple threads of execution, for eacj
long–latency operation the processor can switch to another thread
(which is called “context switch”) and continue to execute instructions
rather than wait.

In simultaneous multithreading, several threads can issue
instructions in each processor cycle. The threads switch context
independently of each other.

Petri Nets

I A (marked) Petri net is a bipartite
graph, M = (P, T, A, m0), where P, T
and A are a set of places, transitions
and arcs, respectively, and m0 is the
initial marking function,
m0 : P → {0, 1, ...}.

I A transition, t, is enabled by marking
m iff ∀p ∈ Inp(t) : m(p) > 0. An
enabled transition can fire — this
removes one token from each of the
transition’s input places and adds
one token to each of its output
places.

I The reachability graph of a marked
net can be derived by exhaustively
exploring all possible markings.

I When no transition is enabled by a
marking, the net is deadlocked.

t1 t2 t3

p5

p6

p2

p1 p3

p4

t4

t1

[0,1,1,0,2,0]

t4

t3

t1t4

t3

[1,0,1,0,2,0]
[1,0,0,1,2,0]

t2t2

[0,1,1,0,1,1]

[1,0,1,0,0,2]

t1

t1t4

t1 t4 [0,1,1,0,0,2]

[1,0,0,1,1,1]

[1,0,0,1,0,2]
[0,1,0,1,0,2]

t4

t2

t3 t3

t2

[0,1,0,1,2,0]

t4
[1,0,1,0,1,1]

[0,1,0,1,1,1]
t1

Timed Petri Nets

I In timed Petri nets, firing times are associated with transitions
and the firings occur in “real-time”, i.e., tokens are removed from
all input places, then the firing continues for the duration of the
firing time, and then tokens are deposited into output places.

I All firings start in the same time instants in which the transitions
become enables (although some enabled transitions do not fire).

I All conflicts are resolved by random choices described by
“choice probabilities” or relative frequencies of firings.

I For the firing times: f (t1) = 2.0, f (t2) = 0.5, f (t3) = 0.5, f (t4) = 2.5:

t1 t2 t3

p5

p6

p2

p1 p3

p4

t4

t1

t2

t3

t4

1 2 3 4 5 6 7 8 9 100 11 12 13 14 15

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

time

states

Petri Net Model 1

Td2

Td1

Tst0

Tst2
Tst1

ContPnxtReady

Tsel

Proc Mem
Tcsw

Pcsw

Mreq

Next

Done

Tmem

Pst2 Pst1

Trun

Tnxt

Tend

Petri net model of a multithreaded processor.

Petri Net Model 2

Td2

Td1

Tst0

Tst2
Tst1

ContPnxtReady

Tsel

ProcTcsw

Pcsw

Mreq

Next

Done

Pst2 Pst1

Trun

Mreq1Tms1

Mreq2Tms2

Mem

Tnxt

Tend

Tmem2

Tmem1

Petri net model of a multithreaded processor with two levels of
memory.

Modeling parameters

Simultaneous multithreading modeling parameters and their typical
values:

symbol parameter value
nt number of available threads 1,...,10
np number of execution pipelines 1,2,...
ns number of simultaneous threads 1,2,3,...
`t thread runlength 10
tcs context switching time 1,3
tm average memory access time 5
ps1 prob. of one–cycle pipeline stall 0.2
ps2 prob. of two–cycle pipeline stall 0.1

Results 1: 1-1 and 2-1 processors

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

ut
ili

za
tio

n

number of available threads

Processor and memory utilization (1-1)

Processor (-x-) and memory (-o-)
utilization for a 1-1 processor; lt = 10,
tm = 5, tcs = 1

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

ut
ili

za
tio

n

number of available threads

Processor and memory utilization (2-1)

Processor (-x-) and memory (-o-)
utilization for a 2-1 processor; lt = 10,
tm = 5, tcs = 1

Results 2: 2-2 and 3-2 processors

0

0.5

1

1.5

2

0 2 4 6 8 10

ut
ili

za
tio

n

number of available threads

Processor and memory utilization (2-2)

Processor (-x-) and memory (-o-)
utilization for a 2-2 processor; lt = 10,
tm = 5, tcs = 1

0

0.5

1

1.5

2

0 2 4 6 8 10

ut
ili

za
tio

n

number of available threads

Processor and memory utilization (3-2)

Processor (-x-) and memory (-o-)
utilization for a 3-2 processor; lt = 10,
tm = 5, tcs = 1

Results 3: 4-2 and 5-3 processors

0

0.5

1

1.5

2

0 2 4 6 8 10

ut
ili

za
tio

n

number of available threads

Processor and memory utilization (4-2)

Processor (-x-) and memory (-o-)
utilization for a 4-2 processor lt = 10,
tm = 5, tcs = 1

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

ut
ili

za
tio

n

number of available threads

Processor and memory utilization (5-3-2)

Processor (-x-) and memory (-o-)
utilization for a 5-3 processor with
dual–port memory; lt = 10, tm = 5||2,
tcs = 1

Results 4: 1-1 processor with one and two levels of memory

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

ut
ili

za
tio

n

number of available threads

Processor and memory utilization (1-1)

Processor (-x-) and memory (-o-)
utilization for a 1-1 processor; lt = 10,
tm = 5, tcs = 1

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

ut
ili

za
tio

n

number of available threads

Processor and memory utilization (1-1)

Processor (-x-) and memory (-o-)
utilization for a 1-1 processor with
2-level memory; lt = 10, tm = 4 + 20,
tcs = 1

Results 5: 2-1 processor with one and two levels of memory

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

ut
ili

za
tio

n

number of available threads

Processor and memory utilization (2-1)

Processor (-x-) and memory (-o-)
utilization for a 2-1 processor; lt = 10,
tm = 5, tcs = 1

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

ut
ili

za
tio

n

number of available threads

Processor and memory utilization (2-1)

Processor (-x-) and memory (-o-)
utilization for a 2-1 processor with
2-level memory; lt = 10, tm = 4 + 20,
tcs = 1

Results 6: 2-1 processor with short and long context switch

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

ut
ili

za
tio

n

number of available threads

Processor and memory utilization (2-1)

Processor (-x-) and memory (-o-)
utilization for a 2-1 processor; lt = 10,
tm = 5, tcs = 1

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

ut
ili

za
tio

n

number of available threads

Processor and memory utilization (2-1)

Processor (-x-) and memory (-o-)
utilization for a 2-1 processor; lt = 10,
tm = 5, tcs = 3.

Concluding Remarks

I Simultaneous multithreading increases the performance of
processors by tolerating long–latency operations. It is not
affected by the “2” barrier of the out–of–order approach.

I Since the long–latency operations play an increasingly important
role in modern microprocessors (the processor–memory
performance gap), the advantages of simultaneous
multithreading are expected to be increasingly attractive.

I Hardware resources required for an implementation of
simultaneous multithreading are much simpler than in the case of
out–of–order approach. The main challenge of simultaneous
multithreading is to balance the system by maintaining the right
relationship between the number of simultaneous threads and
the performance of the memory hierarchy.

I All presented results indicate that the number of available
threads, required for improved performance of the processor, is
quite small, and is typically greater by only 2 or 3 threads than
the number of simultaneous threads; performance improvements
due to a larger number of available threads are rather
insignificant.

Concluding Remarks

I For simple cases, the simulation results can be compared with
the analytical solutions:

for the 1-1 processor:

number analytical simulated
nt of states utilization utilization
1 11 0.526 0.535
2 57 0.656 0.655
3 107 0.666 0.666
4 157 0.666 0.666
5 207 0.667 0.666

for the 3-2 processor:

number analytical simulated
nt of states utilization utilization
1 11 0.525 0.526
2 86 1.012 1.012
3 309 1.361 1.367
4 660 1.560 1.553
5 1,154 1.632 1.639

