
EQUIVALENCE RELATIONS OF MEALY

AUTOMATA

Miklós Bartha

Memorial University of Newfoundland, St. John’s, NL, Canada
Email: bartha@mun.ca

Abstract

Two independent equivalence relations are considered for Mealy automata. Simulation equiva-
lence, on the one hand, arises from a new multi-step simulation concept under the constraint
that the process of switching from one automaton to the other is reversible. Retiming equiv-
alence, on the other hand, is the congruence induced by the so called sliding axiom in the
monoidal category of automata. It is shown that these two equivalence relations coincide, and a
characterization is given for simulation/retiming equivalence in terms of transition diagrams.

1. Introduction

Several definitions of simulation can be found in the literature, all of which are centered around
the algebraic concept of homomorphism between automata. Works devoting an extensive cov-
erage to simulation and related issues include [2, 11, 13, 18], to name but a few major ones. In
this paper we take a new look at simulations between two Mealy automata in the light of some
recent results on monoidal categories with trace, feedback, and iteration. [1, 14, 15, 9, 8].

Let (U, α) and (V, β) be two Mealy automata with states U and V , respectively, and assume, for
simplicity, that the input A and output B are common for these automata. Then α : U ×A→
U ×B and β : V ×A→ V ×B are functions or relations, depending on whether the automata
are deterministic or not. In the deterministic case, a homomorphism from (U, α) to (V, β) is a
function h : U → V such that α ◦ (h × idB) = (h × idA) ◦ β. The “monoidal” scheme of this
equation is shown in the diagram of Fig. 1a. The diagram is to be interpreted in the monoidal
category (Set,×), that is, sets and functions with the tensor operation being cartesian product.
Interpreting the diagram in any symmetric monoidal category M yields the general notion of
simulation (machine morphism) between M -automata [11]. For example, if M = (Rel,×),
that is, sets and relations with the tensor being product of sets and componentwise product of
relations, then we are looking at simulations between nondeterministic (relational) automata
[11]. For further examples of monoidal automata, see [11].

Simulations, as described above, are irreversible in nature. Once the switch has been made from
(U, α) to (V, β) using a simulation h, it is not possible to retrieve the original operation of (U, α)
by switching back from (V, β) using another simulation, unless h is an isomorphism. It is only
the input-output behavior of automata that is preserved by simulations. To be able to define
simulations that are reversible without being trivial, we introduce a look-back feature in the



2 Miklós Bartha

h

α

β

U A

BV

=

U A

V B

U
V

h

A

BBV V

s

AU U

VU

s

α

β

=

B nB n

A n A n

(a) (b)

Figure 1: Homomorphism and simulation between Mealy automata

process of switching. By this we mean that the switch from (U, α) to (V, β) is carried out by a
cross-transition function s : U×An → V ×Bn in n steps. For the monoidal scheme of switching
by s, see the diagram of Fig. 1b. Standing on this ground, one can already find simulations that
are reversible without being direct isomorphisms as machine (homo-)morphisms. The process
is as follows. Starting from (U, α), switch to (V, β) in n steps using simulation s. Then, after
at least m steps, switch back to (U, α) using an m-step simulation t. After the second switch,
run (U, α) for another fixed number of steps to allow full recovery. The operation of (U, α)
should then be exactly the same as if the switching back and forth did not happen. Automata
(U, α) and (V, β) are simulation equivalent if simulations s and t above exist, and the situation
is symmetric in t and s.

The idea of simulation equivalence originates from [16], where a similar concept was introduced
for synchronous systems. Synchronous systems are essentially structural Mealy automata [12],
which come with a scheme-like syntactical description in terms of registers and functional
elements, analogously to sequential circuits. Retiming a system means shifting its registers
around within the graph of the system in a certain regular way. Retiming is a fundamental
operation from the point of view of optimizing synchronous systems. If the number of registers
in the system is sufficiently large, then they can be rearranged by the help of retiming to produce
a systolic system, whereby at least one register can be found on the interconnection between any
two functional elements. The obvious advantage of having a systolic system is that the length
of the clock period for the system can be chosen minimum, i.e., as the maximal propagation
delay of the functional elements. See [16] or [7] for more details. An important observation in
[16] is that, whenever two systems are retiming equivalent, they can also simulate each other.
The exact relationship between retiming and simulation, however, was not addressed in [16].

Synchronous systems have since been studied as single-sorted symmetric monoidal categories
equipped with a feedback operation in a series of papers [3, 4, 5, 6, 7]. The main finding of [6]
is that two synchronous systems can simulate each other under the free interpretation of their
functional elements iff they are retiming equivalent. The present paper extends this result by
showing that retiming equivalence coincides with simulation equivalence for Mealy automata
in general, and provides a simple characterization of this equivalence in terms of transition
diagrams.



Equivalence of Mealy automata 3

On the basis of the synchronous system model, simulation equivalence was articulated in its
present form in [8], with the underlying structure being an arbitrary symmetric monoidal cat-
egory M . The structure of simulation equivalent M -automata, Sim(M), has been constructed
as a quotient of the category Circ(M) [15] of isomorphism classes of M -automata in a suitable
2-categorical setting. We shall elaborate on this construction to some extent in Section 3 in
the special case M = (Set,×).

Retiming a synchronous system is analogous to the concept of sliding [14, 15] in monoidal cat-
egories with feedback. This fact was pointed out in [8, 10]. Furthermore, parallel to the results
in [16, 6], retiming (sliding) equivalence always implies simulation equivalence, regardless of the
underlying category M . It is therefore of a significant theoretical importance to see if simula-
tion equivalence coincides with retiming equivalence for any particular category M . A general
sufficient condition for this coincidence was worked out in [8], and the main result of the present
paper could in fact be interpreted as a test for that condition in the category (Set,×). To
keep the paper self-contained, however, we shall not rely on the technically rather complicated
Sim construction in [8]. We shall not even assume much expertise in category theory, other
than familiarity with the basic definitions and understanding some simple monoidal diagrams
like the ones in Fig. 1, which should be straightforward. The reader might, however, learn a
lot about monoidal categories through the interpretation of these simple diagrams.

2. Simulation equivalence of Mealy automata

For the rest of the paper we shall assume that our Mealy automata are finite and determinis-
tic. Even though the main result, namely that simulation equivalence coincides with retiming
equivalence, holds true for all Mealy automata, the proof becomes much more complicated
when the automata are infinite and/or nondeterministic. Therefore these cases will be dealt
with in a separate paper.

We shall use the notation (U, α) : A → B to identify an automaton with states U , input
A, output B, and transition function (including the output component) α : U × A → U × B.
Composition of functions, denoted by ◦, will follow the left-to-right application order in writing,
that is, (f ◦g)(x) = g(f(x)). Identity on set A will be denoted by idA, and πA,B : A×B → B×A

will stand for the symmetry [17] (a, b) 7→ (b, a).

Definition 2.1. For functions s : X×A→ Y ×C and t : Y ×B → Z×D, the cascade product
of s and t is the function casX,Y,Z(s, t) : X × A×B → Z × C ×D defined as:

casX,Y,Z(s, t) = (s× idB) ◦ (idY × πC,B) ◦ (t× idC) ◦ (idZ × πD,C).

See Fig. 2a. When X, Y and Z are clear from the context, the subscript X, Y, Z will be omitted
from the notation. We shall also need the “twisted” version of cas defined by

sac(s, t) = (idX × πB,A) ◦ cas(s, t) ◦ (idZ × πC,D).

See Fig. 2b. It is easy to see that the binary operation of cascade product is associative. That
is,

casW,Y,Z((casW,X,Y (r, s), t) = casW,X,Z(r, casX,Y,Z(s, t))



4 Miklós Bartha

(b)(a)

A B

C D

X

Y

Z

s

t

B A

D C

X

Y

Z

s

t

Figure 2: The operations cas and sac

for all appropriate functions r, s, t. See Fig. 3 for a monoidal proof. Therefore, for any automa-
ton (U, α) : A → B and integer k ≥ 1, αk = cas(α, . . . , α) : U × Ak → U × Bk is meaningful,
and it identifies the k-step transition function of (U, α).

W

X

Y

Z
2

B

s

t

rr

s

t

W

X

Y

Z
3

B
1

B

A
1

A
2

A
3

A
3

A
2

A
1

1
B

2
B

3
B

Figure 3: The associativity of cas

Definition 2.2. Let (U, α) and (V, β) be automata A→ B. A simulation from (U, α) to (V, β)
is a function s : U × An → V × Bn, n ≥ 0, such that casU,U,V (α, s) = casU,V,V (s, β). If n = 0,
then s is called immediate.

See again Fig. 1b. We shall write s : (U, α)→ (V, β) to underline the intuition that simulations
are in fact 2-cells [17] in the category of automata. At this point the reader might wonder why
the output is included in the cross-transition s by Definition 2.2. Indeed, since the definition
implies cas(αk, s) = cas(s, βk) for any k ≥ 1 (e.g. for k = n), the outputs of s must be the same
as those of (U, α) in the first n steps. Thus, s is completely determined by its state transition
component U × An → V . The reason for still keeping the output component in s is to be in
line with [8, Definition 4.1], where × is just tensor, not necessarily product. This argument
highlights a different philosophy, compared to [11], regarding the interpretation of × in the
expression U × A → U × B. While we treat both occurrences of × in this expression simply
as tensor, Ehrig makes a distinction by separating the output function in the very definition of
automata. The two approaches can be synchronized, so that they both become special cases



Equivalence of Mealy automata 5

of machines in a general category by [18], but only if × is product in the underlying monoidal
category. For the details of this argument, see [4]. Also notice that our simulation concept is
quite different from weak simulation as defined in [2], whereby a move of the one automaton on
input a is simulated by the move of the other on a string f(a) determined by a fixed function
f : A→ A∗.

An immediate consequence of Definition 2.2 is the fact that, for every l ≥ 1, cas(αl, s) is also
a simulation (U, α) → (V, β). Intuitively, the only difference between s and cas(αl, s) is that
the latter “realizes” the same simulation l steps later than s. We say that s and cas(αl, s) are
indistinguishable. In particular, the identity simulation 1(U,α) = idU is indistinguishable from
αl for every l ≥ 0 (assuming the natural definition α0 = idU).

Definition 2.3. Simulations s, s′ : (U, α) → (V, β) are indistinguishable, in notation s ≡ s′, if
there exist integers k, l ≥ 0 such that cas(αk, s) = cas(αl, s′).

Simulations can be composed using the cascade product. It is easy to see that, if s : (U, α)→
(V, β) and t : (V, β)→ (W, γ) are simulations between automata A→ B (with A and B fixed),
then cas(s, t) is a simulation (U, α)→ (W, γ). Indeed:

cas(α, cas(s, t)) = cas(cas(α, s), t) = cas(cas(s, β), t) =

= cas(s, cas(β, t)) = cas(s, cas(t, γ)) = cas(cas(s, t), γ).

Composition of simulations is therefore associative. This composition, together with the iden-
tity simulations 1(U,α), defines the so called vertical category of Mealy automata. We shall
specify the horizontal structure of automata as a monoidal category in Section 3.

Definition 2.4. Automata (U, α) and (V, β) are simulation equivalent, in notation (U, α) ∼
(V, β), if there exist simulations s : (U, α)→ (V, β) and t : (V, β)→ (U, α) such that cas(s, t) ≡
1(U,α) and cas(t, s) ≡ 1(V,β).

Notice that the connection cas(s, t) ≡ 1(U,α) also allows for a recovery period in the operation
of the automaton (U, α) after the two subsequent switches s and t, as explained informally in
the Introduction.

Example Let A = {0, 1}, and consider the unit delay automaton ∇A = (A, πA,A) : A → A

with one of its variants 3A = (A′, α) : A → A in Fig. 4, where A′ = {0, 0′, 1}. Since ∇A is
a homomorphic image of 3A, there exists an immediate simulation s : 3A → ∇A determined
by s(0) = s(0′) = 0 and s(1) = 1. Now let t(0, i) = (i, 0) for i = 0, 1, t(1, 0) = (0′, 1) and
t(1, 1) = (1, 1). It is easy to check that t is a simulation ∇A → 3A such that cas(s, t) = α and
cas(t, s) = πA,A. Thus, ∇A and 3A are simulation equivalent.

Heuristically, when switching from ∇A to 3A by simulation t, one looks back on the input. In
state 0, if the last input symbol was 0, then switch to state 0, otherwise switch to 0′. In state
1 always switch to state 1.

Example With I = {∅}, consider the trivial one-state automaton 1I = (I, idI) : I → I



6 Miklós Bartha

0/0

1/1

0

1

0/11/0

0/0 0/00’ 0

1/1

1
0/1 1/0

1/0

Figure 4: The automaton ∇A and its variant 3A

and the two-state automaton 2I = (A, idA) : I → I, where A = {0, 1}. Even though these
two automata can trivially simulate each other, they are not simulation equivalent. Indeed,
Definition 2.4 would require an isomorphism between I and A, which is impossible.

Notice that 1I and 2I are not simulation equivalent as nondeterministic automata either, where
the simulations s and t in Definition 2.2 would come as relations, rather than functions. This
is rightfully so, because it is not possible to switch from 2I to 1I and back in any number of
steps without altering the original operation of 2I in an irreversible way.

3. Retiming equivalence of Mealy automata

In order to introduce the concept of retiming, we make a short digression towards the general
theory of monoidal categories with feedback, using Mealy automata as an illustrative example.
The reader is referred to [15, 8] for the precise definitions.

The collection of Mealy automata can be given the structure of a category Aut equipped with a
tensor operation ⊗ as follows. Objects are sets, and tensor of them is cartesian product of sets.
Composition and tensor of morphisms in Aut is the well-known serial and parallel composition
of automata [13]:

(U, α) · (V, β) = (U × V, (πU,V × idA) ◦ (idV × α) ◦ (πV,U × idB) ◦ (idU × β));

(U, α)⊗ (V, β) = (U × V, (idU × πV,A × idC) ◦ (α× β) ◦ (idU × πB,V × idD)).

See Fig. 5. Identity on object A is the automaton 1A = (I, idA). The category Set is embedded

U V A

U V A C

B

U V C

U V B D

a

a

b

b

Figure 5: Composition and tensor in Aut

into Aut by the functor A 7→ A, α 7→ (I, α). (Recall that I = {∅} is the unit object of the
monoidal category (Set,×)). Feedback is defined in Aut as follows:

↑V (U, α) = (U × V, α), where α : U × V × A→ U × V ×B.



Equivalence of Mealy automata 7

Isomorphism classes of automata are called circuits in [15], and Circ is the quotient of Aut

by isomorphism. As it was proved in [15], tensor (of isomorphism classes of automata) makes
Circ a symmetric monoidal category with the symmetry adopted from Set. We shall denote
isomorphism of automata by ∼=.

As it was proved in [8], simulation equivalence is compatible with the operations composition,
tensor, and feedback. Consequently, since ∼=⊆∼, the quotient of Aut by ∼ is in fact a quotient
of Circ, so that it is a monoidal category (with feedback). This category is denoted by Sim.
Building on the vertical structure of simulations described in Section 2, Sim can be enriched
to a 2-category [17]. In order for this, one needs a suitable horizontal composition and tensor
of simulations. Let s : (U, α) → (V, β) be a simulation between automata A → B and t :
(U ′, α′)→ (V ′, β ′) be a simulation between automata B → C, so that s and t take the same n

number of steps. Define

s • t = (idU × πU ′,An) ◦ (s× idU ′) ◦ (idV × πBn,U ′ ◦ t).

See Fig. 6. According to [8, Proposition 3.8], s • t : (U, α) · (U ′, α′) → (V, β) · (V ′, β ′) is a
simulation, which is called the horizontal composite of s and t. If s and t take different number
of steps, then one must choose indistinguishable representations for them that take the same
number of steps before composing these representations horizontally. It is easy to see that
in this way horizontal composition is well-defined on classes of indistinguishable simulations,
and it is associative. The identities for horizontal composition are determined by the trivial
function idI as an immediate simulation 1A → 1A for each set A. (Recall that 1A = (I, idA).)
Moreover, the interchange law

cas(s, s′) • cas(t, t′) ≡ cas(s • t, s′ • t′)

holds for all appropriate simulations s, t, s′, t′.

B
n

U U'

V'V

A
n

C
n

B
n

s

t

Figure 6: Horizontal composition of simulations

Tensor of simulations can be worked out in the same way, and it comes with an analogous
interchange law with respect to the vertical composition cas of simulations. See [8] for the
details. Thus, groups of indistinguishable simulations as 2-cells extend Sim to a monoidal
2-category.

The sliding axiom [14] in a monoidal category with feedback is the following identity:



8 Miklós Bartha

g

f g

f

U

U B V B

A V A

V U=

Figure 7: The sliding axiom

↑U ((g ⊗ 1A) · f) =↑V (f · (g ⊗ 1B)), where f : V ⊗ A→ U ⊗ B, g : U → V.

See Fig. 7. We wish to emphasize that, unlike in our earlier monoidal diagrams, the boxes
in Fig. 7 represent automata rather than just functions. The sliding axiom does not hold in
Circ, but the equivalence that it stipulates is what we call retiming equivalence. More explicitly,
retiming equivalence is the quotient of Circ induced by the sliding axiom (identity) in the usual
algebraic sense. To explain the terminology, imagine that there is a register (delay element) on
the two round feedback lines in Fig. 7. In case the boxes are just functions, it is this assumption
that renders a sequential behavior to the cycles in the graphs at hand, turning functions into
real automata. These registers are de facto present in the graphs (schemes) of synchronous
systems as weights on the interconnections between functional elements, eliminating the need
to distinguish between “feedback” and “composition” lines. An elementary retiming step in a
synchronous system is shifting a layer of registers from the input side of a functional element
(box) to the output side, or vice versa. Shifting these registers is topologically the same as
sliding the box from one side of the registers to the other. Therefore the phenomenon sliding
is the exact replica of retiming. This is one of the major observations in [10], where the sliding
axiom was first used to model retiming of synchronous systems. The maneuver of shifting
registers through boxes is yet more conspicuous in Lemma 3.2 below.

Definition 3.1. Let (U, α) and (V, β) be automata A→ B, and assume that there are functions
δ : V ×A→ U ×B and η : U → V such that α = casU,V,U(η, δ) and β = casV,U,V (δ, η). Then η

is a retiming from (U, α) to (V, β), in notation, (U, α)→η (V, β).

See again Fig. 7, interpreting the boxes f and g as functions δ and η. It is routine to check that,
if automaton (V, β) results form (U, α) by general sliding (i.e., by applying the sliding axiom in
a left-to-right manner), then (V, β) can also be obtained from (U, α) by an appropriate retiming
η. Therefore no generality is lost with respect to retiming when using Definition 3.1 instead of
the sliding axiom. It is also easy to see that retiming is compatible with the operations serial
and parallel composition, and feedback. More precisely, if (U, α), (U ′, α′), (V, β), and (V ′, β ′)
are appropriate automata such that (U, α)→η (V, β) and (U ′, α′)→η′ (V ′, β ′), then

(U, α) · (U ′, α′)→η×η′ (V, β) · (V ′, β ′),

(U, α)⊗ (U ′, α′)→η×η′ (V, β)⊗ (V ′, β ′),

and ↑W (U, α) →η×idW
↑W (V, β). Thus, the smallest equivalence relation containing retiming

is the congruence induced by the sliding axiom in Circ, that is, retiming equivalence. For this



Equivalence of Mealy automata 9

reason we shall also refer to the sliding axiom as the retiming axiom. Retiming equivalence will
be denoted by ∼r.

The following generalization of the retiming axiom will be crucial in Section 4.

Lemma 3.2. For any functions α : U × A→ V × C and β : V × B → U ×D,

(∇A ⊗ 1B) · (U, cas(α, β))→πA,U◦α (V, sac(β, α)) · (∇C ⊗ 1D).

Proof. Monoidal computation, sketched in Fig. 8. Recall that ∇A =↑A πA,A = (A, πA,A) is the
unit delay automaton (register) A → A, and sac is the “twisted” version of cas. The proof
stands in all monoidal categories with feedback.

=

β

α
A XU

α

β

= A XU

β

αα

β

A B

C D

V

U

U

β

α

β

α

β

α

β

α

A XU

β

α

η
V XC

V XC V XC

==

= == =

==

β

α

Figure 8: The proof of Lemma 3.2

Evidently, if (U, α) →η (V, β), then η is a homomorphism, or, in our language, an immediate
simulation. One disturbing property of such retiming homomorphisms is that they are not com-
posable. The composite of two retiming homomorphisms is just an ordinary homomorphism.



10 Miklós Bartha

Retiming homomorphisms, on the other hand, are trivially decomposable. If (U, α)→η (V, β),
and η = η1 ◦ η2 with η1 : U → W and η2 : W → V , then there exists an automaton (W, γ) such
that (U, α)→η1

(W, γ)→η2
(V, β). Clearly, γ = cas(η2, δ, η1), where δ : V × A→ U × B is the

function specified in Definition 3.1. In particular, retiming homomorphisms have an epi-mono
factorization. It is therefore possible to study the impact of surjective and injective retimings
separately, and then synthesize the results.

The connection between the automata 3A and ∇A in Fig. 4 is a typical example of a surjective
retiming η : A′ → A, where η is the homomorphism s defined there. The effect of η is called
state fusion, described as follow. Two states u1 and u2 of automaton (U, α) can be picked for
fusion if α(u1, a) = α(u2, a) for all a ∈ A. In this case, u1 and u2 are merged into one state u,
so that all transitions arriving at u1 or u2 are redirected to u. The inverse operation of state
fusion is called state splitting. Now the effect of a general surjective retiming η is merging all
states of U that are mapped to the same element in V into one state by state fusion.

The following example illustrates the effect of an injective retiming.

Example Consider the automata 1A = (I, idA), εA = (A, ε), and ε′A = (A, ε′) A → A, where
A = {0, 1}, ε(0, i) = ε(1, i) = (0, i), ε′(0, i) = (0, i), and ε′(1, i) = (0, 0) for i = 0, 1. Clearly, εA

can be obtained from 1A by state splitting. At the same time, 1A can be retimed into both εA

and ε′A by the injective retiming ∅ 7→ 0 : I → A.

On the analogy of the above example, observe that the effect of an injective retiming is that
of an isomorphism, together with the introduction of a number of inaccessible states (i.e.,
states having no transitions arriving at them), which come with arbitrary transitions not in
contradiction with these states being inaccessible. We shall say that a Mealy automaton is
accessible if it does not have inaccessible states. In general, a state u of a Mealy automaton
(U, α) is called run-out if it cannot be reached by any sufficiently long input string starting
from any state; otherwise u is permanent. Since our automata are finite, (U, α) is accessible
iff U does not contain run-out states. The restriction of (U, α) to its permanent states will be
denoted by (Up, αp).

Two states u, u′ ∈ U are said to be retiming equivalent (in notation u ∼r u′) if u and u′

are equivalent in the usual sense, and, furthermore, u and u′ are taken to the same state by
(U, α) on every sufficiently long input string w. (Recall e.g. from [13] that state-equivalence of
automaton (U, α) is the largest equivalence ≈ on U such that whenever u ≈ u′, δ(u, a) ≈ δ(u′, a)
and λ(u, a) = λ(u′, a) hold for every input a ∈ A, where α = (δ, λ) is the decomposition of the
transition function to state transition and output.) Equivalently, using the n-step transition
function αn, αn(u, w) = αn(u′, w) for every sufficiently large n and input w ∈ An. Automaton
(U, α) is called reduced if u ∼r u′ implies u = u′ for all states u, u′ ∈ U . A minimal automaton
is one that is both accessible and reduced.

According to the characterization of retiming homomorphisms above, every automaton can be
transformed into a reduced one by a sequence of surjective retimings. Also, every automaton
can be made accessible by a sequence of inverse injective retimings. Moreover, a straightforward



Equivalence of Mealy automata 11

induction shows that if (V, β) can be obtained from (U, α) by a sequence of direct or inverse
retimings, then (Up, αp) and (Vp, βp) reduce to the same minimal automaton, which is unique
up to isomorphism. In this way we have proved the following characterization theorem.

Theorem 3.3. Two Mealy automata (U, α) and (V, β) are retiming equivalent iff the automata
(Up, αp) and (Vp, βp) reduce to the same minimal automaton.

For (U, α) : A → B, consider the automaton (U, αk) : Ak → Bk. The following statement will
be used in Section 4. Its proof should be evident.

Proposition 3.4. Automaton (U, α) is accessible (reduced, minimal) iff (U, αk) is such for all
k ≥ 1.

4. Simulation equivalence coincides with retiming equivalence

We begin with the simple statement that retiming equivalence implies simulation equivalence.

Proposition 4.1. Let (U, α) and (V, β) be Mealy automata A → B. If (U, α) ∼r (V, β), then
(U, α) ∼ (V, β).

Proof. We can assume, without loss of generality, that (U, α) →η (V, β) for some retiming
η : U → V . Then α = cas(η, δ) and β = cas(δ, η) for an appropriate function δ : V ×A→ U×B.
Consequently, cas(α, η) = cas(η, β) and cas(β, δ) = cas(δ, α), so that η and δ are simulations of
0 and 1 step, respectively. Moreover, cas(η, δ) = α ≡ 1(U,α) and cas(δ, η) = β ≡ 1(V,β), showing
that (U, α) ∼ (V, β).

Now we turn to the more challenging proof of ∼⊆∼r. The proof is preceded by two lemmas.
In these lemmas, the state and output components of the transition function α are denoted by
αstate and αout, respectively.

Lemma 4.2. Let (U, α) and (V, β) be accessible automata A→ B. If (U, αk) ∼= (V, βk) for all
sufficiently large k by the same isomorphism ξ : U → V , then ξ is also an isomorphism from
(U, α) to (V, β).

Proof. We need to show that, for every u ∈ U and a ∈ A, ξ(αstate(u, a)) = βstate(ξ(u), a) and
αout(u, a) = βout(ξ(u), a). The latter equation being trivial, we deal with state transitions only.
Let v = ξ(u). Since (U, αk) and (V, βk) are accessible and isomorphic for any sufficiently large
k, there exist states uk ∈ U , vk ∈ V and input w ∈ Ak such that ξ(uk) = vk, αk

state(uk, w) = u

and βk
state(vk, w) = v. Thus, for the input wa ∈ Ak+1,

ξ(αstate(u, a)) = ξ(αk+1
state(uk, wa)) = βk+1

state(vk, wa) = βstate(v, a),

for ξ is an isomorphism between (U, αk+1) and (V, βk+1) as well.

Lemma 4.3. Let (U, α) and (V, β) be minimal automata A→ B, and assume that there exists
an automaton (W, γ) with mappings η : A× U →W and χ : A× V →W such that

∇A · (U, α)→η (W, γ)←χ ∇A · (V, β).

Then (U, α) ∼= (V, β) via an isomorphism ξ that is completely determined by the mappings η

and χ.



12 Miklós Bartha

Proof. By definition, ∇A · (U, α) = (A× U, α̂), where for all a, a′ ∈ A and u ∈ U ,

α̂((a′, u), a) = ((a, αstate(u, a′)), αout(u, a′)).

Similarly, ∇A · (V, β) = (A × V, β̂). It follows that the automata ∇A · (U, α) and ∇A · (V, β)
are accessible, even though they are not minimal in general. Without loss of generality we
can assume that the mappings η and χ are onto. Indeed, accessible states are mapped into
accessible ones by any homomorphism. Furthermore, if w ∈ W is missed by either η or χ, then
w is inaccessible in (W, γ). Thus, we can concentrate on the surjective part of the epi-mono
factorizations of η and χ, which will have the same range.

We claim that for every u ∈ U there exists a unique v ∈ V such that

∀a ∈ A : η(a, u) = χ(a, v).

For, let u = αstate(u1, au) for some u1 ∈ U and au ∈ A. (Remember that (U, α) is accessible.)
Then there exists a pair (av, v1) ∈ A × V such that w = η(au, u1) = χ(av, v1). Set v =
βstate(v1, av). Now,

η(a, u) = η(α̂state((au, u1), a)) = γstate(w, a) = χ(β̂state((av, v1), a)) = χ(a, v).

With regard to the uniqueness of v, assume that ∀a ∈ A : η(a, u) = χ(a, v̄) holds for some v̄ 6= v.
Then ∀a ∈ A : χ(a, v) = χ(a, v̄), so that for any a′ ∈ A, β̂state((a, v), a′) = β̂state((a, v̄), a′).
(Remember that χ is a retiming.) This last equation implies that ∀a ∈ A : βstate(v, a) =
βstate(v̄, a), which contradicts (V, β) being reduced. The correspondence u 7→ v established
above is therefore a mapping ξ : U → V . A symmetric argument shows that ξ is a bijection.
Moreover, if u and v are corresponding states, then for all a, a′ ∈ A:

αout(u, a) = α̂out((a, u), a′) = β̂out((a, v), a′) = βout(v, a), and

η(a′, αstate(u, a))= η(α̂state((a, u), a′))= χ(β̂state((a, v), a′))= χ(a′, βstate(v, a)),

proving that ξ is an isomorphism. This isomorphism is completely determined by η and χ, as
required.

Corollary 4.4. Let (U, α) and (V, β) be minimal automata A×C → B, and assume that there
exists an automaton (W, γ) with mappings η : A× U → W and χ : A× V →W such that

(∇A ⊗ 1C) · (U, α)→η (W, γ)←χ (∇A ⊗ 1C) · (V, β).

Then (U, α) ∼= (V, β) via an isomorphism ξ that is completely determined by the mappings η

and χ.

Proof. Consider the automata f · (U, α) and f · (V, β), where

f = (1A ⊗∇C) · (∇A ⊗ 1C) : A× C → A× C.

Observe that f ∼= ∇A×C by the isomorphism πA,C . (The category Circ is monoidal.) Further-
more, since retiming is compatible with the operations in Circ,



Equivalence of Mealy automata 13

f · (U, α)→η′ (1A ⊗∇C) · (W, γ)←χ′ f · (V, β)

holds with the retimings η′ = idC × η and χ′ = idC × χ. Consequently,

∇A×C · (U, α)→η′′ (1A ⊗∇C) · (W, γ)←χ′′ ∇A×C · (V, β),

where η′′ = (πA,C× idU )◦η′ and χ′′ = (πA,C× idV )◦χ′. The result now follows from Lemma 4.3,
because the condition

∀a ∈ A∀c ∈ C : η′′((a, c), u) = χ′′((a, c), v)

for all states u and v is equivalent to ∀a ∈ A : η(a, u) = χ(a, v).

We are now ready to prove the main result of the paper.

Theorem 4.5. Simulation equivalence of finite state Mealy automata coincides with retiming
equivalence.

Proof. Let (U, α) and (V, β) be simulation equivalent automata A → B. By Proposition 4.1
we need only show that (U, α) ∼r (V, β). In the light of Proposition 4.1 and Theorem 3.3 we
can assume, without loss of generality, that (U, α) and (V, β) are minimal. Consequently, the
automata (U, αk) and (V, βk) are also minimal for all k ≥ 1 by Proposition 3.4. According to
Lemma 4.2, it is therefore sufficient to prove that (U, αk) ∼= (V, βk) for all sufficiently large k

via a fixed isomorphism ξ.

By definition, there exist simulations s : (U, α) → (V, β) and t : (V, β) → (U, α) such that
cas(s, t) ≡ 1(U,α) and cas(t, s) ≡ 1(V,β). Spelling this out, we have:

(i) cas(α, s) = cas(s, β) and cas(β, t) = cas(t, α);

(ii) cas(αk, s, t) = αn+m+k and cas(βk, t, s) = βk+m+n,

where s : U × An → V × Bn, t : V × Am → U × Bm, and k is any sufficiently large integer.
Furthermore, cas(αk, s, t) = cas(s, t, αk) follows from a repeated application of (i) above. Using
Lemma 3.2, a short computation yields:

(∇An ⊗ 1Am+k) · (U, αn+m+k)→η (V, sac(βk+m, βn)) · (∇Bn ⊗ 1Bk+m),

where η = πAn,U ◦ s. See Fig. 9 for the case n = m = k = 1. On the other hand, directly from
Lemma 3.2:

(∇An ⊗ 1Am+k) · (V, βn+m+k)→χ (V, sac(βm+k, βn)) · (∇Bn ⊗ 1Bm+k),

where χ = πAn,U ◦ αn. Observe that η and χ do not depend on k. Therefore, according to
Corollary 4.4, (U, αk) ∼= (V, βk) holds for all sufficiently large k via a fixed isomorphism ξ, which
completes the proof.



14 Miklós Bartha

UU V V V= = =

UU

U

V

V V

V V

VU

α

α

α α

s

t α

t

s

β

t

s

β

β

β

η

Figure 9: The proof of Theorem 4.5

5. Conclusions

We have given two different characterizations of the congruence relation induced by the slid-
ing/retiming axiom in the monoidal category Circ of Mealy automata. First we introduced
simulation as an additional vertical structure in Circ, and defined simulation equivalence to
be a pair of isomorphisms in this vertical category. Operating with surjective and injective
retiming homomorphisms, we then showed that two automata are retiming equivalent iff their
restriction to permanent states can be reduced to the same minimal automaton. On the basis
of this result we proved that retiming equivalence coincides with simulation equivalence. In
this way we have also provided a semantics to the sliding axiom in certain monoidal categories
with feedback.

References

[1] ABRAMSKY, S., Retracing some paths in process algebras, in: U. Montanari, V. Sassone (Eds.),
Proc. CONCUR’96, Pisa, 1996, Lecture Notes in Computer Science 1119 (1996), 1–17.

[2] ARBIB, M.A., Theories of Abstract Automata, Prentice-Hall, Englewood Cliffs, N.J. 1969.

[3] BARTHA, M., An equational axiomatization of systolic systems, Theoretical Computer Science
55 (1987), 265–289.

[4] BARTHA, M., An algebraic model of synchronous systems, Information and Computation 97
(1992), 97–131.

[5] BARTHA, M., Foundations of a theory of synchronous systems, Theoretical Computer Science
100 (1992), 325–346.

[6] BARTHA, M., ČIROVIČ, B., On some equivalence notions of synchronous systems, in: Z. Ésik,
Z. Fülöp (Eds.), Proc. 11th International Conference on Automata and Formal Languages, Do-
gogókő, Hungary, 2005, 69–82.

[7] BARTHA, M., Strong retiming equivalence of synchronous schemes, in: J. Farré, I. Litovsky,
S. Schmitz (Eds.), Proc. 10th International Conference, CIAA, Sophia Antipolis, 2005, Lecture
Notes in Computer Science 3845 (2006), 66–77.

[8] BARTHA, M., Simulation equivalence of automata and circuits, in: E. Csuhaj-Varjú, Z. Ésik
(Eds.), Proc. 12th International Conference on Automata and Formal Languages, Balatonfüred,
Hungary, 2008, 86–99.



Equivalence of Mealy automata 15

[9] BLOOM, S.L., ÉSIK, Z., Iteration Theories: The Equational Logic of Iterative Processes,
Springer-Verlag, Berlin 1993.

[10] ČIROVIČ, B., Equivalence relations of synchronous systems, Ph.D. Dissertation, Memorial Uni-
versity of Newfoundland, 2000.

[11] EHRIG, H., Universal Theory of Automata, B.G. Teubner, Stuttgart 1974.

[12] GÉCSEG, F., PEÁK, I., Algebraic Theory of Automata, Akadémiai Kiadó, Budapest 1972.

[13] HARTMANIS, J., STEARNS, R.E., Algebraic Structure Theory of Sequential Machines,
Prentice-Hall, Englewood Cliffs, N.J. 1966.

[14] JOYAL, A., STREET, R., VERITY, D., Traced monoidal categories, Mathematical Proceedings
of the Cambridge Philosophical Society 119 (1996), 447–468.

[15] KATIS, P., SABADINI, N., WALTERS, R.F.C., Feedback, trace, and fixed-point semantics,
Theoretical Informatics and Applications 36 (2002), 181–194.

[16] LEISERSON, C.E., SAXE, J.B., Optimizing synchronous systems, Journal of VLSI and Com-
puter Systems 1 (1983), 41–67.

[17] MACLANE, S., Categories for the Working Mathematician, Springer-Verlag, Berlin 1971.

[18] MANES, E.G., Algebraic Theories, Springer-Verlag, Berlin 1976.


