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Indexed monoidal algebras are introduced as an equivalent structure for self-dual

compact closed categories, and a coherence theorem is proved for the category of such

algebras. Turing automata and Turing graph machines are defined by generalizing the

classical Turing machine concept, so that the collection of such machines becomes an

indexed monoidal algebra. On the analogy of the von Neumann data-flow computer

architecture, Turing graph machines are proposed as potentially reversible low-level

universal computational devices, and a truly reversible molecular size hardware model

is presented as an example.

1. Introduction

The importance of reversibility in computation has been argued at several platforms in

connection with the speed and efficiency of modern-day computers. As stated originally

by Landauer (Landauer 1961) and re-emphasized by Abramsky (Abramsky 2005a): “it is

only the logically irreversible operations in a physical computer that necessarily dissipate

energy by generating a corresponding amount of entropy for every bit of information that

gets irreversibly erased”. Abramsky’s remedy for this situation in (Abramsky 2005a) is

to translate high level functional programs in a syntax directed way into a simple kind

of automata which are immediately seen to be reversible. The concept strong compact

closed category (Abramsky 2005b) has been introduced and advocated as a theoretical

foundation for this type of reversibility.

The problem of reversibility, however, does not manifest itself at the software level.

Even if we manage to perform our programs in reverse, it is not guaranteed that informa-

tion will not be lost during the concrete physical computation process. To the contrary,

it may get lost twice, once in each direction. The solution must therefore be found at the

lowest hardware level. Our model of Turing graph machines is being presented as a possi-

ble hardware solution for the problem of reversibility, but follows Abramsky’s structural

approach. We even go one step further by showing how computations can be done in a

virtually undirected fashion under the theoretical umbrella of self-dual compact closed
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categories. In practical terms we mean that, unlike in synchronous systems (e.g. sequen-

tial circuits), where the information is propagated through the interconnections (wires)

between the functional elements (logical gates) always in the same direction, in a Turing

graph machine the flow of information along these interconnections takes a direction that

is determined dynamically by the current input and state of the machine. We are going

to reconsider self-dual compact closed categories as indexed monoidal algebras and prove

a coherence theorem to establish undirected graphs – constituting the basic underlying

structure for Turing graph machines – as free indexed monoidal algebras generated by

the ranked alphabet consisting of the star graphs.

Different parts of this paper need not be read in a strict sequential order. In-depth

knowledge of algebra and category theory is only required in Sections 2, 3, and 4. The

reader less familiar with categories could still understand the concept of Turing automata

and Turing graph machines in Section 6, and appreciate the main practical contribution

of this study. Then, gradually moving backwards to previous sections, one can also under-

stand the categorical background through the numerous examples and diagrams provided

in the text to help the intuition.

Our work relates to several significant theoretical endeavors to capture the geometry of

the operations tensor and trace (feedback, iteration) in different models. The most impor-

tant of these are linear logic (Girard 1987), game semantics (Hyland 1997), semantics of

quantum protocols and programming languages (Abramsky and Coecke 2004; D’Hondt

and Panangaden 2006), communicating concurrent processes (Milner 2009), interaction

nets (Lafont 1989), and Girard’s Geometry of Interaction program (Girard 1989; Girard

1990) in general. The future generalization of our coherence result to ribbon categories

(balanced monoidal categories (Joyal and Street 1991)) will also make a connection to

knot theory (Freyd and Yetter 1992), and other directions specified in (Joyal et al. 1996;

Joyal and Street 1991).

The idea of Turing automata and graph machines, however, was inspired solely by

C. C. Elgot’s work on flowchart schemes and their semantics (Elgot 1975), which work

has later been developed by S. L. Bloom and Z. Ésik to a theory highlighted by the

concept iteration theories (Bloom and Ésik 1993). In a sense the present paper provides

a synthesis of finite automata and Turing machines in the framework of category theory,

and introduces an indexing mechanism (Burstall et al. 1989) for iteration theories.

This paper is an extension of a talk given by the author at DCM 2010, Edinburgh.

2. Traced monoidal and compact closed categories

In this section we shall assume familiarity with the concept of symmetric monoidal cate-

gories (Mac Lane 1971). It is known, cf. (Mac Lane and Paré 1985), that every monoidal

category is equivalent to a strict one. Repeating an argument from (Joyal and Street

1991), most results obtained with the hypothesis that a monoidal category is strict can,

in principle, be reformulated and proved without that condition. Even though our re-

sults in this paper are no exceptions, we shall not assume that our monoidal categories

are strict, unless this assumption is clearly technical and simplifies the discussion sig-

nificantly. Since the concept of indexed monoidal algebras is being introduced in the
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present paper, it is appropriate that its definition be given under the general non-strict

conditions. As another argument, the principal example of Turing automata presented

in Section 6 is not strict as an indexed monoidal algebra or traced monoidal category. A

further generalization of this concept for braidings, rather than symmetries, will follow.

Thus, a monoidal category consists of a category C, a bifunctor ⊗ : C × C → C, a

unit object I of C, and natural isomorphisms aX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z)

as associators, lX : I ⊗ X → X and rX : X ⊗ I → X as left and right unitors, and

cU,V : U ⊗ V → V ⊗ U as symmetries, subject to the well-known coherence axioms

specified in (Mac Lane 1971).

Traced monoidal categories (with one additional axiom) and their graphical language

first appeared in (Bartha 1987a) in an algebraic setting, using the name “scheme algebra”

for these structures. The operation trace was called feedback. Essentially the same ax-

iomatization and graphical language was published in (Căzănescu and Ştefănescu 1990)

under the name “biflow”. Joyal, Street, and Verity then rediscovered this notion, general-

ized it to balanced monoidal categories, and presented the fundamental Int construction

on the embedding of an arbitrary balanced traced monoidal category into a tortile one

(Joyal et al. 1996). In case braiding is symmetry, as it is in our present study, the Int

construction transforms an arbitrary traced monoidal category into a compact closed

category.

The following definition of traced monoidal categories uses the terminology of (Joyal et

al. 1996). Trace in a monoidal category C is introduced as left trace, that is, an operation

C(U + A,U + B) → C(A,B), rather than C(A + U,B + U) → C(A,B) (i.e., right trace)

as it appears in (Joyal et al. 1996), to be in accordance with the author’s own work. Let

C be a monoidal category with tensor ⊗ and unit object I.

Definition 2.1. A trace for a symmetric monoidal category C is a natural family of

functions

TrU
A,B : C(U ⊗ A,U ⊗ B) → C(A,B)

satisfying the following three axioms:

vanishing:

TrI
A,B(f) = f for f : A → B,

TrU⊗V
A,B (aU,V,A ◦ g) = TrV

A,B(TrU
V ⊗A,V ⊗B(g ◦ aU,V,B)),

where g : U ⊗ (V ⊗ A) → (U ⊗ V ) ⊗ B;

superposing:

TrU
A,B(f) ⊗ g = TrU

A⊗C,B⊗D(a−1
U,A,C ◦ (f ⊗ g) ◦ aU,B,D),

where f : U ⊗ A → U ⊗ B, and g : C → D;

yanking:

TrU
U,U (cU,U ) = 1U .

Naturality of trace is meant in all three variables A,B,U . Naturality in A and B is self-

explanatory, while (di-)naturality in U is expressed by the following separate axiom.
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sliding:

TrU
A,B((g ⊗ 1A) ◦ f) = TrV

A,B(f ◦ (g ⊗ 1B)) for f : V ⊗ A → U ⊗ B, g : U → V.

See Fig. 1, and notice that we write composition of morphisms (◦) in a left-to-right

manner. When using the term feedback for trace, the notation Tr changes to ↑.

g

f g

f

U

U B V B

A V A

V
U

=

Fig. 1. The sliding axiom

On a separate line, compact closed categories were introduced in (Kelly and Laplaza

1980).

Definition 2.2. A symmetric monoidal category C is compact closed (CC, for short)

if every object A has a left adjoint A∗ in the sense that there exist morphisms dA :

I → A ⊗ A∗ (the unit map) and eA : A∗ ⊗ A → I (the counit map) for which the two

composites below result in the identity morphisms 1A and 1A∗ , respectively.

A ≃l I ⊗ A →dA⊗1A
(A ⊗ A∗) ⊗ A ≃a A ⊗ (A∗ ⊗ A) →1A⊗eA

A ⊗ I ≃r A,

A∗ ≃l A∗ ⊗ I →1A∗⊗dA
A∗ ⊗ (A ⊗ A∗) ≃a (A∗ ⊗ A) ⊗ A∗ →eA⊗1A∗

I ⊗ A∗ ≃r A∗,

where l, r, and a stand for appropriate left unitor, right unitor, and associator morphisms,

respectively.

By virtue of the adjunctions A ⊣ A∗ there is a natural isomorphism between the hom-

sets C(B ⊗ A,C) and C(B,C ⊗ A∗) for every objects B,C, hence the name “compact

closed” category. Category C is self-dual compact closed (SDCC, for short) if A = A∗

for each object A. The category SDCC has as objects all SDCC categories, and as

morphisms strict monoidal functors preserving the given self-adjunctions.

Every CC category admits a so called canonical trace (Joyal et al. 1996) defined by

the formula

TrU
A,Bf = (dU∗ ⊗ 1A) ◦ (1U∗ ⊗ f) ◦ (eU ⊗ 1B)

in the strict setting. See Fig. 2. A well-known SDCC category is the category (Rel,×) of

sets and relations with tensor being the cartesian product ×. We shall use this category

as an example to explain the idea of indexing on it.

According to (Burstall et al. 1989; Bartha and Jürgensen 1989), an indexed family of

sets is a functor I : Ind → Set, where Ind is the index category. In our example, Ind

is the monoidal category (Set,×) as a subcategory of (Rel,×) and I is the covariant

powerset functor P, which is of course not monoidal. Relations A → B are, however, still
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Fig. 2. Canonical trace in CC categories.

subsets of A×B, and as such they can be indexed by morphisms (functions) A×B → C

in Set. For any two objects (sets) one can then consider the binary operation tensor,

⊗A,B(= ×) : P(A) × P(B) → P(A × B), and the unary operation trace, lA,B : P(A ×
A × B) → P(B) for which b ∈lA,B R iff ∃a ∈ A ((a, a), b) ∈ R. The concept indexed

monoidal algebra arises from observing the equational algebraic laws satisfied by these

operations and their relationship to indexing. The reader will soon be reassured that the

word “trace” is not being abused in this context.

3. Association and permutation symbols

Following up on our example SDCC category (Rel,×) as an indexed family of sets

equipped with the operations ⊗ and l, observe that the index category Ind can be chosen

in many different meaningful ways without affecting the outcome of indexing, as long as

Ind remains a sub-(monoidal) category of (Rel,×) containing all permutations. For

example Ind could be chosen as the restriction of (Set,×) to bijections, or, on the other

extreme, it could even be the whole category (Rel,×). In any case, the index functor I is

essentially an appropriate restriction of the covariant hom-functor Hom(I, ) in (Rel,×).

Clearly, the larger the index category, the less is hidden from the SDCC category to

be recaptured, that is, the less interesting the whole description. Therefore we take a

minimalistic approach with regard to indexing, and abolish the index category altogether.

Instead, we introduce permutation symbols, which can be interpreted as permutations

in any suitable choice of a hypothetical index monoidal category. The problem is that

the symbols themselves do not form a category over the given objects; in our example,

sets. By Mac Lane’s coherence theorem for monoidal categories, permutation symbols

form a category over object terms as objects, which terms are built up freely from the

given objects as object variables. Eventually, permutation symbols will be used as unary

operations in the algebraic structure already containing ⊗ and l.

3.1. Association symbols

Let τ = (⊗, I) be the algebra type – fixed for the rest of the paper – consisting of a

binary operation symbol ⊗ (tensor) and a constant symbol I (unit). Let, furthermore,

X = {x1, x2, . . . , xn, . . .} be a countably infinite set of variable symbols, and Xn =



M. Bartha 6

{x1, . . . , xn} for each n ∈ N . The carrier set of the free τ -algebra generated by X is

denoted by Tτ (X), as usual. This set consists of all τ -terms (trees) over the variables X.

For a tree t ∈ Tτ (X), yield(t) ∈ X∗ is the string of variables appearing on the leaves

of t in a left-to-right order. The set T̃τ (X) ⊆ Tτ (X) consists of those trees t for which

yield(t) = x1x2 . . . xn for some n ∈ N . The number n is called the length of t, denoted l(t).

Observe that a tree t ∈ T̃τ (X) is just an alternative representation of a binary word in Mac

Lane’s (Mac Lane 1971) coherence theorem, so that every occurrence of a variable is one

of the place holder symbol . Note that, even though we have infinitely many variables,

there is only one place holder in t, since xi always marks the i-th occurrence of the place

holder from left to right. In the concrete representation of trees we shall adopt the usual

prefix notation for the operation ⊗. For example, t = ⊗(x1,⊗(⊗(I, x2),⊗(x3, I))) is a

tree in T̃τ (X) of length 3.

Redefine the operation ⊗ over T̃τ (X) in such a way that t1⊗t2 is obtained from ⊗(t1, t2)

by incrementing the index of each variable occurring in the subtree t2 by l(t1). Notice

that the notation for ⊗ changes from prefix to infix in the resulting τ -algebra. Clearly,

l(t1 ⊗ t2) = l(t1) + l(t2). According to Mac Lane’s coherence theorem, (T̃τ (X),⊗, I)

then becomes the object structure of a monoidal category Λ in which there is a single

morphism between t and t′ iff l(t) = l(t′). This is the free single-sorted monoidal category,

i.e., the one freely generated by a single object, in our representation the tree x1.

Proposition 3.1. (Mac Lane 1971, Theorem VII.1) For every monoidal category C and

any object C of C there exists a unique strict monoidal functor Λ → C sending x1 to C.

To switch from single-sorted to many-sorted, let O be a class of object variables. Define

Tτ (O) as the collection of pairs (t, α), where t ∈ T̃τ (X) is a tree of length n and α :

Xn → O is a mapping. The pair (t, α) is called an object term. The mapping α defines a

sequence of objects (A1, . . . , An) (also denoted α), so that we can identify the pair (t, α)

with a single tree u the leaves of which are labeled by the object variables in O rather

than the symbols in X. Roughly speaking, O takes over the role of X, except that O is

not necessarily a set.

For pairs (trees) u1 = (t1, α1) and u2 = (t2, α2), let u1 ⊗u2 = (t1 ⊗ t2, α1 ⊗α2), where

(α1 ⊗ α2)(xi) =

{

α1(xi) if 1 ≤ i ≤ l(t1)

α2(xi−l(t1)) if l(t1) < i ≤ l(t1) + l(t2).

Define ΛO to be the monoidal category having (Tτ (O),⊗, (I, ∅)) as its object structure,

so that there is a unique morphism (t1, α) → (t2, α) in ΛO iff l(t1) = l(t2). This unique

morphism will be called the O-association symbol (a-symbol, for short) (t1, α) → (t2, α),

denoted a(t1, t2, α). On the analogy of Proposition 3.1 it is easy to see that ΛO is freely

generated by the object variables (sorts) O.

Proposition 3.2. For every monoidal category C and any mapping φ from O to the

objects of C there exists a unique strict monoidal functor ΛO → C, also denoted φ,

sending (x1, A) to φ(A) for each object variable A.

Now let O = (O,⊗, I) be a τ -algebra, that is, a class O of objects with an interpretation

of the τ -operations on O. Considering objects as object variables, we can still speak of
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object terms over O. For an object term u = (t, α) in Tτ (O), let |u|O (or simply |u|, if

O is understood) be the evaluation of u in O as an object in O. If ρ = a(t1, t2, α) is any

O-association symbol u1 → u2, then we also say that ρ is an O-association symbol from

|u1| to |u2|, and use the somewhat abusing notation ρ : |u1| ⇒ |u2|. Keep in mind that

two O-association symbols may not be composed as “morphisms” suggested by this way

of writing. In general, to speak of the category ΛO of O-association symbols does not

make sense. Nevertheless, by Proposition 3.2, each a-symbol ρ : A ⇒ B has a unique

canonical interpretation as a real associator morphism ρ : A → B in every monoidal

category C having O as its object structure.

Consider now Tτ (O) as the base collection of object variables, and concentrate on the

monoidal category ΛTτ (O). The objects in this category are pairs (t,α), where t is a

term in T̃τ (X) and α : Xn → Tτ (O) is a mapping. By Proposition 3.2 there exists a

unique “syntactical” strict monoidal functor ΛO : ΛTτ (O) → ΛO extending the “identity”

injection (x1, u) 7→ u. Technically, ΛOa(t1, t2,α) is obtained by substituting the sequence

of trees u1, . . . , un determined by α into t1 and t2. Given the algebra O, the result is

viewed as an O-association symbol A ⇒ B for appropriate objects A and B. On the other

hand, the a-symbol a(t1, t2,α) gives rise “semantically” to the O-association symbol

a(t1, t2,α)/O = a(t1, t2, γ) : A′ ⇒ B′, where γ = (|u1|, . . . , |un|). By the algebraic laws

of tree substitution, A = A′ and B = B′. We say that the a-symbols ρ1 = ΛOa(t1, t2,α)

and ρ2 = a(t1, t2,α)/O are equivalent, and write ρ1 ≡ ρ2. We call ρ1 a refinement of

ρ2. The point is that ρ1 and ρ2 define the same associator morphism A → B in every

monoidal category having the object structure O. In general, it is not easy to give a

concrete characterization of the equivalence ≡ as the symmetric and transitive closure

of refinement. Fortunately, however, we shall not need any such characterization in our

coherence axiom I3 in Section 4.1 below, for simple refinement will do as ≡ in that axiom.

3.2. Permutation symbols

Let O and O = (O,⊗, I) be as in the previous subsection.

Definition 3.1. An O-permutation symbol is a quadruple (t1, t2, α, χ), where t1, t2 ∈
T̃τ (X) are of the same length n, α : Xn → O is a mapping, and χ : n → n is a

permutation.

As a concrete permutation symbol (p-symbol, for short), the quadruple above will be

identified as p(t1, t2, α, χ). Extending the monoidal category ΛO of O-association symbols,

the symmetric monoidal category ΠO of O-permutation symbols is constructed as follows.

Objects in ΠO are the same as in ΛO, whereas morphisms (t1, α) → (t2, α
′) are p-symbols

p(t1, t2, α, χ) such that α(i) = α′(χ(i)) for all i ∈ [n] = {1, . . . , n}, where n is the common

length of t1 and t2. Technically speaking, the object variables appearing on the leaves of

the tree u1 = (t1, α) are relabeled according to χ, and the tree structure itself is replaced

by t2. Composition and tensor in ΠO are defined by:

— p(t1, t2, α, χ) ◦ p(t2, t3, α
′, η) = p(t1, t3, α, χ ◦ η);

— p(t1, t2, α, χ) ⊗ p(q1, q2, β, η) = p(t1 ⊗ q1, t2 ⊗ q2, α ⊗ β, χ ⊗ η).
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Remember that α′ = χ−1 ◦α and χ⊗ η is the obvious tensor of χ and η. The identity on

object u = (t, α) is 1u = p(t, t, α, idn), and the symmetry cu,v for u = (t, α) and v = (q, β)

is p(t⊗q, q⊗ t, α⊗β, πn,m), where n = l(t), m = l(q), and πn,m is the block transposition

n + m → m + n. Notice that the uniqueness of morphisms between two given objects no

longer holds in ΠO. By Mac Lane’s coherence theorem (Mac Lane 1963) for symmetric

monoidal categories, however, we still have the counterpart of Proposition 3.2.

Proposition 3.3. For every symmetric monoidal category C and any mapping φ from

O to the objects of C there is a unique strict symmetric monoidal functor φ : ΠO → C
sending (x1, A) to φ(A) for each object variable A in O.

Given the algebra O one can again classify an O-permutation symbol p(t1, t2, α, χ) : u1 →
u2 as an O-one |u1| ⇒ |u2|, based on the evaluation of the trees u1 and u2. Permutation

symbols ρ1 : A ⇒ B and ρ2 : B ⇒ C are called composable if they are such as morphisms

in the category ΠO. The concept of refinement and equivalence is also adopted in the

straightforward manner: for every Tτ (O)-permutation symbol ρ = p(t1, t2,α, χ) with

α = (u1, . . . , un), the p-symbol ΠOρ is a refinement of ρ/O = p(t1, t2, γ, χ), where

γ = (|u1|, . . . , |un|). Remember that ΠO is the syntactical strict symmetric monoidal

functor ΠTτ (O) → ΠO extending the injection (x1, u) 7→ u. The meaning of ρ1 ≡ ρ2 is

again that ρ1 and ρ2 define the same permutation in every symmetric monoidal category

C having the object structure O.

3.3. Strict permutation symbols

On the ground of strict monoidal categories the form of permutation symbols becomes

considerably simpler. Since the ⊗-tree structure need not be indicated, the objects of

the category ΠO are simply finite sequences (strings) of object variables. Accordingly,

a strict O-permutation symbol is a pair (u, χ), where u is a string of object variables

having length n and χ is a permutation n → n. In the presence of a monoid O over O,

the empty string as an object term is identified with I.

For notational convenience we shall use a few instances of the symbols 1u and cu,v in

the non-strict setting as if they were strict, i.e., as if the object terms u, v were strings

and not trees. This can be done safely if the length of u and v is not more than 2, and I

does not occur on the leaves of these trees. For example, 1A, 1AB , and cA,AB will do as

p-symbols

(x1, A) → (x1, A),

(⊗(x1, x2), (A,B)) → (⊗(x1, x2), (A,B)), and

(⊗(x1,⊗(x2, x3)), (A,A,B)) → (⊗(⊗(x1, x2), x3), (A,B,A)),

respectively, but 1ABC is already ambiguous as a non-strict identity. Taking this idea one

step further, an object u = (t, α) of ΠO can be represented by a string of pairs

(A1, p1) . . . (An, pn),

where each Ai is either an object variable or an occurrence of the symbol I (which is not

supposed to be present in O). The second component pi of (Ai, pi) is the path identifier
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for leaf Ai in the tree u as a string of 1’s and 2’s. (E.g., 1 . . . 1 identifies the leftmost leaf,

and 2 . . . 2 the rightmost one.) See Fig. 3. The set of all such paths in u will be denoted

by path(u), and obju(p) will refer to the object variable (or I) sitting at leaf p of u. Path

p is called variable if it points to an object variable, and constant if obju(p) = I. Then

every p-symbol p(t1, t2, α, χ) : u1 → u2 can be written in a unique way as a “quasi”-strict

p-symbol

(A1, p1) . . . (An, pn) → (B1, q1) . . . (Bm, qm),

where pi and qj are appropriate paths in path(u1) and path(u2). In this way of writing

the permutation χ indeed appears as one in the corresponding strict permutation symbol

between the yields of u1 and u2. See again Fig. 3. We shall need this representation of

p-symbols in Section 5.

Ä

Ä

Ä

A

A

B

BI

(A,11) (I,12) (B,2)

(B,1) (A,2)

=

Fig. 3. Quasi-strict representation of p-symbols.

4. Indexed monoidal algebras

In this section we introduce the category IMA of indexed monoidal algebras along the

lines of the report (Bartha and Jürgensen 1989), and establish an equivalence between the

categories IMA and SDCC. From this point on, throughout the paper, by a monoidal

category we mean a symmetric one.

Beyond the idea of indexing, the concept of indexed monoidal algebras is also very

closely related to that of enriched categories (Kelly 1982). For an illustration we are

going to recapture our example SDCC category (Rel,×) as an enriched one. An enriched

category has a base monoidal category C, in our case the category (Rel,×) itself, from

which the morphisms are adopted. Independently, there is a class R of objects, in our

example, sets. To each pair (A,B) of objects in R one must assign a so called hom-object

A(A,B) of C. We choose A(A,B) = A×B. Then one needs to specify a composition law

M = MA,B,C : A(A,B) ⊗ A(B,C) → A(A,C) as a collection of morphisms in C. This

choice is fairly straightforward in our case as a relation (A×B)×(B×C) → (A×C). The

identity element jA : I → A(A,A) is of course the identity relation on A. These data are

subject to the conditions specified in (Kelly 1982), which conditions are trivially satisfied

in our example. It follows that C = (Rel,×) can be recaptured as the underlying category

of the C-enriched category A defined in the above way. By definition, the underlying

category has R as objects, and as morphisms A → B the morphisms f : I → A(A,B) in

C. Observe that the idea is to eventually assign a collection of morphisms with each pair
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of objects (A,B), but this is done in an implicit way through the hom-functor Hom(I, )

of the category C. In our example this is exactly the covariant powerset functor, which

is perfectly in line with the indexing idea presented in the previous section.

Of course the above way of recapturing an SDCC category C is trivial, not hiding C itself

at all. Therefore we only adopt the idea of assigning a class of “uni”-morphisms to each

object (i.e., the set P(A) to object A). The base category is dropped, and the composition

law is replaced by the direct algebraic operations tensor and trace on morphisms. With

the help of the indexing mechanism facilitated by the permutation symbols, these two

operations will accomplish the same goal as the composition law in the base category.

See also (Bartha and Jürgensen 1989), where the composition law itself was captured by

a general binary operation composition on morphisms.

4.1. The definition of indexed monoidal algebras

Formally, an indexed monoidal algebra (IMA, for short) consists of a class O of objects

A,B,C, . . ., a class M of morphisms f, g, h, . . ., and an operation rank, which assigns to

each morphism f an object A. We write f : A to indicate the rank of f . There is also

a distinguished unit object I and a binary operation ⊗ (tensor) on objects, determining

a τ -algebra O = (O,⊗, I). As an early indication to the category structure in mind, by

f : A → B we mean a morphism f : A⊗B for each pair A,B of objects. The symbol ⊗ has

become heavily overloaded by now. For this reason we shall use ⊘ for ⊗ in permutation

symbols. Accordingly, composition of p-symbols will be denoted by •. Keep in mind,

however, that e.g. the symmetry O-permutation symbol cA,B : ⊘(A,B) → ⊘(B,A) is an

O-permutation symbol A ⊗ B ⇒ B ⊗ A semantically.

With respect to M , the following operations are imposed.

— For each O-permutation symbol ρ : A ⇒ B a unary operation ρ, which assigns to

each morphism f : A a morphism f · ρ : B.

— A binary operation tensor, which assigns to each pair of morphisms f : A and g : B

a morphism f ⊗ g : A ⊗ B.

— A unary operation trace, which assigns to each morphism f : (A⊗A)⊗B a morphism

lA,B f : B.

— For each object A a constant 1A : A ⊗ A.

Let us agree that we write lA f for lA,B f whenever B is understood. Notice the boldface

notation 1A : A → A as opposed to 1u : u → u for permutation symbols.

We shall use two more “categorical” operations, which are already derived from the

above basic ones.

— A binary operation composition, which assigns to each pair of morphisms f : A → B

and g : B → C the morphism

f ◦A,B,C g =lB ((f ⊗ g) · (a1 • (cA,BB ⊘ 1C) • a2) : A → C, where

a1 : (A ⊘ B) ⊘ (B ⊘ C) → (A ⊘ (B ⊘ B)) ⊘ C,

a2 : ((B ⊘ B) ⊘ A) ⊘ C → (B ⊘ B) ⊘ (A ⊘ C)
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are the obvious a-symbols. Observe that the prefix tree notation would actually be ac-

curate for ⊘, but the infix one is easier to read in the present context. See Fig. 4a.

— A binary operation (general) tensor, assigning to each pair of morphisms f : A → B

and g : C → D, the morphism

f ⊗A,B,C,D g = (f ⊗ g) · (a1 • ((1A ⊘ cB,C) ⊘ 1D) • a2) : (A ⊗ C) ⊗ (B ⊗ D), where

a1 : (A ⊘ B) ⊘ (C ⊘ D) → (A ⊘ (B ⊘ C)) ⊘ D,

a2 : (A ⊘ (C ⊘ B)) ⊘ D → (A ⊘ C) ⊘ (B ⊘ D).

See Fig. 4b. Again, let us agree that, ambiguous as it is, we shall not indicate the indices

in ◦ and ⊗ unless it is absolutely necessary. Clearly, the basic operation ⊗ is intended

to be the instance ⊗I,A,I,B of the general one. Observe that the above definition of

composition and tensor is in line with the traced monoidal category axioms. Regarding

composition, see also (Bartha 1987a, Identity X3). As we shall point out in Theorem 4.1

below, our trace operation models the canonical trace concept in SDCC categories.

f gf g
A B B

ABB A

A B C D

DC BC

C

a) b)

Fig. 4. Composition (a) and tensor (b) in M.

The above operations are subject to the following equational axioms.

I1. Functoriality of indexing

f · (ρ1 • ρ2) = (f · ρ1) · ρ2 for f : A and composable ρ1 : A ⇒ B, ρ2 : B ⇒ C;

f · 1A = f for f : A.

I2. Naturality of indexing

(f ⊗ g) · (ρ1 ⊘ ρ2) = f · ρ1 ⊗ g · ρ2 for f : A, g : B, ρ1 : A ⇒ C, ρ2 : B ⇒ D;

(lA f) · ρ =lA (f · (1AA ⊘ ρ)) for f : (A ⊗ A) ⊗ B, ρ : B ⇒ C.

I3. Coherence

f · ρ1 = f · ρ2 for f : A, whenever ρ1 ≡ ρ2.

I4. Associativity and symmetry of tensor

((f ⊗ g) ⊗ h) · aA,B,C = f ⊗ (g ⊗ h) for f : A, g : B, h : C;

f ⊗ g = (g ⊗ f) · cB,A for f : A, g : B.

I5. Right identity (yanking)

f ◦ 1B = f for f : A → B.

I6. Symmetry of identity

1A · cA,A = 1A.
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I7. Vanishing

lI f = f · a for f : (I ⊗ I) ⊗ A,

where a : (I ⊘ I) ⊘ A → A;

lA⊗B (f · a) =lB (lA f · ((1A ⊘ (cB,A ⊘ 1BC)) • a′)) for f : A⊗ ((B ⊗A)⊗ (B ⊗C)),

where a : A ⊘ ((B ⊘ A) ⊘ (B ⊘ C)) → ((A ⊘ B) ⊘ (A ⊘ B)) ⊘ C,

and a′ : A ⊘ ((A ⊘ B) ⊘ (B ⊘ C)) → (A ⊘ A) ⊘ ((B ⊘ B) ⊘ C).

I8. Superposing

lA ((f ⊗ g) · a) =lA f ⊗ g for f : (A ⊗ A) ⊗ B, g : C,

where a : ((A ⊘ A) ⊘ B) ⊘ C → (A ⊘ A) ⊘ (B ⊘ C).

I9. Trace swapping

lB (lA (f · a)) =lA (lB (f · ((cAA,BB ⊘ 1C) • a′)) for f : ((A ⊗ A) ⊗ (B ⊗ B)) ⊗ C,

where a : ((A ⊘ A) ⊘ (B ⊘ B)) ⊘ C → (A ⊘ A) ⊘ ((B ⊘ B) ⊘ C),

and a′ : ((B ⊘ B) ⊘ (A ⊘ A)) ⊘ C → (B ⊘ B) ⊘ ((A ⊘ A) ⊘ C).

The collection of axioms I1, . . ., I9 will be denoted by IM .

Let M = (O,M) and M′ = (O′,M ′) be indexed monoidal algebras. An indexed

monoidal homomorphism h : M → M′ maps each object A in O to an object hA in

O′ and each morphism f : A in M to a morphism hf : hA in M ′, so that h defines

a τ -algebra homomorphism O → O′ between the object structures. Furthermore, the

following homomorphism conditions are met by the morphisms.

(i) h(f · ρ) = (hf) · hρ;

(ii) h(f ⊗ g) = hf ⊗ hg;

(iii) h(lU f) =lhU hf ;

(iv) h1A = 1hA.

Notice that the symbol h has three different meanings in (i)–(iv) above: hA, hf , and

hρ. In hρ, h stands for the unique strict monoidal functor ΠO → ΠO′ determined by h

on objects. The category IMA consists of all indexed monoidal algebras as objects and

indexed monoidal homomorphisms as morphisms.

We now introduce our second motivating example, the single-sorted indexed monoidal

algebra of open undirected graphs.

Example 4.1. An open graph (Bartha and Krész 2003) is an undirected multigraph

(Lovász and Plummer 1986) with some of its vertices distinguished and labeled, each

with a different label. In the present discussion we assume that the distinguished vertices

have degree 1. We call these vertices, as well as the edges incident with them, external .

If the number of external vertices in a concrete graph G is n, then we use the numbers

in [n] to label them. Graph G is then of rank n, that is, G : n. Two open graphs are

isomorphic if they are such as ordinary graphs by an isomorphism that preserves the

labeling of the external vertices.

Clearly, the algebra O in this example is the monoid (N,+, 0), which is isomorphic to
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{1}∗. Thus, the example is single-sorted and strict. The operations are interpreted on

morphisms (open graphs) in the following way.

— For a graph G : n and permutation symbol ρ : n ⇒ n, G · ρ is the graph obtained

from G by relabeling its external vertices according to the ordinary permutation n → n

determined by ρ in the strict single-sorted monoidal category of permutations. This

permutation is the unique maximal refinement of ρ, which exists in the single-sorted

setting.

— For graphs G : n and H : m, G⊗H : n + m is the disjoint union of G and H with the

labels of H’s external vertices incremented by n.

— For every n ∈ N , the graph 1n : n + n consists of n edges connecting external vertex

i with n + i for each i ∈ [n].

— For a graph G : n + n + m, ln G is constructed from G by gluing together the pairs

of external edges ending in external vertices i and n + i for each i ∈ [n], discarding

the vertices i and n + i themselves. As part of this procedure, whenever a number of

external edges are glued together in a cycle with no intercepting internal vertices, a new

isolated vertex is added to the graph. Finally, the label of each remaining external vertex

is decremented by 2n. See Fig. 5 for the implementation of l3 on a graph G : 3 + 3 + 1.

11

2

3 6

7

5

4

3 ( ) =

Fig. 5. Taking the trace of a graph.

The algebra of open graphs defined in this way is denoted by G. The reader can easily

verify that G is an IMA. The algebra of relations described in Section 2 is also indexed

monoidal over sets as objects and pairs of sets (A,R) as morphisms such that R ⊆ A.

Clearly, the rank of (A,R) is A.

4.2. Equivalence of the categories IMA and SDCC

The two examples discussed in the previous subsection served as models for the definition

of indexed monoidal algebras. The graph example reflects a “coproduct” philosophy

regarding the tensor ⊗, whereas in the relation example tensor is clearly product-oriented.

In neither of these examples will, however, tensor become coproduct or product in the

corresponding SDCC category.

Theorem 4.1. The categories IMA and SDCC are equivalent.

Proof. Let M = (O,M) be an IMA, and define the monoidal category C = SM
over the objects O as follows. Morphisms A → B and identities in C are exactly those
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in M, while composition and tensor are adopted from M as derived operations. For

a morphism f : C and objects A,B such that C = A ⊗ B, one may want to use the

distinction fA,B : A → B to keep different hom-sets disjoint. We shall return to this

foundational issue shortly. Symmetries cA,B : A ⊗ B → B ⊗ A in C are the morphisms

1A⊗B ·(1AB⊘cA,B). In general, every permutation symbol ρ : u → v is represented in SM
as 1|u| · (1u ⊘ρ) : |u| → |v|. For each self-adjunction A ⊣ A, the unit map dA : I → A⊗A

and the counit map eA : A ⊗ A → I are 1A · l−1 and 1A · r−1, respectively, where l and

r are the appropriate left and right unitors.

It is essentially routine to check that SM is an SDCC category. Some of the details,

however, require a careful organization. We start out with a few immediate consequences

of the axioms IM .

J1. Symmetry of trace

lA f =lA (f · (cA,A ⊘ 1B)) for f : (A ⊗ A) ⊗ B.

See Fig. 6.

f 1

↔ ↔

A A B
A A

↔ ↔

↔ ↔

↔ ↔

↔

↔
↔

=

= =

=

Fig. 6. Symmetry of trace.

J2. Canonical trace

lA f = ((1A · l−1) ◦I,(A⊗A),B f) · l′ for f : (A ⊗ A) ⊗ B,

where l and l′ are appropriate left unitors.

See Fig. 7. Notice that in the diagrams of Figures 6 and 7 we rely heavily on axiom I3

(coherence), taking refinements of permutation symbols whenever this becomes necessary.

For technical simplicity we work in the strict monoidal setting in these diagrams. The

reader can easily fill in the parentheses and the corresponding association symbols to

make these diagrams work in the non-strict case.

J3. Left identity

1A ◦ f = f for f : A → B.

See Fig. 8. Note that the symmetry of trace and that of 1A have both been used in the
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f

A A B

1
A A

↔ ↔ ↔

↔ ↔

= = =

=

Fig. 7. Canonical trace. Continue on Fig. 6 bottom.

A A

BA
↔

f

↔ ↔

↔

= = =

= = =

Fig. 8. Left identity.

proof.

J4. Tensor of identity

1A⊗B = 1A ⊗A,A,B,B 1B

See Fig. 9, and take f = 1A⊗B .

With regard to the category C, the monoidal axioms follow trivially from I1, . . ., I6,

J3, and J4. Proving the unit and counit property of dA and eA is equally easy. See e.g.

Fig. 10 for the first equation in Definition 2.2. In the understanding of this diagram, the

reader should follow the guiding principle that whenever either endpoint of an instance

of 1A is involved in the trace operation lA, that instance can be eliminated from the

diagram by “yanking”. This rule is a direct consequence of axioms I5, I6, and J3 in the

light of the indexing mechanism. The definition of functor S on (homo-)morphisms is

evident, and left to the reader.

Conversely, let C be an SDCC category having the object structure O. Define the IMA

f

↔

A BC

A A B B

↔ ↔ ↔
= = =

Fig. 9. Tensor of identity.
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= =

Fig. 10. Proving SM compact closed.

f

A A B

e

fA

f

e

d

=

Fig. 11. Canonical trace again, cf. Fig. 2.

M = IC as follows. For each object A, the morphisms of rank A are those in C(I,A).

Since C is symmetric, every permutation symbol ρ : A ⇒ B determines a permutation

ρC : A → B in C. Then, for f : A, define f · ρ = f ◦C ρC . Observe that indexing indeed

becomes the restriction of the covariant hom-functor to permutations, as intended. For

f : A and g : B in M, let

f ⊗M g = l−1 ◦ (f ⊗C g) : I → A ⊗ B,

where l is the unitor I ⊗ I → I. As to the identities, let 1A = dA : I → A ⊗ A. For

f : (A⊗A)⊗B, lA f is defined as the canonical trace of the morphism fA : A⊗I → A⊗B

in C that corresponds to f ◦ aA,A,B according to compact closure. That is, lA f is the

morphism

f ◦ (eA ⊗ 1B) = (dA ⊗ 1I) ◦ a1 ◦ (1A ⊗ fA) ◦ a2 ◦ (eA ⊗ 1B) : I → B

in C with the associators a1 and a2 as appropriate. See Fig. 11.

In the light of this translation, each of the equations in IM is either a standard

monoidal category axiom or has been observed in (Joyal et al. 1996; Kelly and Laplaza

1980) for traced monoidal or compact closed categories. Thus, M is an IMA. The defi-

nition of functor I on morphisms (strict monoidal functors) is again straightforward.

By definition, I(SM) ∼= M via indexing by an appropriate unitor. On the other hand,

the only difference between the SDCC categories C and S(IC) is that the hom-sets A → B

in the latter are identified with the ones I → A ⊗ B of the former, using the natural

isomorphisms given by the self-adjunctions A ⊣ A. In other words, morphisms A → B

in S(IC) – as provided for by compact closure – are simply renamed as they appear in
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G1
G2 G3

1 11

2

2

3

3

4 4

2

34

Fig. 12. Three simple graphs.

C(I,A⊗B). Thus, there exists a natural isomorphism between the functors 1SDCC and

SI, so that the categories IMA and SDCC are equivalent as stated.

Example 4.2. There are exactly three non-isomorphic open graphs: G1, G2, and G3 of

rank 4 in G which consist of external vertices only. These graphs are given in Fig. 12.

Clearly, G1 = 11⊕11 and G2 = 11⊗11 = 12. Graph G3 is simplest to put as c1,1 : 2 → 2

in the SDCC category SG. Along these lines it is instructive to find simple terms for

each graph as morphisms i → j (i + j = 4) in SG. For example, G1 = e1 ⊗ d1 : 2 → 2,

G2 = (11 ⊗ d1) ◦ (c1,1 ⊗ 11) : 1 → 3, and G3 = 11 ⊗ e1 : 3 → 1.

Example 4.2 illustrates the difficulty in interpreting SDCC-terms as open graphs and

vice versa. The graphical language (Joyal and Street 1991; Selinger 2009) for CC cat-

egories clarifies this translation procedure to some extent, but the root of the problem

is that the monoidal category language assumes (explicitly or implicitly) that hom-sets

are pairwise disjoint. According to Mac Lane (Mac Lane 1971), however, this is not a

necessary requirement if one uses the hom-set-based definition of categories. The domain

and codomain of a concrete morphism f are only fixed by the standard definition of

categories. Consider, for example, the CC category Int(C) freely generated by a traced

monoidal category C as described in (Joyal et al. 1996). This category has as objects pairs

(A,B) of objects in C. Morphisms (A,B) → (C,D) in Int(C) are the ones A⊗D → C⊗B

in C. Clearly, hom-sets will overlap in Int(C), unless one separates them by force. The

very same idea manifests itself in indexed monoidal algebras, reflecting the philosophy

that morphisms are fixed, while their domain and codomain may vary, depending on what

hom-sets we want to put them in. It is only the rank of a morphism that is uniquely

determined. This is the major difference between our graphical language, which is uni-

versal for IMA’s, and the one described in (Joyal and Street 1991; Selinger 2009) for CC

categories as symmetric autonomous categories.

A further remark on traced monoidal categories is also in order at this point, which will

explain the Int construction, too, through an intuitive argument. Consider the traced

monoidal category ~G of open directed graphs (flowcharts) as described in (Bartha 1987a).

In this category, a morphism n → m is an open graph G with n + m external vertices

such that each edge is directed in G. Accordingly, the external vertices are labeled by

either bi, i ∈ [n] (begin vertices) if their out-degree is 1, or by exj , j ∈ [m] (exit vertices)

if their in-degree is one. As it was proved in (Bartha 1987a), ~G is freely generated by

the directed star graphs (boxes) n → m as a traced monoidal category. Since SG is

also traced with the canonical trace, the mapping that takes each directed star graph
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~Kn,m : n → m to the undirected star graph Kn+m : n + m (as a morphism n → m in

SG) can be extended in a unique way to a traced monoidal functor U . Clearly, G2 = U12

and G3 = Uc1,1. There is, however, no morphism in ~G that is mapped to G1 by U . It is

therefore misleading to say, at least in the categorical context, that G is obtained from
~G by “forgetting” the direction of the edges in graphs.

Let us revise the above argument in the context of the Int construction. For each star

graph ~Kn,m : n → m, divide the n in-degrees of the center vertex into n1 “real” in-degrees

and m2 “dual” out-degrees, so that n1+m2 = n. Symmetrically, divide the m out-degrees

into m1 real out-degrees and n2 dual in-degrees. Correspondingly, distinguish between

real and dual begin/exit vertices as appropriate, and say that ~Kn,m is a morphism

(n1, n2) → (m1,m2) in the new setting. In general, a morphism (n1, n2) → (m1,m2)

in the arising category Int(~G) is just a morphism n1 + m2 → m1 + n2 in ~G. When com-

posing graphs in Int(~G), one will always connect real out-degrees with real in-degrees

and dual in-degrees with dual out-degrees simultaneously. Observe that this philosophy

requires composition in ~G on the real side and trace (feedback) on the dual side. See

(Joyal et al. 1996) for the details.

It follows from the general result in (Joyal et al. 1996) that Int(~G) is a CC category,

in which the dual of each object (n,m) is (m,n). Moreover, Int(~G) is freely generated

by ~G. Regarding our SDCC category SG, it can be recaptured from Int(~G) by taking

the sub- (symmetric) monoidal category generated by the star graphs ~Kk,k (k ≥ 1) con-

sidered as morphisms (n, n) → (m,m) with k = n + m. Clearly, this subcategory stays

within the scope of self-dual objects (n, n), n ∈ N , and it is isomorphic to SG. Heuristi-

cally speaking, the Int construction suggests that G is obtained from ~G by making the

edges in directed graphs bidirectional. This seemingly trivial observation has far-reaching

consequences in computer science with respect to the reversibility of computations. For

example, the bus connection between the processor and the memory in a von Neumann

computer is bidirectional. The interconnections between tape cells in a Turing machine

are bidirectional. We shall elaborate further on this point in Sections 6 and 7.

5. Coherence in indexed monoidal algebras

In general, a coherence result for some type µ of monoidal categories is about establishing

a left adjoint for a forgetful functor F from the category of µ-monoidal categories into an

appropriate syntactical category, and providing a graphical characterization of the free

monoidal µ-categories so obtained. For some typical examples, see (Mac Lane 1971; Kelly

and Laplaza 1980; Selinger 2009; Bartha 1987a; Bartha 1987b). We have also presented

two such results in Section 3 by constructing the monoidal categories ΛO and ΠO. In

this section we present a more substantial coherence theorem for SDCC categories, but

phrase it in terms of indexed monoidal algebras. The graphical language arising from

this result will justify our efforts in the previous section to reconsider SDCC categories

in the given algebraic context.

Our way of choosing the forgetful functor F differs from the method followed in (Kelly

and Laplaza 1980), where the category structure was still preserved. We go one step

further in forgetting, and preserve only the alphabet structure of morphisms. For a class
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O of object variables, a ranked alphabet (signature) Σ = (O,M) consists of a class M

of morphism variables and a mapping M → Tτ (O) called rank. Again, by writing f : u

we indicate the rank of f . Recall that Tτ (O) is the class of object terms over O. An

alphabet mapping between ranked alphabets Σ = (O,M) and ∆ = (O′,M ′) is a mapping

φ, which assigns to each object variable A in O an object variable φA and to each

morphism variable f : u in M a morphism variable φf : φu in M ′. Remember that φ also

stands for the unique strict monoidal functor ΠO → ΠO′ determined by φ. We say that

an alphabet mapping preserves the rank of morphism variables.

Observe that our perception of a ranked alphabet is completely in line with the con-

cept of monoidal signatures found in (Joyal and Street 1991). By definition, a monoidal

signature consists of a set Σ0 of object variables, a set Σ1 of morphism variables, and a

pair of functions dom, cod : Σ1 → Mon(Σ0), where Mon(Σ0) is the set of object terms

over Σ0. Object terms in our sense are exactly the same as those in Σ0, and our morphism

variables are “one half” of the morphism variables in Σ1.

Every IMA M = (O,M) can trivially be considered as a ranked alphabet Σ = AM
in which the object variables are O and the morphism variables with rank u are simply

the morphisms in M of rank |u|. We use a subscript to distinguish between instances

of morphism f belonging to different ranks as morphism variables. If h : M → M′ is a

homomorphism, then Ah : AM → AM′ is the alphabet mapping φ by which φA = hA

and φfu = (hf)hu for every morphism f : |u| in M. Our aim is to provide a left adjoint for

the functor A. In algebraic terms this amounts to constructing the IMA freely generated

by Σ.

Let Σ = (O,M) be a ranked alphabet, fixed for the rest of this section. First we aug-

ment Σ by the following morphism variables.

— For each object term u, a symbol Hu : u.

— For each object variable A, a symbol ⊥A : I.

These symbols must not originally be present in Σ. Let ΣH denote the augmented alpha-

bet. The IMA G(Σ) freely generated by Σ has as objects Tτ (O) (i.e., object terms over

O), and as morphisms Σ-graphs defined below. The τ -algebraic structure on objects is

the free one.

By a Σ-graph we mean a finite undirected and labeled multigraph G = (V,E, ℓ) with

vertices V , edges E, and vertex labeling ℓ. For each vertex v, the label ℓ(v) of v is a

morphism variable in ΣH . Exactly one vertex, called the host, is labeled by the symbol

Hu for some object term u, which term identifies the rank of G as a morphism in the

prospective IMA G(Σ).

Intuitively, G is a network of satellite machines of some sort, which are interconnected

with each other and the host as indicated by the edges in E. It is required that the label of

each vertex v be consistent with its degree d(v), so that d(v) = l(ℓ(v)). If ℓ(v) = u, then v

has a so called port associated with each path p ∈ path(u). (Recall the definition of paths

from Section 3.3.) Port p is variable/constant if p is such as a path. Each variable port

of vertex v identifies the point at which a unique edge impinges on v. To be meticulously

precise about the term “impinges on”, v is in fact a coherent group of port vertices, each

of which is labeled by a port identifier (i.e., path p). In addition, the whole group of ports
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Fig. 13. A Σ-graph.
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Fig. 14. An atomic Σ-graph

is labeled by ℓ(v). Edges, too, must be consistent with the labeling in the sense that,

for each edge connecting two different ports p1 and p2 belonging to vertices labeled by

morphism variables of rank u1 and u2, respectively, obju1
(p1) = obju2

(p2).

See Fig. 13 for an example Σ-graph G : AB in the strict setting, where the morphism

variables f and g have ranks BA and ABA, respectively. The host itself is invisible

in the figure, only its ports are indicated as separate boxes, which we call channels or

interfaces. All other vertices, as well as the edges connecting them, are called internal.

Vertices labeled ⊥A are the loop vertices in G. Note that the idea of using a host vertex

originates from (Leiserson 1983).

Morphism variables in Σ are represented as atomic Σ-graphs (star graphs) in the way

depicted by Fig. 14. An isomorphism between Σ-graphs G,G′ : u is a graph isomorphism

that preserves the labeling information of the vertices. We shall not distinguish between

isomorphic graphs. The indexed monoidal algebra operations are defined on Σ-graphs as

follows.

— For a graph G : u, each Tτ (O)-permutation symbol ρ : u ⇒ u′ is interpreted as the

relabeling of the interfaces (i.e., ports of the host) according to the O-permutation symbol

ΠOρ. Thechnically, this amounts to changing the label of the host together with the paths

associated with the variable ports of the host, and the possible deletion/introduction of

inAn

A1 An

n+1 2n

inA1

inA1 inAn

1 n

. . .

Fig. 15. The identity graph
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constant ports within that vertex. See again Fig. 3.

— For graphs G1 : u1 and G2 : u2, G1 ⊗ G2 is obtained by taking the disjoint union of

the subgraphs of G1 and G2 induced by their internal vertices, joining the two hosts into

one labeled by Hu1⊘u2
, adjusting the port labels of the new host in the obvious way, and

connecting these ports to the respective ports in the internal copies of G1 and G2 in the

way these edges exist in G1 and G2 separately.

— The identity graph 1u : u⊘u is shown in Fig. 15 in the strict setting, whereby u is the

string A1 . . . An. For a non-strict example, the graph 1I has the host as its sole vertex,

which has two constant ports. In general, port 1w is connected to port 2w within the

host, whenever these ports are variable.

— For a graph G : (u⊘ u)⊘ v with l(u) = n, the trace operation lu is defined by gluing

together each edge ending at interface labeled 11w with the edge ending at interface

labeled 12w for all existing variable paths w in the tree u, after detaching these edges

from the host. (The first 1 in 11w and 12w points to the left at the root of the tree

⊘(⊘(u, u), v)).) Whenever this procedure results in a loop of an even number of edges

(but no intercepting internal vertices) glued together, a new loop vertex labeled by ⊥A

is created and added to the graph, where A is the common object variable associated

with the interfaces involved in the loop. (That is, A = obj(u⊘u)⊘v(pi), where pi is any of

the ports/paths involved.) Finally, the label of the host is changed to Hv and the port

labels are adjusted accordingly.

See again Fig. 5 and (Bartha and Jürgensen 1989) for single-sorted examples. See also

(Elgot 1975; Bloom and Ésik 1985; Bartha 1987a; Bartha 1987b) for the corresponding

standard definition of feedback/iteration in (directed) flowcharts. Interestingly, in all of

these works, graphs (flowcharts) are equipped with a single loop vertex, so that loops do

not multiply when taking the feedback. On the other hand, the loop vertex is present

in the graph 1I as well. Regarding the single-sorted case this amounts to imposing the

additional axiom l 11 = 10 (rather, its directed version, e.g. (Bartha 1987a, Axiom S5:

↑ 1 = 0)), which is not a standard traced monoidal category axiom. From the point of

view of axiomatization this is a minor issue. Another issue, namely the assignment of an

individual monoid to each object A is, however, extremely important and interesting. In

terms of flowcharts, this allows one to erase begin vertices and join two incoming edges

at any given port. See e.g. the constants 01 : 0 → 1 and ǫ : 2 → 1 in (Bartha 1987a;

Bartha 1987b). In (Joyal and Street 1991), these morphisms are called the co-unit and

the diagonal, respectively. MacLane (Mac Lane 1971) calls them η and µ. According to

(Selinger 2009) these are the erase and copy maps. These constants (morphisms) were

naturally incorporated in the axiomatization of schemes, both flowchart and synchronous.

Concerning undirected graphs, the presence of such morphisms with a “circularly sym-

metric” interface (e.g., a fan into three equivalent directions for the diagonal 2 → 1)

allows for an upgrade of ordinary edges to hyperedges, exactly the way it is described

in (Milner 2009) for bigraphs. The axiomatization of undirected hypergraphs as indexed

monoidal algebras will be presented in a forthcoming paper.

It is easy to check that the above interpretation of the indexed monoidal operations



M. Bartha 22

on G(Σ) satisfies the axioms IM . Technically, G(Σ) is the multi-sorted, non-strict, and

labeled counterpart of the trivial IMA G. Thus, G(Σ) is an IMA. It is also clear that G(Σ)

is generated by Σ, that is, by the collection of the atomic Σ-graphs. (See again Fig. 14.)

Indeed, every undirected graph can be reconstructed from its vertices as star graphs by

adding internal edges one by one using the trace operation. Our goal is to show that

G(Σ) is freely generated by Σ. In the proof we are going to follow the standard algebraic

technique of working in the totally free algebra of well-formed Σ-terms in order to take

the quotient of this algebra determined by the given set IM of identities. Observe that

the axioms IM are indeed identities, for each permutation symbol is an individual unary

operation in our framework.

Compared to the simple-looking graphical language for CC categories described in

(Selinger 2009), our concept of Σ-graph appears to be unduly meticulous. We believe it

is not. The distinction of ports and their labeling is necessary in order to clearly indicate

the flow of information in the graph, even in the strict case. Yet, a graph must remain a

graph in the standard combinatorial sense. Consider, for example, the two diagrams in

Fig. 16, both representing the identity morphism 1A∗ in Selinger’s graphical language.

Note that Selinger labels the edges by object variables, rather than distinguishing ports

and labeling those. The graphical language itself originates from (Joyal and Street 1991),

where the geometric aspects of such graphs are better explained. Selinger’s coherence

statement (Selinger 2009, Theorem 4.33) for CC categories says:

“A well-formed equation between morphisms in the language of CC categories

follows from the axioms of CC categories iff it holds, up to isomorphism of dia-

grams, in the graphical language.”

The isomorphism of the diagrams of Fig. 16 as “graphs” is far from being obvious. This

A* A

Fig. 16. Two diagrams for 1A∗ .

leads to an ambiguity in the understanding of the coherence statement regarding the

direction and labeling of the arrows in diagrams, which is not easy to clarify. For this

reason we do not rely on Selinger’s graphical language for CC categories in our coherence

statement. Another reason is that our concern is with indexed monoidal algebras and

not with SDCC categories in the first instance.

The structure T (Σ) = (T (Σ)u|u ∈ Tτ (O)) of well-formed indexed monoidal Σ-terms

(Σ-terms, for short) is the algebra (not IMA) freely generated from the morphism vari-

ables in Σ using the indexed monoidal operations and constants. Thus, T (Σ) is a totally

syntactical many-sorted term algebra in which the operations remain uninterpreted. In-

terpreting a Σ-term t in the algebra G(Σ) results in a Σ-graph |t|. Our goal is to show that

an equation t = t′ in T (Σ) is provable from the axioms IM iff |t| = |t′|. The proof of this

statement will revisit the normal form construction in (Bartha 1987a) by adjusting it to

the present undirected environment in a straightforward manner. Part of this work has

already been done in (Bartha and Jürgensen 1989). Without essential loss of generality

we restrict the proof to the strict single-sorted case. Working under this assumption, the
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^ ^

Fig. 17. Normal form of Σ-terms.

subscript 1 in 11, l1, and ⊥1 =l1 11 will be understood and omitted. The notation ll

stands for the l-fold application of l. The alphabet Σ collapses into an ordinary ranked

alphabet (Σn | n ∈ N).

Definition 5.1. (See (Bartha 1987a, Definition 5)) A Σ-term t : n (that is, t ∈ T (Σ)n)

is in normal form (n.f., for short) if

t =ll (((⊗p
i=1σi) ⊗ (⊗q

j=11)) · ρ) ⊗ (⊗r
k=1⊥)

for some l, p, q, r ∈ N , σi ∈ Σmi
, and permutation (symbol) ρ such that:

1 n = m + 2q − 2l, where m = Σimi, and

2 ρ : m + 2q → m + 2q is l-straight in the sense that:

(a) for each j ∈ [q], 2l < ρ(m + 2j − 1) < ρ(m + 2j); furthermore

ρ(m + 2j − 1) < ρ(m + 2j + 1), provided that j < q, and

(b) for each i ∈ [l], ρ−1(2i − 1) < ρ−1(2i); furthermore

ρ−1(2i − 1) < ρ−1(2i + 1), provided that i < l.

See Fig. 17 in the case l = p = q = r = 2, σ1 : 3, and σ2 : 2.

The intuitive meaning of Definition 5.1 should be clear. The only “ugly” technical

issue is the l-straight property of ρ, which is intended to resolve the ambiguity caused

by the symmetry of 1 (condition 2(a)) and that of trace (condition 2(b)). Obviously, no

occurrence of 1 is allowed to be involved in the trace operation, which condition is also

ensured by the first inequality of 2(a).

Now we prove the undirected counterpart of (Bartha 1987a, Lemma 6).

Lemma 5.1. For every Σ-term t : n there exists a Σ-term t′ in n.f. such that t = t′ is

provable from IM .

Proof. First we show that t can be transformed into a term t′′ of the form

t′′ =ll ((⊗m
i=1ai) · ρ),

where for each i ∈ [m], ai ∈ Σ or ai = 1. Such a term is said to be in weak normal form.

The proof of this statement uses a simple induction on the structure of t. The reader can

find the details of this argument in (Bartha 1987a, Lemma 5). Obtaining a n.f. t′ from

a weak n.f. t′′ then reduces to an easy exercise. One must rearrange the terms ai in a

proper order using the symmetry of ⊗, eliminate occurrences of 1 that are involved in

the trace operation by yanking, and adjust ρ to be l-straight relying on the symmetry of

1 and that of trace.

Theorem 5.2. (See (Bartha 1987a, Theorem 1)) Let t and t′ be Σ-terms such that

|t| = |t′|. Then the equation t = t′ is provable from IM .
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Proof. By Lemma 5.1 we can assume that t and t′ are in n.f. The normal form of

Σ-terms was defined in such a way that the only difference between t and t′ may appear

in the order of the atomic Σ-terms occurring in ⊗m
i=1σi. Discrepancies of this nature can,

however, be eliminated by the symmetry of ⊗ and the indexing mechanism.

Corollary 5.3. The algebra G(Σ) is freely generated by Σ.

Proof. Immediate by Theorem 5.2.

Let us return to the discussion following Example 4.2 to extend the remark made

there in connection with the Int construction. On the basis of that discussion one can

characterize the algebra G(Σ) as the IMA corresponding to an appropriate subcategory

C of the CC category Int(Sch(Σ̄)), where Sch(Σ̄) is the traced monoidal category of

Σ̄-flowchart schemes described in (Bartha 1987a) over the doubly ranked alphabet Σ̄ in

which σ̄ ∈ Σ̄n,n iff σ ∈ Σn. Unfortunately, one cannot use this characterization directly

to prove Corollary 5.3. Indeed, let M be an arbitrary (single-sorted) IMA. Then, due

to the universality of the Int construction and that of Sch(Σ̄) as a traced monoidal

category, there is a unique strict monoidal functor from the CC category Int(Sch(Σ̄))

to SM extending any given rank-preserving mapping of Σ̄ into SM. The problem is,

however, that the ports of the atomic Σ-graphs have been duplicated, so that the image

of a morphism (bidirectional flowchart) ~G from the subcategory C will also be a ⊗-

duplicated version of the morphism fG in SM that we intend to produce as the image

of the corresponding undirected graph G. Since there is no way to retrieve fG from

fG ⊗ fG, the method will eventually fail. This fallacy indicates that the construction of

the SDCC category freely generated by an arbitrary traced monoidal category is not a

simple matter, even with the Int construction in hand.

Definition 5.2. Let M be an arbitrary indexed monoidal algebra. An interpretation of

Σ in M is an alphabet mapping Ω : Σ → AM.

By Corollary 5.3, every interpretation Ω can be extended in a unique way to a homo-

morphism Ω : G(Σ) → M. Thus, G is indeed a left adjoint for the functor A.

6. Turing automata and Turing graph machines

As an important example of indexed monoidal algebras, in this section we introduce

the algebra of Turing automata and Turing graph machines. We shall use the monoidal

category (Bset,+) (sets and bijections with disjoint union as tensor) as the hypothetical

index category. For a set A, let A⋆ = A + {⋆}, where ⋆ is a fixed symbol, called the

anchor.

Definition 6.1. A Turing automaton (TA, for short) T : A is a triple (A,Q, δ), where

A is a set of interfaces, Q is a nonempty set of states, and δ ⊆ (Q×A⋆)
2 is the transition

relation.
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...
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<1,L>

<n,L>

<1,R>

<n,R>

a) 

a a

b)

Fig. 18. One tape cell in a Turing machine.

Two automata (A,Q, δ) and (A,Q′, δ′) are called isomorphic if there exists a bijection

χ : Q → Q′ such that

(χ × idA⋆
) ◦ δ′ = δ ◦ (χ × idA⋆

).

Following (Katis et al. 2002), we shall be dealing with isomorphism classes of Turing

automata, while working practically with representatives.

Due to the discrete nature of the semantics involved we shall assume that the car-

dinality of the sets A and Q is at most countably infinite. The role of the anchor as a

distinguished interface will be explained later. The transition relation δ can either be

considered as a function Q× A⋆ → P(Q×A⋆) or as a function Q× (A⋆ ×A⋆) → P(Q),

giving rise to a Mealy or Medvedev type automaton, respectively. We shall favor the

latter interpretation, and call ΘA = A⋆ × A⋆ the input alphabet for T . Then, as it is

customary in automata theory, the extension of δ to input strings in ΘA will be denoted

by δ, too.

By the standard definition, T is deterministic if δ is a partial function in the chosen

Medvedev sense. In contrast, T is strongly deterministic if δ is a partial function in the

Mealy way. Despite the Medvedev style formalism we still say that T has a transition

from a to b in state q, resulting in state r, if ((q, a), (r, b)) ∈ δ (that is, r ∈ δ(q, (a, b))).

According to this philosophy, if A is finite and |A| = n, then δ is an (n + 1) × (n + 1)

matrix, where each entry is a relation over Q. By way of duality, one can also consider

T as an automaton with states A⋆ and inputs Q × Q. We shall reflect on this duality

shortly.

Example 6.1. In Fig. 18a, consider the primitive model of one tape cell in a Turing

machine (TM, for short) M holding a symbol a. If M has tape alphabet Γ and states

{s1, . . . , sn}, then we represent this cell by the TA C = (A + A,Q, δ), where A = [n],

Q = Γ, and δ is essentially the transition relation of M . See Fig. 18b. Recall that the

transition relation of M specifies one move of M as a 5-tuple (si, a, sj , b,D), where

a, b ∈ Γ and D is a direction, i.e., L or R. Spelling this out, if M is in state si and its

tape head is scanning a cell that holds symbol a, then M changes its state to sj , rewrites

the symbol a to b, and its tape head moves into direction D. Our interpretation δ of

one move also takes into account the direction where the tape head is coming from, but

this is a trivial issue not affecting the computational power of Turing machines. (Indeed,

one might consider states (si, L) and (si, R) in a variant of M .) The main point of this

analogy is the duality that states of M are viewed as interfaces (inputs) of C, whereas

tape symbols (inputs) of M are in fact states of C. To avoid confusion, we shall sometimes

refer to states of M as global states and to tape symbols as local states.



M. Bartha 26

According to the automaton C there are no transitions to or from the anchor ⋆. In

order to start the computation from somewhere, however, one must also consider an

extension C0 of C in which there are such transitions as well. The cell C0 will have a

unique instance in the middle of the two-way infinite array of cells representing M .

We now turn to defining the indexed monoidal algebra T of Turing automata. In this

algebra, morphisms are Turing automata T : A. A set-permutation symbol ρ : A ⇒ B is

interpreted as the relabeling of the interfaces according to the unique bijection A → B

determined by ρ in Bset. (Elaboration of details regarding the transition relation is left

to the reader.) Clearly, every bijection χ : A → B can be interpreted as a relabeling of

any TA T : A. It is therefore natural and inviting to write T ·χ : B for the automaton so

obtained. Even though not all bijections χ in Bset are permutations, χ is still a trivial

one-state TA A → B (i.e., χ : A + B). Thus, T ◦ χ is going to be meaningful in the

algebra T , and its meaning will be identical to T · χ whenever χ is a permutation.

The tensor of T : A and T ′ : B having states Q and Q′, respectively, is the automaton

T ⊗ T ′ = (A + B,Q × Q′, δ ⊗ δ′), where δ ⊗ δ′ ⊆ ((Q × Q′) × (A + B)⋆)
2 is defined by

((q, q′), x), ((r, r′), y)) ∈ δ ⊗ δ′

iff either q′ = r′ and ((q, x), (r, y)) ∈ δ, or q = r and ((q′, x), (r′, y)) ∈ δ′. Notice the

ambiguity in writing just x, y rather than 〈x,A〉, 〈y,A〉 or 〈x,B〉, 〈y,B〉. The definition,

however, applies to the case x = ⋆ and/or y = ⋆, too, so that taking the tensor of T

and T ′ amounts to a selective performance of δ or δ′ on Q × Q′. By the same token,

self-transitions of ⋆ according to T ⊗ T ′ are the “union” of such transitions in T and

T ′ (i.e., either one by T or one by T ′ nondeterministically on the product state space,

always leaving the other component unchanged).

The operation ⊗ can be naturally generalized to an infinite number of operands, pro-

vided that we lift the declared requirement on the cardinality of the set of states, or

make the additional requirement that only a finite number of operand automata have

more than a single state. Let {Ti : Ai|i ∈ I} be a family of Turing automata for some

finite or countably infinite set I. Then ⊗i∈ITi :
∑

i∈I Ai is the automaton having states

×i∈IQi such that its transition function ⊗i∈Iδi is the selective performance of one of the

δi’s on ×i∈IQi in the above sense.

The identity Turing automaton 1A : A + A has a single state in which there is a

transition from 〈a, 1〉 to 〈a, 2〉 and back for every a ∈ A. There are no transitions to or

from the anchor.

The definition of lA T for a TA T : (A + A) + B is complicated but natural, and

it holds the key to understanding the TM-like behavior of this automaton. Intuitively,

the definition models the behavior of loops in flowchart algorithms (Elgot 1975) when

implemented in an undirected environment. That is, control enters lA T at an interface

b ∈ B, then, after alternating between corresponding interfaces in A + A any number

of times, it leaves at another (or the same) interface b′ ∈ B. State changes are traced

interactively during this process.

Formally, let u = p1 . . . pn ∈ Θ∗
(A+A)+B be a non-empty input string for T , where

pi = (xi, yi), n ≥ 1. The string u is called A-alternating from x1 to yn (u : x1 → yn, for
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short) if for every i ∈ [n − 1] there exist ai ∈ A and j ∈ {1, 2} such that

yi = 〈ai, j〉 and xi+1 = 〈ai, 2 − j〉.

Then, for every state q ∈ Q and input p = (b1, b2), the transition function δ̂ of lA T is

defined by

δ̂(q, p) = ∪(δ(q, u)|u : b1 → b2 is A-alternating).

The specification of δ̂ in terms of matrices is yet more elegant. Let us assume that

A and B are both finite, containing n and m elements, respectively. Write the square

matrix δ : 2n + m + 1 × 2n + m + 1 in the form
(

L11 L12

L21 L22

)

,

where L11 : 2n× 2n, L12 : 2n×m + 1, L21 : m + 1× 2n, and L2,2 : m + 1×m + 1. Then

δ̂ = L22 + L21 ⊙ L⊛

11 ⊙ L12. (1)

In the underlying semiring R = P(Q × Q), addition (+) is ∪ and multiplication (·) is

composition of relations. The symbol ⊙ denotes alternating matrix product, so that for

any two matrices V1, V2 : n ×

U ⊙

(

V1

V2

)

= U ·

(

V2

V1

)

.

The operation ⊛ is alternating Kleene star in the following sense. For a 2n×2n square

matrix U :

U⊛ =
∑

n≥0

Un,

where U0 is the alternate identity matrix
(

0 In

In 0

)

,

and U i+1 = U i ⊙ U .

It is easy to see that the two definitions of δ̂ coincide. The matrix L⊛

11 captures se-

quences of transitions alternating between corresponding interfaces in A+A. The Kleene

formula (1) for δ̂ is then self-explanatory.

The classical Kleene formula is one of the earliest findings in automata theory. In its

original form it was introduced by Kleene (Kleene 1956) in the construction to convert

a finite automaton to a regular expression. The emergence of this formula in the present

context is quite natural. We are dealing with graph semantics as purely sequential compu-

tations, and Kleene derived exactly the same kind of semantics from the transition graph

(directed, though) of a finite automaton in the form of a regular language (expression).

The reader familiar with iteration theories (Bloom and Ésik 1993) will immediately

notice that our ⊛ is the undirected counterpart of the star operation in matrix iteration

theories. See also the example (Rel,+) in Section 6 of (Joyal et al. 1996), which originates

from (Bloom and Ésik 1993), too. The star operation is also used in Girard’s (Girard 1989)

original formulation of the Geometry of Interaction; the execution formula, in particular.
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C0 C11C. . . . . .

Fig. 19. A TM as a TA.

On the one hand, the connection between matrix iteration theories and Turing automata

is not surprising, since the model of the star operation was also Kleene star for regular

sets. On the other hand, even if we define Turing automata as directed computational

devices by distinguishing between input and output interfaces and requiring that control

follows a strict input-output direction, the resulting traced monoidal category will not

be an algebraic theory, and therefore not a matrix iteration theory. The reason is the

different tensor, which complements the cascade product of automata as composition.

We shall return to this argument in Section 7.

Example 6.2. Consider the TA C = ([n] + [n],Γ, δ) described in Example 6.1 as one

tape cell of a TM M . Construct the TA

C∞ = ⊗k∈ZCk :
∑

k∈Z

([n] + [n]),

where Z is the set of integers and Ck = C whenever k 6= 0. The automaton C0 is an

extension of C by appropriate transitions involving the anchor. Finally, define

T =lZ (C∞ · ρ) : ∅, (2)

where ρ is the composite of the restructuring bijection
∑

k∈Z

([n] + [n]) →
∑

k∈Z

[n] +
∑

k∈Z

[n]

and the left L-shift 〈〈i, j〉, L〉 7→ 〈〈i, j − 1〉, L〉, 〈〈i, j〉, R〉 7→ 〈〈i, j〉, R〉. See Fig. 19.

The automaton T could be viewed as a model of the whole TM M as a TA. In T ,

the anchor has taken over the role of an initial global state, and final states in M have

been replaced by the requirement that all meaningful computations must return to the

anchor. The presence of final states in the definition of Turing machines is specific to

these machines being used as language acceptors. With this exclusive goal in mind,

every TA derived from a TM can trivially be made deterministic by our Medvedev-

style definition. Indeed, whenever the automaton wants to accept (or reject), it will

simply erase (blank out) each tape cell before exiting, so rendering the computation

automatically deterministic. This will always be feasible, since there were only a finite

number of non-blank tape cells (the string to be processed) at the beginning of the

computation. Non-halting computations do not matter, for they are not transitions of

the TA. A classical deterministic TM, in our language, is derived from a single-tape-cell

TA C that is strongly deterministic. Obviously, only the strong deterministic property is

closed under the indexed monoidal operations, which explains this anomaly.
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There is one caveat, however, in the description of the automaton T in Example 6.2.

It has a continuum number of states. Therefore T cannot be a faithful representation of

the TM M . In order to overcome this problem one must adopt a denotational semantics

philosophy and consider a sequence Tl, l ≥ 1 of approximations of T in which, for every

|m| ≥ l, Cm : [n] → [n] is the trivial one-state TA having no transitions at all. Intuitively,

the single state of this empty automaton is the blank, and whenever control reaches Cm,

the machine will crash. Then the “good” TA that we have in mind is the colimit of the

TA Tl according to the following vertical structure in T . For automata T = (A,Q, δ),

T ′ = (A,Q′, δ′), and relation φ : Q → Q′, we write φ : T → T ′ if φ is a homomorphism

of monoidal automata (Bartha 2009), that is,

(φ × idA⋆
) ◦ δ′ = δ ◦ (φ × idA⋆

).

Observe that, by definition, isomorphism of automata follows exactly this vertical struc-

ture as a category. Clearly, there are straightforward injective homomorphisms φl : Tl →
Tl+1 (remember that the blank is present in Γ), and the colimit of the sequence φl exists

as a TA T∞ having a countably infinite number of states. It is this automaton T∞ that

models the TM M in a faithful manner.

On the analogy of our example SDCC category (Rel,×), the vertical categories TA of

Turing automata of rank A, too, are SDCC categories. Hence they are indexed monoidal

algebras. We have thus “discovered” the concept of 2-indexed monoidal algebras, which

are the algebraic counterparts of 2-SDCC categories. We shall elaborate on this issue in

a separate paper. For now we only observe that the algebra T has much more structure

than what we could exhibit in this introductory paper.

The formula (2) above suggests that it is often convenient to express the operation

trace in terms of a one-to-one correspondence between two arbitrary disjoint subsets of

interfaces. Let T : D be a TA, A,A′ be disjoint equivalent subsets of D with a specified

bijection χ : A → A′, and B = D \ (A ∪ A′). Then lχ T is the TA lA T · ρχ, where

ρχ : D → A+A+B is the bijection determined by χ in the obvious way. The reader can

easily verify that lχ is compatible with relabeling, that is, if ω : A → C, ω′ : A′ → C ′,

and ψ : C → C ′ are bijections for some disjoint sets C,C ′ also disjoint from B such that

ω ◦ ψ = χ ◦ ω′, then

lχ T =lψ T · (ω ∪ ω′ ∪ idB).

In particular, lχ T =lχ−1 T . In this manner, the concept χ-alternating input string for

T is the obvious generalization of the original A-alternating one.

Lemma 6.1. Let T = (A ∪ A′ ∪ B,Q, δ) be a TA, and χ : A → A′ be a one-to-one

correspondence as above. For every b1, b2 ∈ B and q1, q2 ∈ Q,

((q1, b1), (q2, b2)) ∈ δχ iff ((q1, b1), (q2, b2)) ∈ δχ̄,

for a restriction χ̄ of χ to a finite subset of A, where δχ and δχ̄ are the transition relations

of lχ T and lχ̄ T , respectively.

Proof. Evident by the definition of trace in T , which describes a finite process.
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In terms of Turing machines, Lemma 6.1 expresses the trivial fact that each concrete

halting run of a TM affects a finite number of tape cells only.

Lemma 6.2. Let T = (A ∪ A′ ∪ B,Q, δ) be a TA and χ : A → A′ be a one-to-one

correspondence as in Lemma 6.1. Furthermore, assume that A = A1 ∪A2, A′ = A′
1 ∪A′

2

such that A1 ∩ A2 = ∅ and χ(Ai) = A′
i. Then

lχ T =lχ2
(lχ1

T )

for the restrictions χi : Ai → A′
i of χ to Ai.

Proof. Let δχ, δχ1
, and δχ2/χ1

denote the transition functions of lχ T , lχ1
T , and

lχ2
(lχ1

T ), respectively. By definition,

δχ2/χ1
⊆ δχ,

therefore we need only prove that for every state q ∈ Q and input (b1, b2) ∈ ΘB ,

δχ(q, (b1, b2)) ⊆ δχ2/χ1
(q, (b1, b2)).

By Lemma 6.1 we can assume that A is finite. Then, using an appropriate induction

argument, we can also assume that A2 = {a} is a singleton.

Denote a′ = χ(a), and let u = p1 . . . pn be a χ-alternating input string for T from

b1 to b2 with pi = (xi, yi). Isolate those indices ij ∈ [n], j ∈ [m] for which yij
= a or

yij
= a′, and concentrate on the substrings uj = pij+1 . . . pij+1

, j ∈ [m−1], together with

the prefix u0 = p0 . . . pi1 and the suffix um = pim+1 . . . pn. Clearly, each uj : x̄j → ȳj ,

0 ≤ j ≤ m is a χ1-alternating input string for T , where

x̄j =

{

b1 if j = 0

xij+1 if j ≥ 1,
and ȳj =

{

b2 if j = m

yij+1
if j < m.

Similarly, the string ū = (x̄0, ȳ0) . . . (x̄m, ȳm) is χ2-alternating for lχ1
T from b1 to b2.

Now let q′ ∈ δχ(q, (b1, b2)). By definition there exists a χ-alternating input string

u = p1 . . . pn for T from b1 to b2 such that q′ ∈ δ(q, u). Let u be as above. Breaking this

string down to the substrings u0, . . . um, there exist states q = q0, q1, . . . , qm+1 = q′ for

which qj ∈ δ(qj−1, uj−1), j ∈ [m + 1]. Again by definition, this implies

qj ∈ δχ1
(qj−1, (x̄i−1, ȳi−1))

for each j ∈ [m + 1], therefore q′ ∈ δχ2/χ1
(q, (b1, b2)).

Theorem 6.3. The algebra T of Turing automata is indexed monoidal.

Proof. At this point we can capitalize to a great extent on the simplicity of the ax-

ioms in IM . Indeed, each of these axioms, except for vanishing (I7) and trace swapping

(I9), holds naturally true in T . These two axioms, however, follow immediately from

Lemma 6.2. Observe that, analogously to the circuit model in (Katis et al. 2002), su-

perposing (I8) holds up to isomorphism of automata only, which is why we had to work

with isomorphism classes of automata in the algebra T .

Finally, we explain the role of the anchor ⋆. We did not want all Turing automata

of rank I = ∅ to have no transitions at all, like the automata ⊥A =lA 1A, which all
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coincide, having a unique state. (Consequently, the canonically traced monoidal category

ST of Turing automata also satisfies the additional “scheme” axiom ↑A 1A = 1I , which is

quite natural.) The anchor is a fixed interface that is not supposed to be interconnected

with any other, so that automata of rank I might still have transitions from ⋆ to ⋆.

Now let us return to the traced monoidal category B = (Rel,+) analyzed in Section 6

of (Joyal et al. 1996). Observe that the Kleene formula (1) in its non-alternating form

defines trace in that category, too. This is evident, because the restriction of B to finite

sets is equivalent to the matrix iteration theory of bit matrices. The CC category Int(B)

has been characterized in technical terms in (Joyal et al. 1996). Now we can show the

intuitive meaning of that structure, too. Indeed, it is not difficult to see that the restriction

of Int(B) to its self-dual objects (A,A) is isomorphic to the subcategory of ST consisting

of single-state Turing automata with no transitions to or from the anchor. We shall be

yet more explicit about this observation in Section 7.

The idea of working with a multiplicative and an additive tensor (i.e., × and +) at

the same time leads directly to the model of quantum Turing automata. The underlying

category in this model is changed from sets and relations to finite dimensional Hilbert

spaces with linear maps between them. The additive tensor is orthogonal sum, while

the multiplicative one is tensor product of Hilbert spaces. Linear maps, however, must

be confined to unitary ones in order to make the additive style trace operation work.

Quantum Turing automata have been introduced along these lines in (Bartha 2011).

In this paper we present a simpler, but still interesting model, which targets electronic

switching at the molecular level. This model has been studied for over a decade now on

the grounds of matching theory by the name soliton automaton, cf. (Bartha and Krész

2010).

Example 6.3. The n-ary atomic switch is the Turing automaton An : [n] (n ≥ 1) having

states [n], so that

δ = {((i, j), (j, i)) | 1 ≤ i 6= j ≤ n} ∪ {((i, i), (j, j)) | 1 ≤ i 6= j ≤ n}

∪{((i, ∗), (i, j)), ((i, j), (i, ∗)), ((i, ∗), (i, ∗)) | i, j ∈ [n]}.

For better readability, states, indicating a selected edge in an n-star graph, are written

in boldface. In addition, if n = 1, then ((1, 1), (1, 1)) ∈ δ.

Heuristically, the n-ary atomic switch captures the behavior of an atom in a molecule

having n chemical bonds to neighboring atoms. Among these bonds exactly one is dou-

ble, and referred to as the positive edge in the underlying star graph. The mechanism

of switching is then clear by the definition above. The active ingredient (control) in

this process is called the soliton, which is a form of energy traveling in small packets

through chains of alternating single and double bonds within the molecule, causing the

affected bonds to be flipped from single to double and vice versa. See (Davidov 1985)

for the physico-chemical details, and (Dassow and Jürgensen 1990; Bartha and Krész

2003; Bartha and Krész 2006) for the corresponding mathematical model. Note that, by

our definition above, whenever the soliton enters an atom with a unique chemical bond

(which must be double since n = 1), it bounces back immediately, producing no state

change.
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in
1 1 2 1P M

Fig. 20. The von Neumann machine.

Let D be a non-empty set of data such that |D| is at most countably infinite. The

indexed monoidal algebra D-dilT of D-flow Turing automata is defined in the following

way.

— Morphisms of rank A are Turing automata T : D × A.

— Each permutation symbol ρ : A ⇒ B is interpreted as a bijection (relabeling) D×A →
D × B, which is basically ρT performed on blocks of size D in parallel.

— Tensor is adopted from T (assuming the identification of D × (A + B) with D ×A +

D × B), (lA T )D-dilT =lD×A T , and the identities 1A are the identities 1D×A in T .

The notation D-dil originates from (Arnold and Dauchet 1978), where the magmoid

(single-sorted monoidal category) k-dilM was introduced for integer k and magmoid

M along these lines. Intuitively, a D-flow Turing automaton is a data-flow machine in

which data in D are passed along with each transition. Data appear disguised, however,

as “cloned” interfaces. In other words, computation remains unary, since technically the

control still does not carry information. Notice that the anchor does not emit or receive

any data. By virtue of Lemma 6.2 and Theorem 6.3, the structure D-dilT of D-flow

Turing automata is an indexed monoidal algebra.

Consider, for example, the scheme N of the classical von Neumann computer in Fig. 20

as a data-flow architecture. It consists of two interconnected single-sorted D-flow Turing

automata: the processor P : 2, and the memory M : 1. The processor is a real finite state

automaton, having state components like registers, the instruction counter, the PSW,

etc. The transitions of P are very complex. On the other hand, M has (practically)

infinite states, but its transitions are straightforward. The set D consists of all pieces of

information (data, control, and/or address) that can be transmitted along the bus line

between P and M in either direction. The operation of N need not be explained, and

it is clearly that of a D-flow Turing automaton. It is a very important point, however,

that the machine as a TA can do as much as we want in one step, that is, from the time

control enters port 1 of P until it leaves at the same port. For example, it can execute

one machine instruction stored in the memory, or even a whole program stored there.

In other words, semantics is delay-free. In present-day digital computers the desired

semantics is achieved by limiting the scope of what the machine can do in one step

through introducing clock cycles and delay. Theoretically speaking, undirected trace is

turned into directed feedback with delay (or, using an everyday language, recursion is

transformed into a loop), and computations become inevitably directed in a rigid way.

According to the original scheme N , however, they need not be, yet they could remain

universal.

The problem is that we are not able to build up either the processor or the memory

as a deterministic Turing graph machine from concrete physical atomic TA. The logical

gates and flip-flops used in sequential circuits to build up the processor and the memory
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are not Turing automata. According to the resulting common digital architecture, the

computer itself is a pair of interconnected Mealy automata, that is, a synchronous sys-

tem in the sense of (Leiserson 1983). In the characterization of synchronous systems as

monoidal automata (Bartha 1987b; Bartha 1992), the underlying monoidal category is

(a subcategory of) (Set,×). Tensor of such automata is therefore related to the cartesian

product of sets and functions, as opposed to disjoint union of sets and relations accord-

ing to the Turing automaton model. Composition of automata is cascade product, and

feedback is delayed. The monoidal structure of synchronous systems obeys exactly the

traced monoidal (alias scheme) axioms, except for yanking, which does not hold in these

categories. The trace (feedback) of the symmetry cU,U is the unit delay, or register ∇U .

See Section 7 for further explanation.

Regarding the speed of computation, the impact of introducing a fixed delay is sig-

nificant. It is well-known in complexity theory that the time complexity of a TM is

comparable to that of an equivalent RAM (random access machine, i.e., von Neumann

machine) program. The reason is that, even though the processor and the memory are

not TA-like, control will only stay for a constant number of clock cycles in these com-

ponents every time it enters either of them during the execution of a program. In other

words, complexity can be measured in the number n of times control passes through the

bus, which is a TA-like bidirectional interconnection. We must, however, multiply n by

at least the fixed length t of one clock cycle. No matter how small t is nowadays, it is still

very large in contrast to the speed by which particles could ideally travel in a delay-free

TA-like quantum computer as described in (Bartha 2011).

The soliton automaton model, introduced in Example 6.3 through several continua-

tions, makes an attempt to at least partially solve the problem of implementing electronic

switching by Turing automata built up from atomic components.

Example 6.3 (Continued) The n-ary atomic alternating switch A2
n augments the or-

dinary n-ary atomic switch by the passing of a digital information in the following way.

Control from a negative interface (i.e., one not covered by the unique positive edge) can

only take 0 for input and emits 1 for output. (Remember that in the meantime the pos-

itive edge is switched from the output side to the input side.) Conversely, control from

a positive interface can only take 1 for input and emits 0 for output. Transitions to and

from the anchor are as in the corresponding 2n-ary switch.

For the rest of the paper, the alphabet Σ will be single-sorted, that is, Σ = (Σn |n ≥ 0).

Definition 6.2. A D-flow Turing graph machine over Σ is a triple M = (G,D,Ω),

where G is a Σ-graph, D is a nonempty set (at most countably infinite), and Ω is an

interpretation of Σ in T under which the single sort of Σ is mapped into D. Equivalently,

Ω is an interpretation in D-dilT that maps sort “1” to object {1}.

Intuitively, machine M comes with an underlying graph G that has a D-flow Turing

automaton sitting in each of its internal vertices. The operation of M as a complex Turing

automaton is uniquely determined by the given interpretation according to the homo-

morphism Ω. The classical (bounded) Turing machine concept can again be recaptured

by taking Σ = Σ2 = {c}, where c stands for “tape cell”. A Turing machine TM is trans-
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formed into a D-flow Turing graph machine M whose underlying graph is a linear array

of cell vertices with the following interpretation Tc : 2 of c. The states of Tc are the tape

symbols (local states) of TM , and, by way of duality, elements of D are the global states

of TM . The transition relation of TM translates directly and naturally into that of M ,

using duality. The only shortcoming of this analogy is the finiteness of the underlying

graph G. Notice that it is not possible to specify the TA lZ C∞ in equation (2) as a

Turing graph machine, since the graph structure as generated from the ranked alphabet

Σ is necessarily finite. To extend the syntax to infinite graphs, one may consider the

standard subgraph relationship as a partial order and make it closed for taking limits.

Then the well-known denotational technique can be adopted to extend the semantics Ω

to infinite graphs. Of course, one is normally interested in infinite graphs of a certain

“regular” pattern, which graphs could be generated by appropriate grammars. See e.g.

(Bauderon and Courcelle 1987; Engelfriet and Vereijken 1997). Semantics could then be

carried over to such grammars in the algebraic way.

Example 6.3 (Continued) Let Σ be the ranked alphabet consisting of a single symbol

cn for each rank n ≥ 1. A pre-soliton automaton is a Turing graph machine

S = (G, {0, 1},Ω),

where Ω is the fixed interpretation that sends each symbol cn into the n-ary atomic

alternating switch A2
n. Since the interpretation is fixed, we shall identify each pre-soliton

automaton with its underlying graph. Moreover, since A2
n is circularly symmetric, we do

not need to order the ports (degrees) of the internal vertices. Thus, G is an ordinary

open undirected graph as described in Example 4.1.

Let q be a state of graph G. By definition, each internal edge e ∈ E is either consistent

with respect to q, meaning that e has the same sign (positive or negative) viewed from

its two internal endpoints, or inconsistent if this is not the case. (Notice that a looping

edge is always negative if consistent.) A soliton walk from interface i to interface j

(i, j ∈ [n] + {∗}) is a transition of G from i to j in state q according to the standard

behavior of G as a Turing automaton. The reader can now easily verify that this definition

of soliton walks coincides with the original one given in (Dassow and Jürgensen 1990),

provided that q is a perfect internal matching (Lovász and Plummer 1986; Bartha and

Krész 2003) of G. In our language, a perfect internal matching is a state q of G such

that every edge of G is consistent with respect to q, and the positive edges determine

a matching by which the internal vertices are all covered. Indeed, the definition of A2
n

implies that the soliton can only traverse consistent edges in an alternating positive-

negative fashion. A new feature of this model is a soliton walk from the anchor, which

must return to the anchor if q is a perfect internal matching, and in that case it defines

a closed alternating walk (e.g. an alternating cycle).

At this point we stop elaborating on soliton automata, referring the reader to the

recent study (Bartha and Krész 2011). The key observation enabling the restriction of

the states of pre-soliton automata to perfect internal matchings is the Gallai-Edmonds

Structure Theorem (Lovász and Plummer 1986), well-known in matching theory. On the

basis of this theorem, the Gallai-Edmonds algebra of graphs having a perfect internal
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matching has been worked out in (Bartha and Gombás 1991) as the homomorphic image

of the indexed monoidal algebra G. The IMA of soliton automata then turns out to be

an appropriate quotient of the Gallai-Edmonds algebra. The reader can find yet more

information on soliton automata in (Krész 2007; Krész 2008).

Finally, we return to our original dilemma of reversible vs. irreversible computations

and explicitly define the “reverse” of a Turing automaton T = (A,Q, δ) simply as TR =

(A,Q, δ−1). This definition makes T actually reversible only if δ : A × Q → A × Q is a

partial injection. It is known, cf. (Abramsky et al. 2002; Lutz and Derby 1982; Bennett

1973) that Turing machines with such a restricted capability still have sufficient power

to remain universal. Yet, the effective construction of a reversible universal Turing graph

machine poses an enormous challenge. The soliton automaton model described above is

an interesting try, but unfortunately it falls short of being universal even in terms of

designing individual ad-hoc machines.

7. Related work

The model of Turing automata has grown out of the study of general monoidal automata

(Bartha 1992; Bartha 2008; Bartha 2009), also known as circuits (Katis et al. 2002). The

category structure of circuits comes very close to that of Turing automata, but it is not

a traced monoidal category.

According to (Katis et al. 2002), a category with feedback is a monoidal category C
equipped with a feedback operation ↑U

A,B : C(U ⊗A,U ⊗B) → C(A,B), which satisfies all

the requirements for TrU
A,B in Definition 2.1, except for the yanking axiom. Furthermore,

sliding holds in a weaker form only, when the morphism g : U → V is an isomorphism.

For an arbitrary monoidal category C a C-automaton A → B is a pair (U,α), where

U is an object and α : U ⊗ A → U ⊗ B is a morphism in C. The pair (U,α) typically

models a Mealy automaton, e.g., a sequential circuit. Reflecting this interpretation, the

object U is called the state component, while α is the combinational logic of (U,α). The

collection of C-automata can be given the structure of a category AutC equipped with a

tensor as follows. Objects, and tensor of them are as in C. Furthermore:

1A = (I, 1A);

(U,α) ◦ (V, β) = (U ⊗ V, (cU,V ⊗ 1A) ◦ (1V ⊗ α) ◦ (cV,U ⊗ 1B) ◦ (1U ⊗ β));

(U,α) ⊗ (V, β) = (U ⊗ V, (1U ⊗ cV,A + 1C) ◦ (α ⊗ β) ◦ (1U + cB,V + 1D)).

See Fig. 21. The type of composition depicted in Fig. 21 is commonly known as the

cascade product of automata. The category C is embedded into AutC by the functor

A 7→ A, α 7→ (I, α). Feedback is defined in AutC as follows:

↑V
A,B (U,α) = (U ⊗ V, α), where α : U ⊗ (V ⊗ A) → U ⊗ (V ⊗ B).

Two C-automata (U,α), (V, β) : A → B are isomorphic if there exists an isomorphism

γ : U → V in C such that

(γ ⊗ 1A) ◦ β = α ◦ (γ ⊗ 1B).

Isomorphism classes of C-automata are called circuits, and Circ(C) is the quotient of
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Fig. 21. Composition and tensor in AutC

AutC by this isomorphism. As it was proved in (Katis et al. 2002), tensor (of isomorphism

classes of C-automata) makes Circ(C) a monoidal category with the symmetry adopted

from M . Moreover, Circ(C) is a category with feedback, freely generated by C. In our

intuitive interpretation, feedback in Circ(C) turns interfaces (input/output channels)

into registers (state components). Note that, by the Mealy automaton interpretation of

(U,α), the duality principle with respect to input vs. state is not in effect. Inputs and

outputs are signals 0,1, and states are flip-flops/registers. It is also important to see that

the Int construction does not work for monoidal categories with a delayed feedback. One

cannot reverse the unit delay into a “negative” one. Designing a reversible computation

model strictly on the principle of Mealy automata as input-output devices is therefore

not possible.

As a comparison, we now build up the indexed monoidal algebra of Turing automata

from appropriate monoidal ones, which we call directed Turing automata. Feedback

(trace), as well as tensor, follows an entirely different philosophy in directed Turing

automata, even though composition between them is still the old cascade product. Trace

only cuts interfaces in a Turing automaton without creating registers from them. The

state component of the resulting automaton remains the same object (set), but the tran-

sition relation (combinational logic) becomes a lot more complicated. Most importantly,

though, trace complements an additional additive tensor, rather than ⊗.

Formally, let C have a further additive tensor ⊕ such that ⊗ distributes over ⊕. In our

example category of sets and relations, ⊗ = × and ⊕ = +. Then, using the simplified

strict formalism, the Turing tensor of automata (U,α) : A → B and (V, β) : C → D is

(U,α) ⊠ (V, β) = (U ⊗ V, γ) : A ⊕ C → B ⊕ D,

where γ ≃ γ1 ⊕ γ2 is as follows:

γ1 = (cU,V ⊗ 1A) ◦ (1V ⊗ α) ◦ (cV,U ⊗ 1B) : (U ⊗ V ) ⊗ A → (U ⊗ V ) ⊗ B,

γ2 = 1U ⊗ β : (U ⊗ V ) ⊗ C → (U ⊗ V ) ⊗ D.

The natural isomorphism ≃ above is left-distributivity. The reader will recognize the

intuitive idea behind the Turing tensor ⊠: it is the selective performance of either α or β

over U⊗V . The duality principle with respect to input and state does apply, therefore the

whole automaton concept requires an intuitive understanding that is completely different
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from that of Mealy automata. The anchor as a distinguished interface is specific to the

relational Turing automaton model, and is missing from the present general discussion.

It is not difficult to show that the Turing tensor, too, turns the category of (isomor-

phism classes of) C-automata into a monoidal one Tur(C). Keep in mind, however, that

the object structure in Tur(C) has ⊕ for tensor, rather than ⊗ as in Circ(C). Now let

us assume that C admits an additive trace, too, by which (C,⊕) is a traced monoidal

category. Then, under certain natural conditions, this trace can be carried over to the

category (Tur(C),⊠), so that it becomes traced monoidal as well. This is definitely the

case with our example category C = (Rel,×,+), so that the traced monoidal category ~T
of directed Turing automata is well-established. As another example, directed quantum

Turing automata have been built up in (Bartha 2011) along these lines, using the base

category of finite dimensional Hilbert spaces and isometries between them with the two

tensors being tensor product and orthogonal sum. In the quantum example, the addi-

tive trace relies on the Moore-Penrose generalized inverse of linear operators, cf. (Roman

2005).

Given the traced monoidal category (Tur(C),⊠), one can transform it into the CC

category Int(Tur(C)), restrict the scope of this category to self-dual objects (A,A), and

convert the resulting SDCC category to an IMA. It is exactly in this way that the IMA

T of (undirected) Turing automata can be derived from the traced monoidal category
~T of directed Turing automata. In Section 6 we have deliberately chosen an accelerated

and more intuitive direct way of introducing the algebra T .

There has been a prior attempt by Hines (Hines 2003) to use the Int construction for

the purpose of deriving two-way finite state automata from ordinary ones and bounded

Turing machines from finite state Mealy automata. Regarding finite state automata, the

starting point is that the transition function of such a machine can be modeled as a

homomorphism Σ∗ → End(Q), where Σ is the input alphabet, Q is the set of states,

and End(Q) is the endomorphism monoid of the object Q in the monoidal category

(Rel,+). Actually this was not a new idea, since finite state automata (deterministic

or not) had been described before by the concept of presentations in matrix iteration

theories (Bloom and Ésik 1993) in a more general way. The basic observation made

by Hines is that the transition function of a two-way automaton can be modeled by a

homomorphism Σ∗ → End(Ql, Qr) with respect to the CC category Int(Rel,+), where

Ql and Qr are the left-moving and right-moving states, respectively. This idea is indeed

somewhat reminiscent of our construction of undirected Turing automata from directed

ones as outlined above, in the trivial special case when all automata have a single state.

Remember the duality by which (global) states of machines are interfaces, and inputs

(local states) are “the” states in Turing automata. In our language, literally, Hines’

observation constructs an individual Turing graph machine for each input string w ∈ Σ∗,

which consists of a linear array of cell vertices. Each cell is labeled by a letter of w in

a left-to-right way. The interpretation of any such a cell is then a single-state Turing

automaton, since the machine does not overwrite the symbol stored in the cell.

Moving on to Mealy automata and Turing machines, Hines did not observe the category

of monoidal automata with the cascade product as composition. Rather, he introduced his

own Comp construction, which produces a graded monoidal category from a monoidal
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category V; that is, Comp(V) is a functor from a monoidal category to the monoid

(N,+, 0), considered as a one-object category. See (Hines 2003) for the details. Intuitively,

the Comp construction aims at reconstructing the behavior of a Mealy/Turing machine

on an (n + m)-long tape from its behavior on an n-long and an m-long tape. Again,

the idea is similar to what we have accomplished with the algebra T , but the structure

involved is much less sophisticated. In his summary Hines himself admits: “ In particular,

we would like to be able to say that Int(Comp(V)) is isomorphic to Comp(Int(V)), but

giving this a precise meaning (or indeed, any meaning) appears to require substantial

algebraic input.” Indeed, Comp(V ) is not even a category, let alone monoidal or traced,

therefore Int(Comp(V)) is not meaningful.

8. Conclusion

We have provided a theoretical foundation for the study of Turing machines. In the

first half of the paper we established the categorical framework for this foundation. The

basic underlying structure, called indexed monoidal algebra, was introduced through a

small number of equational axioms, and it was shown that the category of such algebras is

equivalent to that of self-dual compact closed categories. A graphical language for indexed

monoidal algebras was worked out and a coherence theorem was proved to justify this

graphical language.

In the second half of the paper we defined the indexed monoidal algebra of Turing

automata, and showed how the classical Turing machine concept can be recaptured by

this definition. Turing graph machines were defined as interpretations of graphs in the

algebra of Turing automata. These machines have been generalized to D-flow Turing

graph machines, in which data from a set D are passed along with each transition. We

have pointed out that, at least at the high level of design, a von Neumann computer

architecture is a simple D-flow Turing graph machine. Finally we have presented the

soliton automaton example for switching at the molecular level by fully reversible binary

Turing graph machines.
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