
MOLECULAR SWITCHING BY TURING

AUTOMATA

Miklós Bartha
1

and Miklós Krész
2

1Department of Computer Science, Memorial University of Newfoundland, Canada
Email: bartha@mun.ca

2Department of Applied Informatics, University of Szeged, Hungary
Email: kresz@jgypk.u-szeged.hu

Abstract

We study the switching aspects of molecular computing from a novel algebraic point of view. Our
approach is based on the concept indexed monoidal algebra, which provides an equivalent formalism for
compact closed categories being used recently in the literature in connection with quantum computing.
The point is to separate syntax, as the algebra G of graphs, from semantics, which is related to the
algebra T of Turing automata, and define meaning as a homomorphism. Eventually, the syntax is
restricted to the Gallai-Edmonds algebra G-E of graphs having a perfect internal matching, and the
corresponding semantical structure, defined as the algebra S of soliton automata, is the quotient of an
appropriate subalgebra of T .

1. Introduction

The idea of molecular switching is about capturing the dynamic behavior of so called conjugated
systems in the molecules of certain organic compounds. Such a system is a group of atoms covalently
bonded with an alternating pattern of single and double bonds, so that the result of a “switch” is an
appropriate rearrangement of these bonds inside the molecule. Some practical aspects of designing
circuits at the molecular level along these lines have been explained in [10].

The first mathematical model to describe the phenomenon of molecular switching by means of au-
tomata appeared in [11] under the name soliton automaton. The underlying object of a soliton
automaton is an undirected graph representing the topological structure of a molecule. In terms of
graph theory, a conjugated system appears in this graph as a perfect matching [19]. States are there-
fore perfect matchings in soliton automata, and transitions are induced by making suitable alternating
walks in the underlying graph. Building on this observation, the study of soliton automata was con-
tinued on the grounds of matching theory by a series of our own works. For the interested reader, the
results of this study have been summarized as a book chapter in [3].

The aim of the present paper is to put soliton automata in a new perspective, showing that they are in
fact simple Turing machines in a slightly generalized sense. As computational devices, these automata
are naturally reversible and fit nicely in the algebraic/category theoretical framework developed by
Abramsky and others [1, 21] to capture some of the basic properties of quantum-mechanical systems
in terms of abstract equational axioms. For an evidence, the indexed monoidal algebra of soliton
automata given in Section 4 is completely analogous to that of quantum Turing automata introduced
in [2] by the first author just recently. We believe that this a very promising sign regarding the future
of soliton automata, even though their present computational power appears to be rather limited.

2. Turing graph machines and automata

Turing graph machines are natural generalizations of classical Turing machines, in which the rigid
topology of tape cells as a linear array is replaced by a flexible graph structure. In the small, a

2 M. Bartha, M. Krész

Turing automaton is an abstract machine associated with one cell in this structure. At large, such an
automaton also captures the behavior of the whole graph as a system.

The intuitive idea of Turing graph machines is dual to that of cellular automata. A graph machine
comes with an underlying undirected graph G in which some of the vertices with degree 1 are distin-
guished and labeled, each with a different label. These vertices are called external , for they identify
interfaces to the system modeled by G. All other vertices are internal, and they represent cells in the
corresponding graph machine. The labels of the external vertices will always be chosen from the set
[n] = {1, . . . n}, where n is the number of such vertices. Graph G itself is called open if n ≥ 1, and
closed if n = 0. We write G : n to explicitly indicate the number of external vertices in G. As usual,
the set of vertices and edges of G will be denoted by V (G) and E(G), respectively. An edge e ∈ E(G)
is called internal if both endpoints of e are such, external if exactly one endpoint is external, and
interface if both endpoints are external.

Each internal vertex v with degree d(v) is associated with a Turing automaton Av, which tells how the
local state at v changes when control passes through v entering from direction i and leaving in direction
j, i, j ≤ d(v). The behavior of the whole system represented by G is an automaton of the same kind,
describing how the global state (i.e., the product of the local ones) changes when control is initiated at
interface (external vertex) k and is expected to come out of the maze of local transitions at interface
l. Thus, G is just a flowchart [15] in which all interconnections are bidirectional. In comparison with
classical Turing machines, a local state is a symbol of the tape alphabet, and a direction (or degree)
corresponds to a combination of the current state and current direction of the Turing machine. At
this time G is supposed to be finite, however, unlike the set of states of the automata, which might
be countably infinite. Nevertheless, the general idea is that a local Turing automaton Av in graph
G corresponds to a single tape cell drawn from a hypothetical Turing machine, hence it has a finite
number of states. It is the graph structure that needs to be stretched by appropriate means (e.g. by
graph grammars) to construct Turing automata with an infinite number of states.

To be more precise about the syntax of Turing graph machines, each internal vertex v in the underlying
graph G with d(v) = n is labeled by a symbol σ ∈ Σn, where Σ is a fixed ranked alphabet. The symbol
σ is a syntactical reference to the Turing automaton Av . In addition, the degrees of v themselves must
be distinguished, e.g. by assigning a linear order to them. The intention is to clearly indicate the
flow of control through v. Two graphs G : n and G′ : n are called isomorphic if they are such as
ordinary graphs by an isomorphism that preserves the external vertices and the labeling information
of the internal vertices as well. To make the necessary distinction, graphs over the alphabet Σ will
be called Σ-graphs. The alphabet Σu in which there is a single symbol σn for each rank n will play a
distinguished role in our presentation. This alphabet will be referred to as the uniform one.

The formal definition of Turing automata is adopted from [4]. For a set A, let A⋆ = A + {⋆}, where ⋆

is a fixed symbol, called the anchor.

Definition 1. A Turing automaton (TA, for short) T : A is a triple (A,Q, δ), where A is a set of
interfaces, Q is a nonempty set of states, and δ ⊆ (Q × A⋆)

2 is the transition relation.

Two automata T = (A,Q, δ) and T ′ = (A,Q′, δ′) are called isomorphic, notation T ∼= T ′, if there
exists a bijection χ : Q → Q′ such that

(χ−1 × idA⋆
) ◦ δ = δ′ ◦ (χ × idA⋆

).

In the sequel we shall not distinguish between isomorphic automata, unless otherwise stated. In
practice, however, isomorphism classes of automata will be dealt with through representatives, bearing
in mind the issue of compatibility with the operations to be defined in the next section.

Switching by Turing automata 3

... ...

b)a)

L R
<1,L>

<n,L>

<1,R>

<n,R>
x x

Figure 1: One tape cell in a Turing machine.

Due to the discrete nature of the semantics involved, we shall assume that the cardinality of the
sets A and Q is finite and countable, respectively. The anchor is a fixed “invisible” interface, which
will allow the automaton T to have transitions even if A = ∅. As a distinction, interfaces different
from the anchor will be called real. The transition relation δ can either be considered as a function
Q ×A⋆ → P(Q × A⋆) or a function Q× (A⋆ × A⋆) → P(Q), giving rise to a Mealy or Medvedev type
automaton, respectively. We shall favor the latter interpretation, and call ΘA = A⋆ × A⋆ the input
alphabet for T . Then, as it is customary in automata theory, the extension of δ to input strings in
ΘA will be denoted by δ, too. By the standard definition, T is deterministic if δ is a partial function
in the chosen Medvedev sense. In contrast, T is strongly deterministic if δ is a partial function in the
Mealy way. Despite the Medvedev style formalism we still say that T has a transition from a to b in
state q, resulting in state r, if ((q, a), (r, b)) ∈ δ (that is, r ∈ δ(q, (a, b))).

Example 1. In Fig. 1a, consider the primitive model of one tape cell in a Turing machine M holding
a symbol x. If M has tape alphabet Γ and states {s1, . . . , sn}, then we represent this cell by the TA
C = (A+A,Q, δ), where A = [n], Q = Γ, and δ is essentially the transition relation of M . See Fig. 1b.
Recall that the transition relation of M specifies one move of M as a 5-tuple (si, x, sj , y,D), where
x, y ∈ Γ and D is a direction, i.e., L or R. Spelling this out, if M is in state si and its tape head is
scanning a cell that holds symbol x, then M changes its state to sj, rewrites the symbol x to y, and
its tape head moves into direction D. Our interpretation δ of one move also takes into account the
direction where the tape head is coming from, but this is a trivial issue not affecting the computational
power of Turing machines. (Indeed, one might consider states (si, L) and (si, R) in a variant of M .)
The main point of this analogy is the duality that states of M are viewed as interfaces (inputs) of C,
whereas tape symbols (inputs) of M are in fact states of C.

To adjust the general definition of Turing automata to our current model, the set of interfaces A will
always be chosen as [n] for some n ≥ 0. With the anchor fixed as ⋆ ≡ 0, A⋆ = 〈n〉 = {0, . . . , n}. We
say that the automaton T is of sort n, and write T : n.

Example 2. The n-ary atomic switch is the Turing automaton An : n (n ≥ 1) having states [n], so
that

δ = {((i, j), (j, i)) | 1 ≤ i 6= j ≤ n} ∪ {((i, i), (j, j)) | 1 ≤ i 6= j ≤ n}

∪{((i, 0), (i, j)), ((i, j), (i, 0)) | i, j ∈ [n]}.

In addition, if n = 1, then ((1, 1), (1, 1)) ∈ δ. For better readability, states, indicating a selected edge
in an n-star graph, are written in boldface.

Heuristically, the n-ary atomic switch captures the behavior of an atom in a molecule having n

neighboring atoms to which it is connected by a single or double chemical bond in any given state q.
Among these bonds exactly one is double, and the corresponding edge in the underlying star graph
K1,n : n is referred to as the positive edge with respect to q. (Notice that, for n = 1, only one vertex
of K1,1 is external, even though the other has degree 1, too.) The rest of the edges in K1,n are called
negative with respect to q. The mechanism of switching is then clear by the definition above. The
active ingredient (control) in this process is called the soliton, which is a form of energy traveling in

4 M. Bartha, M. Krész

d1:01,1K :1
1

11:2
1 2

Figure 2: Three simple line graphs.

small packets through chains of alternating single and double bonds within the molecule, causing the
affected bonds to be flipped from single to double (negative to positive) and vice versa. See [12] for
the physico-chemical details, and [11, 5] for the corresponding mathematical model. Note that, by our
definition above, whenever the soliton enters an atom with a unique chemical bond (which must be
double since n = 1), it bounces back immediately, producing no state change.

In our algebraic framework we shall also need two trivial Turing automata ⊥ : 0 and A0 : 0. The
automaton A0 has a single state 0 with an anchor-to-anchor transition in that state. Intuitively, A0 is
the behavior of an isolated vertex (the graph K1,0 : 0) as a “nullary” atomic switch. The automaton
⊥, as the meaning of the the empty graph K0,0 : 0, also has a single state, but it has no transitions
whatsoever. The graph 11 : 1 + 1, which consists of a single interface edge connecting the external
vertices 1 and 2, is called the identity. Its meaning as a Turing automaton 11 : 1 + 1 has a single
state 0, has a (unique) transition on input (i, 2 − i) for both i = 1, 2, but no transitions involving the
anchor.

At this point the reader might wonder how many non-isomorphic graphs we have with a single edge
connecting two distinct vertices. The answer is given in Fig. 2: the identity graph 11 : 1 + 1, the
1-star 1 = K1,1 : 1, and the “dumbbell” d1 : 0. We also introduce an abstract “sink” graph ⊥ : 0,
which is just another isolated vertex labeled by the symbol ⊥. The meaning of this graph as a Turing
automaton will simply be ⊥, the same as that of the empty graph K0,0. The intention is to have the
algebra of Σ-graphs freely generated as a traced monoidal category [17] from the labeled star graphs.
Indeed, the trace of the identity 11 : 1 + 1(1 → 1) as a graph of sort 0 (0 → 0) must not be the empty
graph 10 = K0,0 by the free interpretation of trace, even though this is what one would normally
expect under all reasonable interpretations. For a counterexample, in the well-known traced monoidal
category of finite dimensional vector spaces over the real or complex field F , the trace TrV1V of the
identity on any object (space) V is the dimension of V, and not the identity on F (represented by the
number 1) as the morphism 1F in that category. See [2] for details.

3. The algebra of graphs and Turing automata

There are a number of natural operations that are common to graphs and Turing automata. We are
going to describe these operations as a many-sorted algebraic structure over the set N of non-negative
integers as sorts. For the origins of this structure, the reader is referred to [4], where the general
definition of indexed monoidal algebras over an arbitrary monoid M was worked out. We simply adopt
that definition below by fixing the monoid M to be (N, 0,+). One of the key ideas in this definition is
indexing an element f of sort n by a permutation ρ : n → n. Intuitively, this amounts to a relabeling
of the interfaces according to ρ. For n,m ∈ N , let 1n be the identity permutation n → n, and cn,m be
the symmetry (block transposition) n + m → m + n. As it is well-known, permutations as morphisms
define a strict symmetric monoidal category [20] Π over the objects (monoid) N . Composition and
tensor in Π will be denoted by • and ⊘, respectively. Now the operations and constants of an N -
indexed algebra N = {Nn|n ∈ N} are the following:

– For each permutation ρ : n → n, a unary operation ρ : Nn → Nn.
– For each n,m ∈ N , a binary operation sum, ⊕ : Nn ×Nm → Nn+m.
– For each n ∈ N , a constant 1n ∈ Nn+n.
– For each n,m ∈ N , a unary operation trace, ln: Nn+n+m → Nm.

Switching by Turing automata 5

To emphasize the categorical nature of such algebras we call the elements f ∈ Nn morphisms and
write f : n. We also write f : n → m as an alternative for f : n + m, being aware of the ambiguity
arising from the indefinite choice of n and m. Note that left-cancellativity of our monoid N is needed
to make the trace operation sound. Moreover, the accurate notation for trace would be ln,m, but the
intended object (number) m will always be clear from the context. Also notice the boldface notation
1n : n → n as opposed to 1n : n → n as a permutation. For better readability we shall write f · ρ for
fρ, that is, for indexing f by permutation ρ.

Composition (◦) and tensor (⊗) are introduced in N as derived operations in the following way.

– For f : n → m and g : m → k, f ◦ g =lm ((f ⊕ g) · (cn,m+m ⊘ 1k)).
– For f : n → m and g : k → l, f ⊗ g = (f ⊕ g) · (1n ⊘ cm,k ⊘ 1l).

See Fig. 3. Again, the accurate notation for ◦ and ⊗ would use the objects n,m, k, l as subscripts, but
these numbers will always be clear from the context. Observe that the above definition of composition
and tensor is in line with the traced monoidal category axioms [6, 17].

f gf g

a) b)

n mk lm m n k

Figure 3: Composition (a) and tensor (b) in N .

First let us identify the N -indexed algebra operations and constants in the structure of Σ-graphs.

— For a graph G : n and permutation ρ : n → n, G · ρ is the graph obtained from G by relabeling its
external vertices according to ρ.
— For graphs G : n and H : m, G ⊕ H : n + m is the disjoint union of G and H with the labels of
H’s external vertices incremented by n.
— For every n ∈ N , the graph 1n : n + n consists of n edges connecting external vertex i with n + i

for each i ∈ [n].
— For a graph G : n+n+m, ln G is constructed from G by gluing together the pairs of edges ending
in external vertices i and n + i for each i ∈ [n], discarding the vertices i and n + i themselves. As
part of this procedure, whenever a number of external edges are glued together in a cycle with no
intercepting vertices, a new copy of the graph ⊥ is added to the graph. Finally, the label of each
remaining external vertex is decremented by n+n. See Fig. 4 for the implementation of l3 on a graph
G : 3 + 3 + 1.

() =3

5

3 6

2

4
71 1

Figure 4: Taking the trace of a graph.

The algebra of Σ-graphs defined in this way is denoted by G(Σ). Now we turn to the formal definition
of N -indexed algebras in terms of equational axioms.

Definition 2. An N -indexed algebra (NIA, for short) is an N -sorted algebra

N = {Nn |n ∈ N}

6 M. Bartha, M. Krész

equipped with the operations and constants listed above, which satisfies the following equational
axioms.

I1. Functoriality of indexing

f · (ρ1 • ρ2) = (f · ρ1) · ρ2 for f : n, ρ1 : n → m, and ρ2 : m → k;

f · 1n = f for f : n.

I2. Naturality of indexing

(f ⊕ g) · (ρ1 ⊘ ρ2) = f · ρ1 ⊕ g · ρ2 for f : n, g : m, ρ1 : n → k, ρ2 : m → l;

(ln f) · ρ =ln (f · (1n+n ⊘ ρ)) for f : n + n + m, ρ : m → k.

I3. Associativity and symmetry of sum

(f ⊕ g) ⊕ h = f ⊕ (g ⊕ h) for f : n, g : m, h : k;

f ⊕ g = (g ⊕ f) · cn,m for f : n, g : m.

I4. Right identity

f ◦ 1n = f and f ⊕ 10 = f for f : n → m.

I5. Symmetry of identity

1n · cn,n = 1n.

I6. Vanishing

l0 f = f for f : n;

ln+m f =lm (ln f · (1n ⊘ cm,n ⊘ 1m+k)) for f : (n + m) + (n + m) + k.

I7. Superposing

ln (f ⊕ g) =ln f ⊕ g for f : n + n + m, g : k.

I8. Trace swapping

lm (ln f) =ln (lm (f · (cn+n,m+m ⊘ 1k))) for f : n + n + m + m + k.

The reader can now easily verify that the structure G(Σ) of Σ-graphs is an NIA. The notation G is used
for the graph algebra in which Σ = Σu (i.e., the uniform alphabet), and, furthermore, the equations
K1,n · ρ = K1,n hold for every n ∈ N and permutation ρ : n → n. (K1,n stands for the n-star with its
internal vertex labeled by σn.) Under these assumptions there is no need to actually specify the label
of a vertex (unless it is ⊥, of course) or the ordering of the ports within that vertex. Thus, graphs
in G are ordinary undirected graphs. Also, we shall impose the identity l1 11 = 10 in G, so that the
graph ⊥ virtually disappears in this algebra.

Let N and N ′ be N -indexed algebras. An N -indexed homomorphism h : N → N ′ is a family of
mappings {hn : Nn → N ′

n |n ∈ N} that determine a homomorphism in the usual algebraic sense. The
following result was proved in a more general setting in [4]. For the category theory background the
reader is referred to [18, 20].

Theorem 1. Every N -indexed algebra is equivalent to a self-dual compact closed category over the
monoid N as objects. This connection defines an equivalence between the category of N -indexed
algebras with N -indexed homomorphisms as morphisms, and the category of locally small self-dual
compact closed categories over the fixed monoid N as objects, with strict monoidal functors preserving
the given self-adjunctions as morphisms. For a ranked alphabet Σ, the algebra G(Σ) is freely generated
by Σ.

Next we identify the NIA operations in the structure of Turing automata. In this algebra T , the
morphisms of Tn are Turing automata T : n.

Switching by Turing automata 7

— A permutation ρ : n → n is interpreted as the relabeling of the interfaces according to ρ. (Elabo-
ration of details regarding the transition relation is left to the reader.)

— The sum of T : n and T ′ : m having states Q and Q′, respectively, is the automaton T ⊕ T ′ =
([n + m], Q × Q′, δ ⊕ δ′), where δ ⊕ δ′ ⊆ ((Q × Q′) × 〈n + m〉)2 is defined by

((q, q′), i), ((r, r′), j)) ∈ δ ⊕ δ′

iff either q′ = r′ and ((q, i), (r, j)) ∈ δ, or q = r and ((q′, i−n), (r′, j−n)) ∈ δ′, with the understanding
that the expression i − n (j − n), when not positive, is meaningful only if i = 0 (respectively, j = 0),
in which case it stands for 0. In other words, taking the sum of T and T ′ amounts to the selective
performance of δ or δ′ on Q × Q′. As part of this definition, transitions of T ⊕ T ′ involving the
anchor 0 are the “union” of such transitions in T and T ′, that is, either one by T or one by T ′,
nondeterministically on the product state space, always leaving the other component unchanged.

— The identity Turing automaton 1n : n + n has a single state, in which there is a transition from i

to n + i and back for every i ∈ [n]. There are no transitions to or from the anchor.

— The definition of ln T for a TA T : n + n + m is complicated but natural, and it holds the key to
understanding the Turing-machine-like behavior of this automaton. Intuitively, the definition models
the behavior of loops in flowchart algorithms [15], when implemented in an undirected environment.
Control enters ln T (viewed essentially as T) at an interface j ∈ 〈m〉 (that is, n + n < j ≤ n + n + m

or j = 0 according to T), then, after alternating between corresponding interfaces of T belonging to
[n + n] any number of times, it leaves at another (or the same) interface j′ ∈ 〈m〉. State changes are
traced interactively during this process.

Formally, let u = p1 . . . pl ∈ Θ∗
[n+n+m] be a non-empty input string for T , where pi = (xi, yi), i ∈ [l],

l ≥ 1. The string u is called n-alternating from x1 to yl (u : x1 → yl, for short) if for every i ∈ [l − 1]
there exist ni ∈ [n] and j ∈ {0, 1} such that

yi = jn + ni and xi+1 = (1 − j)n + ni.

The transition function δ̂ of lA T is defined for every state q ∈ Q and input p = (m1,m2) by

δ̂(q, p) = ∪(δ(q, u)|u : m1 → m2 is n-alternating).

It is easy to see that all of the NIA operations are compatible with isomorphism of automata. Therefore
the algebra T of isomorphism classes of TA is well-defined. The reader familiar with iteration theories
[9] will notice that the above trace operation l is the undirected counterpart of iteration in Conway
matrix theories. See also the example traced monoidal category (Rel,+) in Section 6 of [17], which
originates from [9], too. The connection between these two operations has been made explicit in [4, 2]
by characterizing Turing automata as matrices over the semiring of their state transformations. The
following theorem is quoted again from [4].

Theorem 2. The algebra T of Turing automata is indexed by the monoid N .

Now we relate the algebra of graphs G(Σ) (the syntax) to that of Turing automata (the semantics).
An interpretation of Σ in an arbitrary NIA N is a rank-preserving mapping Ω from Σ into N . By
Theorem 1, Ω can be extended in a unique way to a homomorphism Ω : G(Σ) → N .

Definition 3. A Turing graph machine over the ranked alphabet Σ is a couple M = (G,Ω), where G

is a Σ-graph and Ω is an interpretation of Σ in T . As an automaton, M stands for (the isomorphism
class determined by) the TA Ω(G).

8 M. Bartha, M. Krész

Definition 3 puts the intuitive concept of Turing graph machines described at the beginning of Section 2
in a precise algebraic form. Indeed, the transitions of the automaton Ω(G) in each state are recaptured
by making appropriate walks in G. Recall from [19] that a walk w = v0, e1, . . . , vn is an alternating
sequence of edges and vertices, which starts and ends with a vertex, and in which each edge is incident
with the vertex immediately preceding it and the one immediately following it. Regarding the walks
corresponding to transitions of Ω(G), the first/last vertex of such a walk w is external (internal) iff the
transition starts/ends at a real interface (respectively, the anchor). Only the two endpoints of w can
be external. An empty walk w = v0 corresponds to an anchor-to-anchor transition of the automaton
at vertex v0. Notice that such transitions do not exist in the atomic switches.

4. Soliton automata

Starting from the interpretation determined by the atomic switches, we are going to arrive at the
model of soliton automata as Turing graph machines after a number of steps. As it will turn out
from this discussion, the algebra of soliton automata does not follow the structure of Turing automata
literally, rather, it is the quotient of an appropriate subalgebra of T . Thus, the structure of soliton
automata is an NIA, and as such it is a homomorphic image of the algebra G of ordinary undirected
graphs.

Definition 4. A pre-soliton automaton is a Turing graph machine over the uniform alphabet Σu in
which the interpretation of σn is fixed as the n-ary atomic switch.

Remember that the nullary atomic switch is the automaton A0. Since the atomic switches are circularly
symmetric, the given interpretation Ω can also be extended in a unique way to a homomorphism from
G to T . Notice that, for example, the automaton determined by a single internal vertex having a loop
around it still has two states, and not just one. Transitions between these two states can be triggered
by the input (0, 0) (anchor-to-anchor, that is).

Let Pre(G) denote the pre-soliton automaton determined by graph G in this way. For technical
reasons it will be more appropriate for us to work with walks in the underlying graphs of pre-soliton
automata as sequences w = e1, v1, . . . , vn−1, en, that is, sequences that start and end with an edge,
rather than a vertex. Indeed, the atomic switches do not have anchor-to-anchor transitions, so that
the empty walks are ruled out. We can have a self-transition in each state, though, determined by a
single internal edge as a walk. In the new sense, the length of w is the number of vertices occurring
in w, and w is closed if e1 = en. An empty walk is a closed one with length 0. A path is a walk with
no repeating edges or vertices. A cycle is a path closed up by the unreferenced endpoint of the initial
edge e1 and the edge e1 itself. We accept w = e1 as a degenerate “empty cycle”.

Walk w is external if e1 or en is such, otherwise w is internal. An alternating walk in G with respect
to some state q of Pre(G) is a walk that determines a transition of Pre(G) on some input in state
q. A soliton walk is a two-way external alternating walk, which then corresponds to a transition of
Pre(G) from one real interface to another. An alternating cycle is an even-length cycle that is also
an alternating walk. An alternating unit is either a soliton path or an alternating cycle.

Given a state q and an alternating walk w with respect to q, making w in q refers to the process of
flipping the states of the atomic switches corresponding to the vertices (star graphs) along w in an
interactive way. The state q′ obtained at the end of this process is denoted by S(q, w).

Observe that pre-soliton automata are naturally reversible as computational devices. Indeed, if w is
an alternating walk with respect to state q, then wR (the reverse of w) is alternating with respect
to S(q, w) and S(S(q, w), wR) = q. By definition, pre-soliton automata form a sub-NIA of T , which
subalgebra is a homomorphic image of G. Actually, the homomorphism Ω in this case turns out

Switching by Turing automata 9

to be injective, so that the algebra of pre-soliton automata is isomorphic to G. In other words,
Pre(G) ∼= Pre(G′) iff G ∼= G′. (Remember that the empty graph is identified with the sink graph in
G.) We are not concerned with this algebra directly, however. It is only the structure of transitions
in Pre(G), i.e., making alternating walks in G, which is characteristic of soliton automata.

Let q be a state of some pre-soliton automaton Pre(G). An internal edge e = (u, v) ∈ E(G) is called
consistently positive (negative) with respect to q if e is positive (respectively, negative) as an edge
of both star graphs centered at u and v with respect to the projection of q to these star graphs.
(Remember that q is the tuple of the local states of all the star graphs G is composed of.) Edge e is
inconsistent otherwise. Notice that we cannot call the star graphs in hand subgraphs, since G might
have loops. An external edge is of course always consistent in this sense (either positive or negative),
since it identifies a unique edge of a single star graph in G. Consistency is not an issue for interface
edges. According to this definition, a looping edge can only be negative if consistent. From now on,
by a positive (negative) edge with respect to q we shall always mean a consistent one. The sign of a
consistent edge e ∈ E(G) with respect to q will be denoted by sign(q, e), and cons(q) will stand for
the number of consistent edges with respect to q.

Let Mq denote the set of positive edges with respect to state q. Clearly, Mq defines a matching in G.
Recall from [19] that a matching is a subset M ⊆ E(G) such that no vertex of G occurs more than
once as an endpoint of some edge in M . It is understood, as part of this definition, that loops cannot
be present in M . We say that q is maximum consistent if Mq is a matching that covers a maximum
number of internal vertices. Such a matching is called maximum internal in G. If a matching M

covers all of the internal vertices, then it is a perfect internal matching. See again [19, 3]. A perfect
matching is just a perfect internal matching of a closed graph.

Now let w = e1, v1, . . . , en be a walk in G which determines a transition in Pre(G) starting from the
anchor in state q. By definition, the consistency of e1 changes only if n > 1. Then the consistency of
e2 changes once if n = 2 and e1 6= e2, and twice if n > 2 or e1 = e2. Following up on this idea, we
obtain the three simple statements below.

Lemma 1. For an arbitrary graph G, let q ∈ Q be a state of Pre(G) and w = e1, v1, . . . , en be an
alternating walk in G with respect to q. Then, for the state q′ = S(q, w):

(a) If w is a soliton walk, or w is internal and closed, then cons(q) = cons(q′).

(b) If w is external, but not two-way external, then |cons(q) − cons(q′)| = 1.

(c) If w is internal and open, then |cons(q) − cons(q′)| = 2 whenever the consistency of e1 in q

is the same as that of en, and cons(q) = cons(q′) if this is not the case.

Proof. Immediate by the definitions.

By Lemma 1, a soliton walk, as well as an anchor-to-anchor transition determined by an even-length
closed walk, will always take a perfect internal matching of G into a perfect internal matching. More-
over, perfect internal matchings of G are invariant only by such transitions. This is no longer true for
just maximum consistent states, because a transition between such two states can also be induced by
an open internal alternating walk w of type (c) above. See the Gallai-Edmonds Structure Theorem
below.

For every graph G, let Max(G) denote the sub-automaton of Pre(G) determined by its maximum
consistent states. Observe that the connection q 7→ Mq between states and maximum internal match-
ings is not one-to-one, therefore states cannot be identified with maximum internal matchings. It is
easy to see, however, that the internal deficiency of G [19, 3], that is, the number of internal vertices
not covered by a maximum internal matching, equals the number of inconsistent edges in any state

10 M. Bartha, M. Krész

1 21 2

G
1

G 2

Figure 5: The two graphs of Example 3.

of Max(G). See also the Gallai-Edmonds Structure Theorem below for an explanation. For any two
graphs G,G′ : n, we say that the automata Max(G) and Max(G′) are faithfully isomorphic, in notation
Max(G) ∼=f Max(G′), if they are such by an isomorphism χ that preserves the sign of the correspond-
ing external edges. To spell this out, any external vertex i is connected to an internal one in G1 by
some edge e1 iff it is connected to one in G2 by edge e2, and in that case sign(q, e1) = sign(χ(q), e2) for
every state q of Max(G1). Notice that faithful isomorphism is a stronger requirement than ordinary
isomorphism, and it is meaningful only if we specify the underlying graphs G1 and G2. (Remember
that interface edges do not have a sign assigned to them.) Faithful isomorphism cannot be defined for
Turing automata in general. Also notice that the faithful distinction is irrelevant in sort 0.

Example 3. Consider the simple graphs G1 and G2 of sort 2 in Fig. 5. Clearly, G1 and G2 both
have a unique perfect internal matching, and Max(G1) ∼=f Max(G2). On the other hand, l1 G1 has 3
maximum internal matchings (out of 4 states), while l1 G2 has 4 (out of 6 states). Thus, the automata
Max(l1 G1) and Max(l1 G2) are not isomorphic.

Example 3 shows that it is impossible to define the NIA of “maximum” pre-soliton automata in a
consistent way. Therefore we have to make further changes to our model to obtain the desired algebra
of soliton automata. This time the change will be of a structural nature, captured in abstract terms
by taking the quotient of automata. Before introducing the change, however, we need to learn more
on the structure of maximum matchings in graphs.

4.1. The Gallai-Edmonds decomposition of graphs

One of the earliest fundamental results in matching theory is the so called Gallai-Edmonds Structure
Theorem [16, 14]. The main idea of this theorem is to decompose an arbitrary (closed) graph G into
three sets of vertices as follows.

• D(G): vertices not covered by at least one maximum matching of G;

• A(G): vertices in V (G) − D(G) adjacent to at least one vertex in D(G);

• C(G) = V (G) − A(G) − D(G).

The five statements of the theorem are listed below. To explain statements (a) and (d), a closed
graph G is called factor-critical if G − v has a perfect matching for every v ∈ V (G). In this case, a
near-perfect matching of G is one that covers all vertices but one. Clearly, every factor-critical graph
is connected and has an odd number of vertices. For statement (c), let G be a bipartite graph with
bipartition (V1, V2). The surplus of G viewed from V1 is the number

min{(|Γ(X)| − |X|) |X ⊆ V1,X 6= ∅},

where Γ(X) denotes the set of all vertices in V2 adjacent to at least one vertex in X. Regarding (e), the
deficiency of G, denoted def(G), is the number of vertices left uncovered by an arbitrary maximum
matching of G.

Theorem 3. (The Gallai-Edmonds Structure Theorem)

(a) The components of the subgraph induced by D(G) are factor-critical.

Switching by Turing automata 11

1 2

C(G):

A(G):

D(G):

Figure 6: The Gallai-Edmonds decomposition of a graph.

(b) The subgraph induced by C(G) has a perfect matching.

(c) The bipartite graph obtained from G by deleting the vertices of C(G) and the edges spanned
by A(G) and by contracting each component of D(G) to a single vertex has positive surplus (as
viewed from A(G)).

(d) If M is any maximum matching of G, it contains a near-perfect matching of each component
of (the graph induced by) D(G), a perfect matching of C(G), and matches all vertices of A(G)
with vertices in distinct components of D(G).

(e) def(G) = c(D(G)) − |A(G)|, where c(D(G)) denotes the number of connected components in
D(G).

See Fig. 6 for a representative example. The counterpart of the Gallai-Edmonds Structure Theorem
for maximum internal matchings was proved in [7]. As it turned out, the difference between the
statement of the original theorem and that of its counterpart is of a rewording nature, and can be
summarized as follows:

— the set D(G), as well as A(G), consists of internal vertices only;

— the subgraph induced by C(G), which contains all of the external vertices, has a perfect internal
matching;

— in general, the words “perfect matching” and “maximum matching” are replaced by “perfect
internal matching” and “maximum internal matching”, respectively;

— in statement (e), def(G) is replaced by the internal deficiency of G.

In the light of Theorem 3 the reader may want to have another look at the graphs of Example 3. To
capture the essence of the Gallai-Edmonds Theorem in algebraic terms, let G : n be an arbitrary graph
(morphism in G). Construct A(G) : nC → nD to be the sum of vertices in A(G) as star graphs (that
is, with all the incident edges as external ones). Assign the labels to the external vertices in this sum
in such a way that the first nC and the last nD of them point towards C(G) and D(G), respectively.
Correspondingly, write C(G) in the form C(G) : n → nC and D(G) : nD(→ 0). See again Fig. 6.
Then the Gallai-Edmonds decomposition of G is simply

C(G) ◦ A(G) ◦ D(G)

in the NIA (self-dual compact closed category) G. Observe that C(G), as a morphism n → nC , might
pick up a few instances of the identity graph 11 : 0 → 2 which are not originally present in G. Indeed,
edges connecting vertices in A(G) must be closed up by such extra lines using “canonical trace”,
cf. [17, 4]. Formally we put these lines in C(G), because they have a perfect internal matching by
definition.

12 M. Bartha, M. Krész

0 +
1

−01

1 1

Figure 7: The erase graphs.

4.2. The algebra of soliton graphs and automata

Now we turn to the definition of soliton graphs and soliton automata. If G is a graph having a perfect
internal matching, then we shall use the notation Sol(G) for Max(G).

Definition 5. A soliton graph is a graph having a perfect internal matching. The soliton automaton
determined by a soliton graph G is the automaton Sol(G). The soliton automata determined by
graphs G and G′ are isomorphic if Sol(G) ∼=f Sol(G′).

Observe that it is now safe to identify the states of a soliton automaton Sol(G) with the perfect
internal matchings of G. By Lemma 1, the only alternating walks in G that determine a transition
in Sol(G) are the soliton walks and the closed even-length internal ones. Such walks will therefore be
called transition walks in G. Note that an odd-length closed internal alternating walk with respect
toto a perfect internal matching simply does not exist. In Fig. 7, consider the two soliton graphs 0+

1

and 0−1 as morphisms 1 → 0 in G. We call them the positive and negative erase morphisms (graphs)
for obvious reasons. Both have a unique perfect internal matching, but their soliton automata are not
faithfully isomorphic, just isomorphic. For an arbitrary graph G, define

C̄(G) = C(G) ◦ ⊕nC

i=10
−
1 .

Clearly, C̄(G) is a soliton graph, and it reflects the intention to “sew up” the interfaces of C(G)
pointing towards A(G) by negatively erasing them. See again Fig. 6. Notice that we are not losing
degrees anywhere in the design, which is crucial from the algebraic point of view.

The operations of the Gallai-Edmonds algebra G-E of soliton graphs are the same as those of the NIA
G, except that trace is defined in G-E by the formula

(ln G)G-E = C̄((ln G)G) for G : n + n + m.

The following important theorem was proved in [8].

Theorem 4. The mapping G 7→ C̄(G) is a homomorphism, called the Gallai-Edmonds map. Conse-
quently, the algebra G-E is an NIA.

Extend the definition Sol(G) for all graphs G by the formula:

Sol(G) = Sol(C̄(G)).

This will allow us to speak of the soliton automaton determined by an arbitrary graph G.

Example 4. Consider the graphs G1 and G2 in Fig. 8. Clearly, the internal deficiency of both graphs
is 1, but C(G1) : 0 → 0 is empty, while C(G2) : 0 → 2 is the identity graph 11. (Mind the edge
connecting the two vertices in A(G2).) Open up the loops in both graph as shown in Fig. 8 by dashed
lines, to obtain the graphs G′

1 and G′
2 of sort 2. Observe that these two graphs already have a perfect

internal matching (in fact two), and Gi =l1 (G′
i), i = 1, 2. Moreover, Sol(G′

1)
∼=f Sol(G′

2). We
want the soliton automata Sol(G1) and Sol(G2) to remain isomorphic. Since these automata are
associated with the soliton graphs C̄(G1) and C̄(G2), respectively, the automaton ⊥ = Sol(⊥) must
be (faithfully) isomorphic to Sol(11 ◦ (0−1 ⊕ 0−1)). The latter automaton, being isomorphic to A0, has
an anchor-to-anchor self-transition, while the former does not.

Switching by Turing automata 13

G2G1

Figure 8: The graphs of Example 4.

For reasons explained in Example 4 above, the equation ⊥ = A0 will hold in the NIA of soliton
automata, whether we like it or not. The immediate consequence of this equation is that all soliton
automata (even the identities) will virtually have an anchor-to-anchor self-transition in each state.
(Mind the right identity axiom I4, observing that ⊥ = 10 holds already in G.) Thus, our effort to
exclude such transitions in certain Turing automata was practically in vain for soliton automata. It was
not, however, regarding the whole algebra T of general Turing automata, which is of course a lot richer
than the very simple subalgebra of pre-soliton automata, a quotient of which is the NIA of soliton
automata. The proof of the following lemma provides an excellent illustration of the phenomenon
“soliton valving” [12, 11].

Lemma 2. For an arbitrary graph G, let q be a maximum consistent state of Pre(G). Let, fur-
thermore, w = e1, v1, . . . , en be an alternating walk with respect to q that starts and ends in an edge
belonging to C(G). Then there exists an alternating walk w′ in C̄(G) with respect to the restriction q′

of q to C(G), connecting e1 with en in such a way that w′ covers the exact same vertices and edges
from C(G) as w, in the same order and with the same multiplicity. Thus, S(q′, w′) is the restriction
of S(q, w) to C(G).

Proof. Indeed, whenever the walk w leaves C(G) on an edge e leading to a vertex u in A(G), the sign
of e is negative and w will continue on a positive edge e′ pointing to a vertex v in D(G). After that,
w must remain in D(G) until it comes back to v, only to make the edges e′ and e in reverse, and then
continue in C(G) as if it has never left this subgraph. The reason is that, every time w hits a vertex
u′ ∈ A(G) different from u, it will arrive on a negative edge and the “valve” (i.e., the positive edge)
at u′ will force w to continue towards D(G). Applying this argument inductively, w must return to
u. See Theorem 3(d). It also follows from Theorem 3(a,d) that w will run exclusively on consistent
edges. The augmentation of C(G) to C̄(G) is necessary, because w, when coming back to C(G) from
u, may start a backtrack on the edges made before. If we did not include and “sew up” the vertex u,
this backtrack would not be feasible without the presence of A(G) and D(G).

Lemma 2 shows that Sol(G) is the quotient automaton of Max(G) by the equivalence that puts two
states in the same class iff their restriction to the subgraph C(G) coincides. It is also immediate by
Lemma 2 that an arbitrary non-empty alternating cycle with respect to any state q of Max(G) will
run exclusively in C(G) or in D(G).

Lemma 3. Let G : 1 + 1 + m be a soliton graph, and assume that G′ =l1 G does not have a perfect
internal matching. Then for every edge e in D(G′), different from the newly created one when closing
up the external edges e1 and e2 in G, and for every state (perfect internal matching) q of G in which
e is positive, there exists an alternating path w from ei to e in G with respect to q for either i = 1 or
i = 2 (or both). The path w runs entirely in D(G) ∪ A(G).

Proof. This is an immediate consequence of Theorem 3. The lack of such a path in state q would
imply that the set of vertices A(e, q) in A(G′) accessible by alternating paths originating from e with

14 M. Bartha, M. Krész

respect to q has a zero surplus in the Gallai Edmonds decomposition of G′, contradicting statement
(c) of that theorem. Indeed, the internal deficiency of G′ is 1, and the inconsistent edge in G′ (with
respect to q) created when joining e1 with e2 already identifies the factor-critical component D0 in
D(G′) which is not helped out by a positive edge from A(G′). Clearly, D0 is not the component in
which the edge e resides, because in that case a suitable alternating path would exist. (Compare
with the idea of finding augmenting paths in the Edmonds matching algorithm [13, 19].) The second
statement of the lemma follows directly from Lemma 2.

Corollary 1. Under the conditions of Lemma 3, if w is a non-empty alternating cycle in G with
respect to q running entirely in D(G′), then the transition determined by w can also be made as a
closed soliton walk in G starting from either e1 or e2.

Proof. One can start e.g. from e1, go down to a positive edge in w, make w, and backtrack to e1.

We shall also need the following result, quoted from [6]. Let G be a soliton graph and q be a perfect
internal matching of G. An alternating network with respect to q is a set Γ of pairwise disjoint
alternating units (that is, soliton paths or alternating cycles). Then the perfect internal matching
S(q,Γ) is obtained from q by making the units in Γ one-by-one in an arbitrary order.

Proposition 1. ([6, Theorem 3.1]) For any two perfect internal matching’s q1 and q2 of a soliton
graph G there exists an alternating network Γ such that q2 = S(q1,Γ).

Let w be a transition walk in a soliton graph G with respect to state q. Then, for an arbitrary
subgraph G′ of G, we say that w has a visible trace on G′ if there exists at least one edge e in G′ such
that sign(q, e) 6= sign(S(q, w), e).

Corollary 2. Let G and H be soliton graphs of sort 1 + 1 + n with G as in Lemma 3, and assume
that Sol(G) ∼=f Sol(H) by a faithful isomorphism χ. Furthermore, let w be a transition walk in G on
input p with respect to some state q of Sol(G) that runs entirely in C(G′) such that r = S(q, w) 6= q.
Then any transition walk χ(w) in H that induces the transition χ(q) 7→ χ(r) on p has a visible trace
on C(l1 H).

Proof. Denote H ′ =l1 H, and let f1, f2 be the first two external edges in H. Since χ is faithful, H ′

does not have a perfect internal matching either. By Lemma 2 and Proposition 1, if χ(w) did not have
a visible trace on C(H ′), then making χ(w) would be equivalent to making a number of alternating
cycles in D(H ′). This is impossible, however, since Corollary 1 says that any of these cycles can be
made as a closed soliton walk from either f1 or f2, while the transition from q to r 6= q in Sol(G) is
definitely not available as a sequence of transitions on inputs (1,1) and (2,2) only.

Notice that the above argument remains valid if the transition q 7→ r is induced by an alternating
network Γ, rather than just a transition walk w. In that case one must consider the cumulative effect
of making the walks in H corresponding to the units in Γ. Clearly, each of these walks will be a
transition walk in H, and if their cumulative trace on C(H ′) is empty, then this leads to the same
contradiction as above.

Now we are ready to define the algebra S of soliton automata. The morphisms in Sn are isomorphism
classes of soliton automata determined by soliton graphs G : n. The interpretation of relabeling, sum,
and that of the constants 1n in S is straightforward: downgrade the soliton automata as operands to
pre-soliton ones, perform the operation in T , and upgrade the result as a soliton automaton again.

Switching by Turing automata 15

Lemma 1 ensures that this argument is correct. Compatibility of faithful isomorphism with these
operations is trivial. The only challenging operation is trace. For a soliton graph G : n + n + m, let

ln Sol(G) = Sol(ln G). (1)

In order to make this definition applicable to isomorphism classes of soliton automata, we need the
following theorem.

Theorem 5. Let G and H be soliton graphs of sort n + n + m such that Sol(G) ∼=f Sol(H). Then
Sol(ln G) ∼=f Sol(ln H).

Proof. By an induction argument we can assume, without loss of generality, that n = 1. (Remember
the vanishing axiom I6, which holds in G-E .) If either of the external vertices 1 and 2 is the endpoint
of an interface edge in G, then it is one in H, too, and the statement is trivial. Otherwise, as in
Corollary 2, let G′ and H ′ denote the graphs l1 G and l1 H, and let χ be a faithful isomorphism
between Sol(G) and Sol(H). If G′ still has a perfect internal matching, then so does H ′, for χ is faithful.
In this case the states of Sol(G′) and Sol(H ′) are identified by those perfect internal matchings of
G and H in which the sign of e1 and e2 (respectively, f1 and f2) is equal. Remember that e1 and
e2 (respectively, f1 and f2) are the external edges to be joined in G and H. Thus, the restriction
of χ to these states defines a faithful one-to-one correspondence ρ between the states of Sol(G′) and
Sol(H ′). Moreover, since χ is an isomorphism of automata, ρ will be one, too. (Use the downgrade-
upgrade argument again with regard to transitions, implementing them in the corresponding pre-
soliton automata.)

Assume therefore that G′ and H ′ no longer have a perfect internal matching. Take a perfect internal
matching of C(G′) as a state q′ of Sol(G′), and extend it to a perfect internal matching q of G according
to Theorem 3(d) in an arbitrary way, so that sign(q, e1) 6= sign(q, e2). Define the state ρ(q′) of Sol(H ′)
to be the restriction of χ(q) to C(H ′). By Proposition 1 and Corollary 1, ρ(q′) does not depend on how
the extension from q′ to q was chosen. For the same reason, in the light of Corollary 2, the mapping
ρ is injective and onto the states of Sol(H ′). Clearly, ρ is faithful as well.

Now let w′ be a transition walk in C̄(G′) from state q′ to r′ = S(q′, w′) on input p. Then, by
Lemma 2 and Corollary 2, there exists a transition walk in C̄(H ′) from ρ(q′) to ρ(r′) on p, which
can be constructed as the restriction of the walk in H that corresponds to w′, when considered as a
transition walk in G.

Corollary 3. The algebra S is a homomorphic image of the algebra G-E, therefore it is indexed by N .

Proof. Immediate by equation (1) and Theorem 5.

5. Conclusions

We have given a characterization of soliton automata as primitive Turing graph machines, in which
the behavior of each cell is a simple atomic switch capturing the transposition of the unique double
bond connecting a carbon atom in a hydrocarbon molecule to one of its neighbors. First we defined
the model of pre-soliton automata as a subalgebra of the N -indexed algebra of all Turing automata.
Then we identified soliton automata as appropriate quotients of certain maximal sub-automata of
pre-soliton automata. The states of soliton automata turned out to be the perfect internal matchings
of their underlying graph. We have discussed the Gallai-Edmonds decomposition of graphs in an
algebraic setting, and showed that the Gallai-Edmonds algebra of graphs having a perfect internal
matching is a homomorphic image of the free N -indexed algebra of general graphs. Finally we proved
that the algebra of soliton automata, being a homomorphic image of the Gallai-Edmonds algebra, is
also indexed by N .

16 M. Bartha, M. Krész

References

[1] ABRAMSKY, S., COECKE, B., A categorical semantics of quantum protocols, in: Proc. 19th Annual
Symposium on Logic in Computer Science, IEEE Computer Society Press, 2004, 415–425.

[2] BARTHA, M., Quantum Turing automata (http://www.cs.mun.ca/~bartha/linked/quant.pdf).

[3] BARTHA, M., KRÉSZ, M., Soliton circuits and network-based automata: review and perspectives, in:
Mathematics, Computing, Language, and Life: Frontiers in Mathematical Linguistics and Language The-
ory, C. Mart́ın-Vide (Ed), Vol. 2, Imperial College Press, 2010, 585–631.

[4] BARTHA, M., Turing automata and graph machines, Electronic Proceedings in Theoretical Computer
Science 26, (2010) 19–31 (http://www.cs.mun.ca/~bartha/linked/mono.pdf).

[5] BARTHA, M., KRÉSZ, M., Structuring the elementary components of graphs having a perfect internal
matching, Theoretical Computer Science 299 (2003), 179–210.

[6] BARTHA, M., GOMBÁS, É., On graphs with perfect internal matchings, Acta Cybernetica 12 (1995),
111-124.

[7] BARTHA, M., GOMBÁS, É., A structure theorem for maximum internal matchings in graphs, Information
Processing Letters 40 (1991), 289-294.

[8] BARTHA, M., GOMBÁS, É., The Gallai-Edmonds algebra of graphs, Technical Report No. 9105, De-
partment of Computer Science, Memorial University of Newfoundland, St. John’s, NL, Canada, 1991
(http://www.cs.mun.ca/~bartha/linked/g-e.pdf).

[9] BLOOM, S. L., ÉSIK, Z., Iteration Theories: The Equational Logic of Iterative Processes, Springer-Verlag,
Berlin 1993.

[10] CARTER, F. L. et al., Soliton switching and its implications for molecular electronics, in: Molecular
Electronic Devices II, Marcel Dekker Inc. 1987, 149–182.

[11] DASSOW, J., JÜRGENSEN, H., Soliton automata, J. Comput. System Sci. 40 (1990), 154-181.

[12] DAVYDOV, A. S., Solitons in Molecular Systems, Reidel, Dordrecht 1985.

[13] EDMONDS, J., Paths, trees and flowers, Canad. J. Math. 17 (1965), 449–467.

[14] EDMONDS, J., Maximum matching and a polyhedron with 0,1-vertices, J. Res. Nat. Bur. Standards Sect.
B (1968), 125–130.

[15] ELGOT, C. C., (1975) Monadic computations and iterative algebraic theories, in: Proc. Logic Colloquium
1973, Studies in Logic and the Foundations of Mathematics 80 (1975) 175–230.

[16] GALLAI, T., Maximale Systeme unabhängiger Kanten, Magyar Tud. Akad. Mat. Kutató Int. Közl. 9
(1964), 401–413.

[17] JOYAL, A., STREET, R., VERITY, D., Traced monoidal categories, Math. Proc. Camb. Phil. Soc. 119
(1996), 447–468.

[18] KELLY, G. M., LAPLAZA, M. L., Coherence for compact closed categories, J. Pure Appl. Algebra 19
(1980), 193–213.

[19] LOVÁSZ, L., PLUMMER, M. D., Matching Theory, North Holland, Amsterdam, 1986.

[20] MAC LANE, S., Categories for the Working Mathematician, Springer-Verlag, Berlin, 1997.

[21] SELINGER, P., Towards a quantum programming language, Mathematical Structures in Computer Science
14 (2004), 527–586.

