
On some equivalence notions of synchronous

systems

Miklós Bartha ∗

Department of Computer Science

Memorial University of Newfoundland

St. John’s, NL, Canada

Branislav Cirovic

Department of Electronics Engineering

College of the North Atlantic

St. John’s, NL, Canada

Abstract

An important optimization tool in the design of synchronous systems is

retiming, which in many cases allows a significant reduction in the length of

the systems’ clock period. Even though the internal structure of systems

changes upon retiming, their input-output behavior remains essentially

the same. The original system and the one after the retiming can simulate

each other in a suitable way. The equivalence notion arising from this

kind of mutual simulation is called simulation equivalence, and the aim of

this paper is to characterize simulation equivalence in an algebraic setting.

It is shown that simulation equivalence is a congruence relation of the

algebra of synchronous schemes, and that this congruence is the smallest

one containing retiming equivalence and finitary strong equivalence. An

axiomatization of these equivalences is presented in the general framework

of strictly monoidal categories with feedback.

1 Introduction

The increasing demands of speed and performance in modern signal and image
processing applications necessitate a revolutionary super-computing technology.
In most real-time digital signal processing applications, general purpose paral-
lel computers cannot offer satisfactory processing speed due to severe system

∗Partially supported by Natural Science and Engineering Research Council of Canada,

Discovery Grant #170493-03

overheads. Therefore, special purpose array processors will become the only
appealing alternative. Synchronous systems are such multiprocessor structures,
which provide a realistic model of computation capturing the concepts of pipelin-
ing, parallelism, and interconnection. They are single-purpose machines which
directly implement as low-cost hardware devices a wide variety of algorithms,
such as filtering, convolution, matrix operations, sorting, etc.

The concept of a synchronous systems was derived from that of a systolic
system, which has turned out to be one of the most attractive tools in massive
parallel computing. A large number of systolic systems have been designed,
many of them manufactured. Transformation methodologies for the design and
optimization of systolic systems have been developed, and yet, a rigorous math-
ematical foundation of systolic and synchronous systems has not been provided
until recently. Important equivalence relations of synchronous systems, such as
retiming equivalence, strong equivalence, and simulation equivalence still lack
a proper characterization and decision algorithms. The present paper aims at
providing a suitable characterization in a precise algebraic framework, which
characterization will easily lead to appropriate decision algorithms.

As introduced in [15], a synchronous system is partitioned into functional
elements (combinational logic) and registers (clocked memory). Such a system
can be described by an edge-weighted directed graph G, in which the vertices
represent functional elements and the edges correspond to interconnections be-
tween the functional elements. The weight of each edge in G is a non-negative
integer, which indicates the number of registers placed along the interconnec-
tion between the two functional elements that correspond to the endpoints of
the edge. The external interface is represented in G by a distinguished vertex,
called the host.

In a synchronous system, every functional element has a fixed primitive op-
eration associated with it. These operations are designed to manipulate some
simple data (e.g. signals) in the usual algebraic sense. The registers and func-
tional elements are organized by a common clock, which renders the following
stepwise behavior to the system. A state (also called configuration) is an assign-
ment of data to all registers. With each clock tick, the current configuration is
mapped into a new configuration in such a way that every functional element
performs the primitive operation associated with it. The operands (result) of
the operation performed by each functional element are taken from (is forwarded
to) the nearest registers lying on the interconnections arriving at (going out of)
the functional element. At the same time, data are advanced one register in the
queue of registers along each interconnection. If there is no register along an
interconnection, then data are always propagated through that interconnection
during a single clock cycle. To avoid circular rippling of data within the system,
it is assumed that every oriented cycle in the graph of the system contains at
least one edge having strictly positive weight.

In the forthcoming sections we are going to present a formal algebraic model
for the study of synchronous systems, and characterize some of their basic equiva-
lences as congruence relations in the algebra of synchronous schemes. The reader

2

is referred to [12] for the universal algebraic terminology used.

2 Schemes, flowcharts, and their algebras

As introduced in [3], a synchronous scheme over a ranked alphabet Σ = {Σn|n ≥
0} is a finite directed graph F having the following additional structure.

1. Each vertex v is labeled by either a symbol in Σ, or one of the symbols
in:

{icj | 1 ≤ j ≤ q} ∪ {oci | 1 ≤ i ≤ p} ∪ {⊥},

where p and q are fixed non-negative integers. If the label of v is in Σ, then
v is called a box. Boxes represent functional elements in synchronous systems.
Vertices labeled by the symbols {icj | 1 ≤ j ≤ q} and {oci | 1 ≤ i ≤ p} are called
input and output channels , respectively, and every vertex labeled by ⊥ is called
a loop vertex. We shall assume that each label, not only those in Σ, has a fixed
rank associated with it, so that rank(oci) = 1, rank(icj) = 0, and rank(⊥) = 1.
Then the in-degree of v (that is, the number of edges arriving at v) equals the
rank of the symbol labeling v. Moreover, the only edge arriving at each loop
vertex is a loop around that vertex.

2. The edges arriving at any vertex v labeled by a symbol of rank n are
ordered, which order is captured by saying that these edges enter v at the first,. . .,
n-th input port .

3. Each edge e is assigned a non-negative integer weight w(e), which specifies
the number of registers placed along the interconnection represented by e. It is
required that, in each oriented cycle of F , there exists at least one edge e with
w(e) > 0. This requirement will be referred to as the exclusion of rippling.

A synchronous system is a pair (F, I), where F is a synchronous Σ-scheme
(scheme, for short), and (Σ, I) is a Σ-algebra. If F is a scheme having p output
and q input channels, then we write F : p → q. Let FR denote the directed
graph obtained from F by reversing the direction of each edge in it. When
forgetting the weight of the edges, FR becomes a flowchart in the sense of [10].
This flowchart will be denoted by fl(F).

Vertex v in scheme F is said to be accessible if there exists a directed path
in FR from some output channel leading to v. Scheme F is accessible if all of
its boxes and loop vertices are accessible. System S is accessible if the scheme
of S is such.

Now we turn to defining the algebra of synchronous schemes and some other
related algebras. Each of these algebras is sorted by the set N × N of all pairs
of non-negative integers, and we shall refer to any element a in an underlying
set of sort (p, q) as a : p → q. Our algebras use a common set of constants and
operations, which are listed below.

Constants. 1 : 1 → 1, 0 : 0 → 0, 01 : 0 → 1, x : 2 → 2, and ǫ : 2 → 1.
Sum. If F1 : p1 → q1 and F2 : p2 → q2, then F1 + F2 : p1 + p2 → q1 + q2.

3

Composition. If F : p → q and G : q → r, then F · G : p → r.
Feedback. If F : 1 + p → 1 + q, then ↑ F : p → q.

The algebra Syn(Σ) of synchronous schemes is defined as follows.

— The constants are “all-wire” schemes not containing boxes, registers, or
loop vertices. Each one of them, except for x, is uniquely determined by this
description as an appropriate mapping. The constant x is defined as the trans-
position mapping 2 → 2.

— The sum of schemes F1 : p1 → q1 and F2 : p2 → q2 is essentially their
disjoint union with an appropriate relabeling of the input-output channels of F2.

— The composite of schemes F : p → q and G : q → r is obtained by
gluing them together at the input (output) channels of F (respectively, G). The
weights of the edges that are joined during this procedure are added up, and
output wires of G “cut” by an isolated input channel of F are deleted. See [3]
for the details.

— The feedback of scheme F : 1 + p → 1 + q is obtained by joining the edge
e arriving at oc1 with each of the edges starting from ic1 (if any), adding up
their weights as in the case of composition, and incrementing each of these sums
by 1. The incrementation amounts to putting an extra register along each of
the newly created interconnections. Again the output wire e is deleted if ic1 is
isolated. In case e comes directly from ic1, a new loop vertex is created and the
weight of its loop is set to w(e) + 1.

Notice the different treatment of loop vertices in the definition of feedback
above compared to [2, 3] and [7]. In those papers there is exactly one loop vertex
in each scheme, regardless of whether this vertex has actually been generated by
the feedback operation or not. This is a minor change, however, and the axioma-
tization of schemes presented in those works can be adjusted in a staightforward
manner to accomodate multiple loop vertices. This issue will be dealt with in
Section 7.

Sometimes it is advantageous to make the presence of registers more explicit
in schemes. For this reason, augment Σ by a new symbol ∇ of rank 1, and
consider the graph FR for any scheme F : p → q. Interpret the weight of
each edge e in FR by subdividing e with a sequence of w(e) ∇-boxes to obtain
a flowchart fl∇(F) : p → q over the alphabet Σ∇ = Σ ∪ {∇}. Clearly, the
connection χ : F 7→ fl∇(F) is one-to-one, but not all Σ∇-flowcharts are covered
by χ because of the restriction imposed by the exclusion of rippling. As another
slight deficiency, the equation ǫ · ∇ = (∇ + ∇) · ǫ, which would be necessary to
exclude branches originating from ∇-boxes, is not true in the algebra of ordinary
Σ∇-flowcharts.

Let Fl(Σ∇) denote the algebra of Σ∇-flowcharts as introduced in [2], with
the modified treatment of loop vertices described above. Take the quotient
of Fl(Σ∇) determined by the equation ǫ · ∇ = (∇ + ∇) · ǫ, and restrict the
underlying sets of this algebra to flowcharts that are in the range of the function

4

χ. Let Fl∇(Σ) denote the resulting partial algebra. We shall make use of this
algebra in the proof of Theorem 4.2. To ensure a uniform treatment for flowchart
and synchronous schemes, flowcharts will also be considered as edge-weighted
schemes in which all edges have zero weight.

3 Simulation equivalence of synchronous systems

The following definition of simulation equivalence between two accessible syn-
chronous systems is quoted from [15].

Definition 1 System S1 can simulate system S2 if, for every sufficiently old
configuration c2 of S2, there exists a configuration c1 of S1 such that S1 and
S2 exhibit the same input-output behavior when started from configurations c1

and c2, respectively. Systems S1 and S2 are simulation equivalent if they can
simulate each other. Schemes F1 and F2 are simulation equivalent, if the systems
S1 = (F1, I) and S2 = (F2, I) are such under all interpretations I.

To avoid ambiguity, we need to spell out the meaning of the term “sufficiently
old” in the definition of simulation equivalence above. It means that, starting
from an arbitrary initial configuration c of S2, there exists a non-negative integer
n(c) such that, no matter how the inputs to S2 are chosen in the first n(c) clock
cycles, the resulting configuration c2 has the property specified in Definition 1.
The corresponding configuration c1 of S1 will then depend on c and the inputs
to S2 in the first n(c) clock cycles. The important point here is that the choice
of c is arbitrary. This is to ensure transitivity of simulation, so that simula-
tion equivalence indeed becomes an equivalence relation of synchronous systems
(schemes). Simulation equivalence of either systems or schemes will be denoted
by ∼.

Examples In all of the examples below, fix the interpretation I to be the free
Σ-algebra TΣ, and assume that Σ has at least two symbols, one of which is a
constant. The symbol g used in the examples has rank 1. For better under-
standing, the schemes appearing in Figures 1, 2, 3, and 4 have their registers
represented by ∇-boxes rather than integer weights.

Example 1. Consider the systems S1 and S2 in Fig. 1.
Clearly, S2 can simulate S1. We do not even have to bother making a con-

figuration c of S1 sufficiently old, because the configuration f(c) will do for S2.
In order to simulate S2 with S1, however, we need to run S2 for one clock cycle
in order to obtain the value f(x1) in its sole register, where x1 is the input to
S2 in the first clock cycle. Then, by assigning the value x1 to the register of S1,
the simulation of S2 is properly established. Thus, S1 ∼ S2.

Example 2. See Fig. 2 for the systems S1 and S2.
Again, S2 can trivially simulate S1 by assigning the same value to its two

registers. When simulating S2 with S1, however, we cannot assume that these
values are the same, at least not initially. After just one clock cycle, however,
the difference between the initial contents of the two registers “flushes out”, so

5

g

g

ic 1

1oc oc

ic 1

1

S S1 2

Figure 1: The schemes of Example 1

g

g

g
oc1

S 2

oc 1

S 1

Figure 2: The schemes of Example 2

6

g

g

g
oc1

S 2

oc 1

S 1

Figure 3: The schemes of Example 3

that an appropriate configuration of S1 can be adjusted. Thus, S1 ∼ S2.

Example 3. See Fig. 3 for the systems S1 and S2.
Now S1 cannot simulate S2, because any possible difference between the

initial contents of the two registers in S2 “regenerates” itself after each clock
tick. The contents of these two registers are therefore inherently different, which
makes it impossible to set the simulating configuration of S1 in an appropriate
way. Thus, S1 6∼ S2.

Example 4. See Fig. 4 for the systems S1 and S2.
Observe that the two outputs of S1 are the same in each clock cycle, regardless

of the initial configuration. The two outputs of S2, however, will always be out
of pace compared to one another, the output at oc2 “lagging one g” behind the
output at oc1. Thus, S1 6∼ S2.

By definition, simulation equivalence is of a semantic nature. As stated in
[15]:

“Two synchronous systems may be equivalent even though their internal organi-
zations are radically different. For example, one system might be a tree and the
other a mesh.”

Our goal is to demonstrate that this statement over-estimates the complexity of
simulation equivalence, which can in fact be characterized in syntactical terms.
This characterization even admits a decision algorithm for simulation equiva-
lence, which will be presented in a forthcoming paper.

We start out by a theorem that reveals an important algebraic property of
simulation equivalence. The proof of the theorem is a routine check to ver-
ify that simulation equivalence is compatible with the scheme operations sum,
composition, and feedback.

Theorem 3.1 Simulation equivalence is a strong congruence relation of the par-

7

g g

gg

S 1

ococ1 2

S 2

oc oc1 2

Figure 4: The schemes of Example 4

tial subalgebra Syna(Σ) of Syn(Σ) determined by all accessible schemes.

Theorem 3.1 would remain true in the whole algebra Syn(Σ), should we want
to extend Definition 1 directly to all schemes. This is not our intention, however,
for reasons outlined in Section 7.

4 Retiming synchronous systems

Let F be scheme and u be a box in F labeled by σ ∈ Σn such that the edges
e1, . . . , en arriving at the input ports of u have positive weights. Retiming u then
means subtracting 1 from w(ei) for all 1 ≤ i ≤ n, and adding 1 to the weight
of each edge going out from u. Retiming will also be allowed on loop vertices,
in which case the label of u is ⊥, and n = 1. Elementary retiming is the binary
relation →r on Syn(Σ) by which F →r F ′ if F ′ results from F by retiming a
single box or loop vertex in it. The smallest equivalence relation containing →r

is called retiming equivalence, and is denoted by ∼r.
A retiming count vector for scheme F is an assignment R of integers to all of

its boxes and loop vertices. Extend R to all vertices of F by fixing R(v) = 0 for
each input/output channel. We say that R is legal if for every edge e : u → v
in F , w(e) + R(u) − R(v) ≥ 0. If R is legal, then it takes F into a scheme F ′

that has the same flowchart structure as F , but the weight w′(e) of each edge
e : u → v is w(e) + R(u) − R(v).

A characterization of ∼r by retiming count vectors was given in [15] as fol-
lows.

Proposition 4.1 Schemes F and F ′ are retiming equivalent iff there exists a
legal retiming count vector R taking F into F ′.

8

It is clear by the definitions that if R is legal for F , then −R is legal for F ′, and
−R takes F ′ back to F . It is also easy to see by Proposition 4.1 that retiming
equivalence is a congruence relation of Syn(Σ).

Based on Proposition 4.1, the following theorem was proved in [15] as the
“Retiming Lemma”, relying on the simple graph model of synchronous sys-
tems. Here we present an algebraic proof for the more sophisticated synchronous
scheme model.

Theorem 4.2 In Syna(Σ), ∼r⊆∼.

Proof. It is sufficient to prove that elementary retiming in synchronous schemes
is simulation equivalent. That is, retiming a single box in an accessible scheme
F results in an accessible scheme F ′ ∼ F . On the analogy of Example 2, this
statement is obvious for retiming a loop vertex in F . If F consists of a box
σ ∈ Σn as a stand-alone scheme 1 → n having a single layer of registers on its
input side, then the statement is adequately reflected by Example 1. If the box σ
is being retimed in a context C, then try to model C as an algebraic expression
in Syn(Σ) over one variable 1 → n, so that F = C(S1) and F ′ = C(S2),
where S1 and S2 are single-box schemes before and after a suitable elementary
retiming, as in Example 1. If this was possible, then the statement of the theorem
would immediately follow from Theorem 3.1. Unfortunately, despite the fact
that Syn(Σ) is generated by Σ, the context C cannot always be modeled in
this way. The reason is that some of the registers present in S1 and S2 may
only be generated algebraically by applying the feedback operation as part of
the context C, which is illegal. In other words, ∼r cannot be specified as the
smallest congruence relation of Syn(Σ) containing single-box retiming.

On the other hand, it is straightforward to design C in the algebra Fl∇(Σ).
Even though Fl∇(Σ) is only a partial algebra, on the analogy of Theorem 3.1 it
is easy to establish ∼ as a strong congruence in it. With this observation, the
proof of Theorem 4.2 is now complete.

5 Strong equivalence of synchronous schemes

Let F be a synchronous scheme. The relation of having the same strong behavior
is defined on the vertices of F as the largest label-preserving equivalence µF

such that if uµF v, with the label of u and v having rank n ≥ 1, then for every
1 ≤ i ≤ n, uiµF vi holds for the vertices ui and vi that are connected to the
i-th input port of u and v by edges eu

i and ev
i ; moreover, w(eu

i) = w(ev
i). The

equivalence µF gives rise to a minimal scheme F/µF in the usual way (cf. [10]),
and schemes F1, F2 are said to be strong equivalent if F1/µF1

= F2/µF2
. Strong

equivalence will be denoted by ∼s.
By the standard definition in graph theory, a directed walk in graph G

is an alternating sequence of vertices and edges, which starts and ends with
a vertex, and in which each edge points from the vertex immediately pre-
ceding it to the vertex immediately following it. Let F be a scheme, and
α = v0e1 . . . envn be a directed walk in FR. By the pattern of α we mean

9

the sequence p(α) = σ0(i1, w1) . . . (in, wn)σn, where σj , 0 ≤ j ≤ n, is the
label of vertex vj , ij identifies the input port of vj−1 to which the edge ej

is connected, and wj = w(ej). In general, a pattern of walks is a sequence
p = σ0(i1, w1) . . . (in, wn)σn such that σj ∈ Σ ∪ {ick|k ≥ 1} ∪ {ocl|l ≥ 1},
1 ≤ ij ≤ rank(σj−1) and wj ≥ 0. We say that pattern p is feasible for vertex u
if there exists a directed walk α in FR starting from u such that p = p(α). In
this case, end(u, p) denotes the last vertex of α.

It is easy to see that, for every two vertices u and v of F , uµF v is equivalent
to saying that an arbitrary pattern p is feasible for u iff p is feasible for v.

Now we introduce the relation of having the same finitary strong behavior on
the set of vertices of scheme F , denoted θF . For two vertices u and v, uθF v if for
every pattern p, p is feasible for u iff p is feasible for v, and, end(u, p) = end(v, p)
whenever p is feasible and sufficiently long. Clearly, θF is also an equivalence
relation, and θF ⊆ µF . This equivalence, too, gives rise to a minimal scheme
F/θF , and schemes F1, F2 are said to be finitary strong equivalent if F1/θF1

=
F2/θF2

. Finitary strong equivalence will be denoted by ∼f .
Consider the scheme equation

ǫ · σ = (σ + σ) · ǫn,

where σ ∈ Σn stands for a box scheme 1 → n with no registers, and ǫn is the
mapping 2n → n by which ǫn(in + j) = j for i = 0, 1 and 1 ≤ j ≤ n. The
mapping ǫn is essentially the branch ǫ : 2 → 1 performed on a “block” of size
n, which is easy to assemble from the constants 1, ǫ, and x using sum and
composition. (See [3] for the details.) The system of these equations for all
σ ∈ Σ determines the relation of box unfolding (reduction) on Syn(Σ), whereby
the left-hand side schemes unfold into the right-hand side ones and vice versa,
when reduction takes place.

The following two theorems characterize finitary strong equivalence, and re-
late it to simulation equivalence.

Theorem 5.1 Finitary strong equivalence is the smallest congruence relation of
Syn(Σ) containing box unfolding/reduction.

Strong equivalence and finitary strong equivalence have nothing to do with the
exclusion of rippling in synchronous schemes, therefore they are meaningful for
all Σ-flowcharts. Obviously, Theorem 5.1 also remains true in the algebra Fl(Σ)
of all Σ-flowcharts.

Theorem 5.2 In Syna(Σ), ∼f⊆∼.

The reader should make note of the fact that finitary strong equivalence does
not coincide with the congruence relation of Syn(Σ) defined by the identity

ǫ · h = (h + h) · ǫn , where h : 1 → n.

Unfolding/reduction is only allowed for individual boxes according to ∼f , and
not for all schemes h : 1 → n as suggested by the identity above. Consequently,

10

∼f fails to be fully invariant. In contrast, ∼s is fully invariant, and it can be
captured by the system of feedback theory identities described in [4]. Never-
theless, ∼f is still powerful enough to unfold cycle-free accessible schemes into
finite trees, hence the name “finitary strong equivalence”.

6 The main result

As we have seen in Theorems 4.2 and 5.2, retiming equivalence and finitary
strong equivalence are both contained in simulation equivalence. It is natural to
ask if there are any other ingredients present in ∼, or it is completely determined
by the join of these two congruences. This question is answered by Theorem 6.1
below.

Theorem 6.1 Simulation equivalence is the smallest strong congruence relation
of Syna(Σ) containing retiming equivalence and finitary strong equivalence.

In [6], the join of ∼r and ∼s has been introduced by the name strong retiming
equivalence. On this analogy, the join of ∼r and ∼f is called finitary strong
retiming equivalence.

Theorem 6.1 is a direct consequence of Theorems 4.2, 5.2, and Statements 1,
2, and 3 below.

Statement 1. If F1 ∼ F2, then F1 and F2 are strong retiming equivalent.

Statement 2. If F1 ∼ F2, then fl(F1) ∼f fl(F2). (Recall that fl(F) denotes
the Σ-flowchart determined by F .)

Statement 3. If F1 and F2 are strong retiming equivalent such that fl(F1) ∼f

fl(F2), then F1 and F2 are finitary strong retiming equivalent.

Statement 1 was proved in [9]. The proofs of Statements 2 and 3 both rely
on the following lemma, the first part of which was already shown in [6].

Lemma 6.2 If schemes F1 and F2 are strong retiming equivalent, then there
exist schemes G1 and G2 such that Fi ∼s Gi, i = 1, 2, and G1 ∼r G2. Moreover,
if fl(F1) ∼f fl(F2), then G1 and G2 can be chosen in such a way that Fi ∼f Gi.

In the light of Lemma 6.2, Statement 3 is straightforward. The proof of State-
ment 2 is based on Lemma 6.2, Theorem 5.1, and some other results found in
[9, 6]. This proof is challenging.

7 Axiomatizing simulation equivalence

In this section we present an equational axiomatization of the equivalence rela-
tions considered, and relate our work to the results obtained in [14] on strictly
monoidal categories with feedback. In order to make the connection in a smooth
way, we shall simplify the discussion by assuming that the underlying monoidal
categories are just magmoids [1] satisfying the block permutation axiom [2, 11].
Such magmoids will be called symmetric.

11

A magmoid with feedback is a symmetric magmoid M equipped with a feed-
back operation ↑: M(1 + p, 1 + q) → M(p, q) satisfying the following axioms.

S1: ↑ (f + g) =↑ f + g for f : 1 + p → 1 + q, g : r → s;

S2: ↑2 ((x + p) · f) =↑2 (f · (x + q)) for f : 2 + p → 2 + q;

S3: ↑ (f · (1 + g)) = (↑ f) · g for f : 1 + p → 1 + q, g : q → r;

S4: ↑ ((1 + g) · f) = g · (↑ f) for f : 1 + q → 1 + r, g : p → q.

These axioms were introduced originally in [2] to axiomatize flowchart schemes,
but they coincide with a reduced version of the axioms naturality (S3, S4), weak
naturality (S2), and superposing (S1) of [14] in the present simplified context.
The following two axioms have been added in [13].

S: ↑m ((g + p) · f) =↑l (f · (g + q)) for f : l + p → m + q, g : m → l;

X: ↑ x = 1.
Axioms S and X are called sliding and yanking, respectively. It was proved

in [2] that the set of axioms {S1, S2, S3, S4, S5, X}, where

S5: ↑ 1 = 0 and ǫ · ⊥ = ⊥ + ⊥,

provide an axiomatization of flowchart schemes, with the assumption that the
loop vertex is unique. Dropping this assumption simply eliminates S5 from the
required axioms. Since S is trivially satisfied in the algebra of flowchart schemes
(with the loop vertex being unique or not), sliding comes as a consequence of
{S1, S2, S3, S4, X}. See also [13, Lemma 2.1] in the general framework of
monoidal categories. Sliding has also been considered in [8] by the name circular
feedback as one of the basic axioms for feedback theories (with no delay).

Yanking was replaced in [3] by the axiom

S6: ↑2 ((ǫ + p) · f) =↑ (f · (ǫ + q)) for f : 1 + p → 2 + q,

and it was proved that {S1,. . .,S6}, together with the axiom

S7: 01 · ∇ = 01

and another axiom S8: ↑ (ǫ · ∇n) = ⊥, which is irrelevant in our present discus-
sion, provide an axiomatization of synchronous schemes.

Now we turn to describing the Circ construction in [14]. If M is a symmetric
magmoid, then Circ(M) is the magmoid in which the morphisms p → q are
isomorphism classes of pairs (f, l), where f : l + p → l + q in M , and where
an isomorphism from (f, l) to (g, m) is an isomorphism γ : m → l such that
(γ + p) · f = g · (γ + q). Without loss of generality we can assume that m = l
and γ is a permutation l → l. Morphisms in Circ(M) are called circuits. The
identity circuit p → p is p in M , and composition of circuits is essentially cascade
product of automata. Feedback of circuits is defined by observing the obvious
rule ↑ (↑l f) =↑l+1 f (vanishing). See [5, 14] for the details. It was proved in [14]
that for every symmetric magmoid M , Circ(M) is a magmoid with feedback.
Moreover, Circ(M) is freely generated by M .

Let us extend the definition of ∼f by incorporating the equations 01 ·σ = 0n

12

for all σ ∈ Σn. This allows for eliminating certain inaccessible boxes in Syn(Σ).
Based on Theorem 6.1, redefine ∼ as finitary strong retiming equivalence, that
is, the join of ∼f and ∼r. Consider the symmetric magmoid Df(Σ) of data
flowchart schemes as introduced in [3], and let T (Σ) be the free algebraic theory
generated by Σ, also considered as a symmetric magmoid with the constants 01

and ǫ having their natural interpretation.
For an arbitrary collection E of identities in our algebraic language, let ηE

denote the congruence relation of magmoids with feedback determined by E.
Combining the axiomatization results of [2, 3] with the Circ construction, we
obtain the following results.

Theorem 7.1

1. Circ(T (Σ))/ηS6,S7
∼= Syn(Σ)/∼f ;

2. Circ(T (Σ))/ηS
∼= Syn(Σ)/∼;

3. Circ(T (Σ))/ηX
∼= Fl(Σ)/∼f ;

4. Circ(Df(Σ))/ηS6,S7
∼= Syn(Σ);

5. Circ(Df(Σ))/ηS
∼= Syn(Σ)/∼r;

6. Circ(Df(Σ))/ηX
∼= Fl(Σ).

Notice that the equation ↑ (01 + 1) = 01 cannot be proved from the axioms
S1,. . .,S4, therefore the axiom S7 must be considered in 1 and 4 above. Equation
S7, however, is provable from S, so that S6 and S7 need not be considered when
S is present. (Essentially, S6 and S7 are the special instances of S in which the
morphism g is chosen as the constant ǫ and 01, respectively.) Moreover, as we
have seen earlier, S comes free whenever X is present.

The axioms S5 and S8 are not valid in Syn(Σ) by our present model. One
can easily prove, however, that {S1,. . .,S4, S6, S7} is a proper axiomatization of
our current Syn(Σ), which is in accordance with 4 above.

8 Conclusion

We have provided an algebraic characterization of simulation equivalence of syn-
chronous systems. First we showed that simulation equivalence is a congruence
relation of the algebra of synchronous schemes. Then we identified the two ma-
jor components of this relation: retiming equivalence and finitary strong equiva-
lence. We have found that both of these equivalences are easy to characterize in
syntactical terms as appropriate congruence relations of the algebra of schemes.
Finally, we have proved that simulation equivalence is the smallest congruence
relation containing these two components. We have also provided an axiomati-
zation of our equivalences relying on the Circ construction in [14].

Acknowledgements. The authors thank a referee for pointing out the work
of Katis, Sabadini, and Walters. The first author is also grateful to Bob Walters
for a helpful communication on this matter.

13

References

[1] A. Arnold and M. Dauchet, Théorie des magmöıdes, RAIRO Inform. Théor.
12 (1978), 235–257 and 13 (1979), 135–154.

[2] M. Bartha, A finite axiomatization of flowchart schemes, Acta Cybernet. 2

(1987), 203–217.

[3] M. Bartha, An equational axiomatization of systolic systems, Theoret. Com-
put. Sci. 55 (1987), 265–289.

[4] M. Bartha, Foundations of a theory of synchronous systems, Theoret. Com-
put. Sci. 100 (1992), 325–346.

[5] M. Bartha, An algebraic model of synchronous systems, Information and
Computation 97 (1992), 97–131.

[6] M. Bartha, Strong retiming equivalence of synchronous systems, submitted
for publication.

[7] S. L. Bloom and Z. Ésik, Axiomatizing schemes and their behaviors, J.
Comput. System Sci. 31 (1985), 375–393.

[8] V. E. Casanescu and Gh. Stefanescu, Feedback, iteration and repetition,
Research Report 42, National Institute for Scientific and Technical Creation,
Bucharest, 1988.

[9] B. Cirovic, Equivalence relations of synchronous systems, PhD Dissertation,
Memorial University of Newfoundland, 2000.

[10] C. C. Elgot, Monadic computations and iterative algebraic theories, in Logic
Colloquium ’73, Studies in Logic and the Foundations of Mathematics (H.
E. Rose and J. C. Shepherdson, eds.), pp. 175–230, North Holland, Ams-
terdam, 1975.

[11] C. C. Elgot and J. C. Shepherdson, An equational axiomatization of the
algebra of reducible flowchart schemes, IBM Research Report RC 8221.

[12] G. Grätzer, Universal Algebra, Springer-Verlag, Berlin, 1968, 1979.

[13] A. Joyal, R. Street, and D. Verity, Traced monoidal categories, Math. Proc.
Camb. Phil. Soc. 119 (1996), 447–468.

[14] P. Katis, N. Sabadini, and R. F.C. Walters, Feedback, trace, and fixed-point
semantics, Theoret. Informatics Appl. 36 (2002) 181–194.

[15] C. E. Leiserson, J. B. Saxe, Optimizing synchronous systems, J. VLSI Com-
put. Systems 1 (1983), 41–67.

14

