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Abstract. Evolving cooperation by evolutionary algorithms is impos-
sible without introducing extra mechanisms. Group selection theory in
biology is a good candidate as it explains the evolution of cooperation in
nature. Two biological models, Wilson’s trait group selection model and
Traulsen’s group selection model are investigated and compared in evolu-
tionary computation. Three evolutionary algorithms were designed and
tested on an n-player prisoner’s dilemma problem; two EAs implement
the original Wilson and Traulsen models respectively, and one EA ex-
tends Traulsen’s model. Experimental results show that the latter model
introduces high between-group variance, leading to more robustness than
the other two in response to parameter changes such as group size, the
fraction of cooperators and selection pressure.
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1 Introduction

Evolutionary computation (EC) is often viewed as an optimization process, as
it draws inspiration from the Darwinian principle of variation and natural se-
lection. This implies that EC may fail to solve problems which require a set of
cooperative individuals to jointly perform a computational task. When cooper-
ating, individuals may contribute differently, and hence might lead to unequal
fitnesses. Individuals with lower fitness will be gradually eliminated from the
population, despite their unique contributions to overall performance of the al-
gorithm. Hence, special mechanisms should be implemented in EC that avoid
selecting against such individuals.

In nature, the success of cooperation is witnessed at all levels of biological or-
ganization. A growing number of biologists have come to believe that the theory
of group selection is the explanation even though this theory has been unpopular
for the past 40 years; hence new models and their applications are investigated
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[2]. Individuals are divided into groups, and only interact with members in the
same group. The emergence of cooperation is due to competition between indi-
viduals and between groups. Individual competition selects against individuals
with lower fitness, but group competition favors individuals who cooperate with
others, regardless to their individual fitness. The group selection model proposed
by Wilson and Sober [9,12] and the model by Traulsen and Nowak [10] represent
two research strands in this area; groups in Wilson’s model are mixed period-
ically during evolution, while groups in Traulsen’s model are isolated. Hence,
selection between groups and within groups work differently in these models.

Extending these two models to encourage cooperation in artificial evolution
is a relatively new research direction; most research [1,3,6,7] so far is based
on Wilson’s model or its variations, not on Traulsen’s. This motivated us to
investigate the role each model can play to encourage cooperation in EC, and
to analyze their differences. Three evolutionary algorithms adapting the two
models were designed and examined under different parameter settings; these
parameters refer to group size, fraction of cooperators and selection pressure, and
they directly affect the selection dynamics. Our results show that the algorithm
which extends Traulsen’s model is more robust towards parameter changes than
the algorithms implementing the original Wilson and Traulsen models.

The reminder of this paper is organized as follows. Section 2 introduces the
three evolutionary algorithms. Section 3 describes the experiments and the re-
sults obtained. Section 4 concludes.

2 Algorithms Design

Wilson’s and Traulsen’s models interpret the idea of group selection in a differ-
ent fashion. In Wilson’s model, groups reproduce proportional to group fitness.
Offspring groups are periodically mixed in a migrating pool for another round of
group formation. The number of individuals a group contributed to this pool is
proportional to its size; so cooperative groups contribute more to the next gener-
ation. On the contrary, Traulsen’s model keeps groups isolated. An individual is
selected proportional to its fitness from the entire population, and the offspring
is added to its parent’s group. When the group reaches its maximal size, either
an individual in this group is removed, or the group splits into two, so another
group has to be removed. Cooperative groups grow faster, and therefore, split
more often. For detailed descriptions of these models, please refer to [9,10,12].

Our study aims to investigate the performance of the two models in extending
evolutionary algorithms to evolve cooperation. The investigation is conducted in
the context of the n-player prisoner’s dilemma (NPD). The NPD game offers a
straightforward way of thinking about the tension between the individual and
group level selection [4]; meanwhile it represents many cooperative situations in
which fitness depends on both individual and group behavior. In this game, N
individuals are randomly divided into m groups. Individuals in a group inde-
pendently choose to be a cooperator or a defector without knowing the choice
of others. The fitness function of cooperators (fCi

(x)) and defectors (fDi
(x)) in
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group i are specified by the following equations:

fCi(x) = base + w(
b(niqi − 1)

ni − 1
− c), (0 ≤ i < m) (1a)

fDi
(x) = base + w

bniqi

ni − 1
, (0 ≤ i < m) (1b)

where base is the base fitness of cooperators and defectors; qi the fraction of
cooperators in group i; ni the size of group i; b and c are the benefit and cost
caused by the altruistic act, respectively; w is a coefficient. Evidently, cooperators
have a lower fitness than defectors, because they not only pay a direct cost, but
also receive benefits from fewer cooperators than defectors do. The fitness of
group i is defined as the average individual fitness. Although defectors dominate
cooperators inside a group, groups with more cooperators have a higher group
fitness. Hence, the dynamics between individual and group selection will drive
the game in different directions.

A simple evolutionary algorithm implementing Wilson’s model (denoted as
W) is described in Algorithm 1. This algorithm starts with randomly initializing

Algorithm 1: An Evolutionary Algorithm Based on Wilson’s Model
P ← Initialize Population(N, r);1

while population does not converge or max generation is not reached do2

P ′ ← Disperse Population(P, m);3

Evaluate Fitness(P ′);4

for i← 0 to N ′ do5

gn← Select Group(P ′);6

idv ← Select Individual(P ′, gn);7

idv′ ← Reproduce Offspring(idv);8

Add Individual(idv′, NP, gn)9

end10

P ← Mixing Proportionally(NP);11

end12

a population P with N individuals, r percent of which are cooperators. P is then
divided into m groups, and the individual and group fitness of the dispersed pop-
ulation P ′ is evaluated. Afterwards, reproduction begins; a group with number
gn is first selected, from which an individual idv is selected to produce offspring
idv′. idv′ is then added to group gn in the new population NP . The reproduction
causes groups in NP vary in size, because the selection of groups is proportional
to fitness. In total N ′ offspring will be produced, where N ′ is normally larger
than population size N . This gives cooperators an opportunity to increase their
frequency in the next generation. To maintain the original population size N ,
groups in NP are mixed and each contributes individuals proportional to its
size to new population P . P will repeat the above steps until the population
converges or the maximum number of generations is reached.

Similarly, Traulsen’s is embedded into an evolutionary algorithm shown in
Algorithm 2. This algorithm initializes, divides, and evaluates the population
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Algorithm 2: An Evolutionary Algorithm Based on Traulsen’s Model
P ← Initialize Population(N, r);1

P ′ ← Disperse Population(P, m);2

while population does not converge or max generation is not reached do3

Evaluate Fitness(P ′);4

for i← 0 to N ′′ do5

idv ← Select Individual from Population(P ′);6

idv′ ← Reproduce Offspring(idv);7

Put Back to Group(idv′, gn);8

if Group Size(gn) > n then9

rnum← Generate Random Number(0, 1);10

if rnum < q then11

Split Group(gn);12

Remove a Group();13

else14

Remove an Individual in Group(gn);15

end16

end17

end18

end19

the same way algorithm W does. However, there are two major differences. First,
the population only disperses once at the beginning of the process; the groups are
kept isolated afterwards. Second, the reproduction step is different. An individual
idv is selected from the entire population for reproduction, rather than from a
group. Offspring idv′ is put back into its parent’s group, group gn. If the size
of group gn exceeds the pre-defined group size n, a random number rnum is
generated. If rnum is less than a group splitting probability q, group gn splits
and its individuals are randomly distributed into offspring groups. A group has
to be removed to maintain a constant number of groups; otherwise, an individual
from group gn is removed. In Traulsen’s model, a group or an individual to be
eliminated is randomly selected. As an extension, we also investigate selecting
such a group or individual reversely proportional to its fitness. Therefore, two
variations of Algorithm 2 are implemented, one refers to the former (denoted as
T1) and the other to the latter (denoted as T2).

3 Investigations with the Algorithms

The investigations focus on the effects caused by different group size n, initial
fraction of cooperators r, and coefficient w. Parameters n and r affect the as-
sortment between cooperators and defectors in groups, and coefficient w affects
the individual and group fitness; both cause changes in selection dynamics.

To focus on the selection dynamics, we assume asexual reproduction with-
out the interference of mutation. A roulette wheel selection is adopted in the
reproduction step for all algorithms. Parameters that are common to all experi-
ments are set as follows: runs R = 20, generation gen = 5, 000, population size
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N = 200, base fitness base = 10, benefit b = 5, cost c = 1, group splitting
probability q = 0.05, N ′′=10, and N ′ is decided by the following equation [9].

N ′ =
m∑

i=1

ni × (qi × fCi
(x) + (1− qi)× fDi

(x)) (2)

For each algorithm, we measure the success ratio by the number of runs whose
population converges to cooperators to the number of total runs 20. The larger
the ratio, the more likely an algorithm favors cooperation. We also collect the
average variance ratio [5], which indicates composition difference between groups.
The higher this ratio, the more prominent the effect of group selection.

3.1 The effects of group size and initial fraction of cooperators

First we investigate how the three algorithms behave under different group sizes.
We set r = 0.5 and w = 1. Group size n is varied from {5, 10, 20, 50, 100}. The
success ratio and average variance ratio (in brackets) for each setting are listed
in the first 3 columns in Table 1. As can be seen, the performance of T1 degrades

r=0.5 r=0.3 r=0.1
n W T2 T1 W T2 T1 W T2 T1

5 1(0.196) 1(0.820) 1 1(0.201) 1(0.853) 0.95 1(0.196) 1(0.893) 0.7

10 1(0.092) 1(0.655) 0.85 1(0.098) 1(0.665) 0.55 1(0.095) 1(0.767) 0.2

20 0.8(0.045) 1(0.291) 0.65 0.55(0.045) 1(0.398) 0.25 0.25(0.042) 0.65(0.465) 0.1

50 0(0.015) 1(0.112) 0.15 0(0.016) 0.8(0.105) 0.1 0(0.015) 0.55(0.049) 0.05

100 0(0.004) 0(0.011) 0 0(0.005) 0(0.014) 0 0(0.005) 0(0.015) 0

Table 1: The effects of group size n and initial fraction of cooperators r on the
three algorithms.

as n grows. The population in W converges to cooperators when small groups are
employed (n = 5 or 10). As n increases, evolving cooperation becomes difficult.
In contrast, T2 converges to cooperators except n = 100.

The observation can be explained by Figure 1. Figure 1(a) shows that vari-
ance ratio v in W decreases as n increases, which diminishes the effect of group
selection. As a result, the selection on the individual level is becoming the domi-
nate force, so the population converges quicker to defectors, see Figure 1(b). The
same trend between v and n is also observed in T2. However, given n ranges from
5 to 50, its v value is much higher than or equal to the highest v value of W
(see Figure 1(c)). This implies that T2 preserves variance between groups better
than W, and explains why T2 is more effective than W in evolving cooperation.
Unlike W, the convergence speed to cooperators of T2 is not accelerated as n
gets smaller; for example, runs with n = 10 converge first. When groups are
too small or too large, much averaging is required to remove defectors from the
population (see Figure 1(d)).

We further adjusted the value of r from 0.5 to 0.3 and 0.1. We were curious
about the response of the three algorithms to this change, because when r drops,
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(a) Variance ratio in W
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(b) Fraction of cooperators in W
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(c) Variance ratio in T2
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(d) Fraction of cooperators in T2

Fig. 1: The variance ratio v and fraction of cooperators r for algorithm W and
T2 under different group sizes when r = 0.5 and w = 1.

the number of cooperators assigned to groups is smaller, which increases the
influence of individual selection in a group. As shown in Table 1, the performance
of T1 decreases as r drops. For W and T2, when n is small (5 or 10), due to
the strong group selection effects, the decrease of r does not affect the success
ratio, but only slows convergence speed towards cooperation; for larger groups,
as n increases (group selection is weaker) and r decreases (individual selection is
stronger), group selection can hardly dominate individual selection; so it becomes
difficult for both algorithms to preserve cooperation. However, T2 is less affected,
because for a given group size, similar v values in W are observed despite the
changes of r, while relatively high v values are produced by T2 even r drops.

3.2 Weak vs. strong selection

The composition of groups is not the only factor that drives selection dynamics; a
difference in fitness values of cooperators and defectors is another one. It affects
the pressure put on groups and individuals. In the next experiment, we use
coefficient w to adjust the selection pressure. If w is small, the selection is called
weak selection; otherwise it is called strong selection.
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We tested the three algorithms with r=0.5 and w set to {0.1, 0.5, 1, 2,
5, 10}, respectively on all group sizes. Results are shown in Table 2. One first

w=0.1 w=0.5 w=1
n W T2 T1 W T2 T1 W T2 T1

5 1(0.197) 1(0.949) 0.6 1(0.201) 1(0.884) 0.9 1(0.196) 1(0.820) 1

10 1(0.095) 1(0.766) 0.6 1(0.096) 1(0.515) 0.8 1(0.092) 1(0.655) 0.85

20 0.85(0.044) 0.95(0.601) 0.55 1(0.046) 1(0.370) 0.65 0.8(0.045) 1(0.291) 0.65

50 0.4(0.015) 0.45(0.174) 0 0(0.015) 1(0.115) 0.3 0(0.015) 1(0.112) 0.15

w=2 w=5 w=10

5 1(0.196) 1(0.806) 1 0.9(0.196) 1(0.820) 1 0(0.190) 1(0.875) 1

10 1(0.096) 1(0.543) 0.9 0.1(0.096) 1(0.596) 0.8 0(0.096) 1(0.638) 0.85

20 0.1(0.042) 1(0.309) 0.8 0(0.050) 0.8(0.334) 0.5 0(0.046) 0.8(0.347) 0.15

50 0(0.014) 0.8(0.079) 0.15 0(0.014) 0.45(0.021) 0 0(0.016) 0.1(0.053) 0

Table 2: The performance of the algorithms under weak and strong selection.

notices that the performance of the three algorithms increases and then deceases
as selection pressure goes from weak to strong. If selection is too weak, the
fitness between two roles and between groups are very close. Hence, group and
individual selection become neutral, especially if large groups are adopted, so
defectors can more easily take over the population. If the selection is too strong,
though group selection still favors cooperative groups, because the larger fitness
difference between both roles, cooperators are more difficult to be selected. To be
more specific, for small groups (n = 5 or 10) only T2 can successfully preserve
cooperation under both weak and strong selection. The increase of selection
pressure raises the influence of individual selection. In response to this increase,
the variance ratio in W for a given group size does not change at all, while T2
still keeps noticeable high variance ratios. This also explains why T2 outperforms
W with larger groups.

3.3 Discussion

The above experiments demonstrate that maintaining variance between groups
has great impact on group selection models. For W, if groups are randomly
formed, small group sizes are desired because small groups increase group vari-
ance. This confirms previous investigations (see [5,8,11] for examples). We further
show that such a requirement only works if the selection is weak. T2, because
it is able to introduce high group variance, is more robust towards parameter
changes. The reason lies in how the two models manage groups. Mixing and re-
forming of groups in Wilson’s model constantly averages the variance between
groups, so in Figure 1(a) we observe the variance between groups fluctuating.
In contrast, because groups in Traulsen’s model are kept isolated, and the se-
lection step in reproduction is proportional to individual fitness, the fraction of
cooperators in a cooperative group grows faster than in a less cooperative group,
hence gradually increases the variance between groups. T2 performs better than
T1 under all settings, because removing an individual or a group according to
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reversed fitness value at death selection is very likely wiping out defectors, thus
it certainly helps cooperators.

4 Conclusion

Wilson’s and Traulsen’s models are possible extensions of EC to evolve cooper-
ation. Here, we investigated evolutionary algorithms that adapt the two models,
and analyzed their differences. Our experimental results show that an algorithm
which extends Traulsen’s model is less sensitive to parameter changes than the
algorithms based on the original Wilson and Traulsen models, because it is able
to maintain high between-group variance, which is able to override individual
selection arisen by the parameter changes. Future work will consider theoreti-
cally investigate the extended algorithm; its extensions to multilevel selection;
and its role in the theory of evolutionary transition.
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