
Genetic Programming on GPUs for
Image Processing
Simon Harding and Wolfgang Banzhaf

Department Of Computer Science
Memorial University

St John’s, Canada
(simonh, banzhaf)@cs.mun.ca

Abstract—The evolution of image filters using Genetic Pro-
gramming is a relatively unexplored task. This is most likely
due to the high computational cost of evaluating the evolved
programs. We use the parallel processors available on modern
graphics cards to greatly increase the speed of evaluation.
Previous papers in this area dealt with noise reduction and edge
detection. Here we demonstrate that other more complicated
processes can also be successfully evolved, and that we can
“reverse engineer” the output from filters used in common
graphics manipulation programs.

I. I NTRODUCTION

In this paper we tackle the challenge of reverse engineering
image filters. By reverse engineering, we mean that we find the
mapping between an image and the output of a filter applied to
it. The technique may not be the same as used by process, but
produces similar results. The filters we investigate in thispaper
are from the open source image processing program GIMP [1].
To perform the reverse engineering, we use Cartesian Genetic
Programming(CGP)[5] to evolve programs that act as filters.
These programs take a pixel and its neighbourhood from an
image, and then compute the next value of this central pixel.
We then run this convolution kernel on each pixel in an image,
to produce a new image. As this process is computationally
expensive, we accelerate the evaluation of each kernel by
executing it on a Graphics Processor Unit (GPU), i.e. the video
card of a desktop computer.

We find that we can successfully take an image and a
processed version of that image, and find a program that
replicates the filter process used by GIMP. We evolve a
number of filters and combinations of filters, and show that
this approach appears to generalise well.

The task is interesting for genetic programming researchers
for a number of reasons. First, we can produce results that are
of practical use. We can also compare the evolved approaches
to human designed solutions, which provides a useful measure
of how well these programs work - and gives us the oppor-
tunity to demonstrate solutions that may be superiour. Lastly,
image processing is computationally expensive, and this has
traditionally added complications to the implementation of the
evolutionary algorithms.

II. GENETIC PROGRAMMING AND IMAGE FILTERS

Genetic programming has been frequently used for image
processing tasks, such as object recognition and feature detec-
tion. However, there is relatively little work in the literature
concerning the evolution of filters. Where filters are evolved,
the task is frequently limited to noise reduction and edge
detection.

Typically in the evaluation stage of evolved filters, a single,
low resolution (256 x 256 pixel) image is used. This approach
can be expected to result in over-fitting to a particular image.
A common approach of the papers listed below is to produce
a hardware implementation. Execution of evolved programs
on an image is a time consuming operation, and without
the acceleration that can come from such an implementation,
would be intractable. In contrast to the other approaches, we
use a set of 16 images (256 x 256 pixels) split into training
and validation sets. Without the use of the GPU hardware,
such a task would not be practical.

For this work, we use a function set of floating point
operations as they are convenient for the GPU platform,
however alternative approaches can be used.

Previously, an implicit representation of CGP has been used
for evolving Gaussian noise removal [9]. The function set was
limited to four binary logical functions, as the authors planned
to move the approach to hardware. A different Boolean
function set was used by [13]. A mixture of integer and binary
functions was employed in [8], again to evolve noise reduction
filters.

The evolution of image filters using specialized, parallel
hardware, such as FPGAs has been demonstrated. For exam-
ple, Vasicek and Sekanina used an FPGA based approach[13].
CGP represented the configuration for logic blocks inside the
FPGA. This limited the functions to digital operations such
as OR, AND, XOR and shifting. The entire algorithm was
implemented on an FPGA and its associated PowerPC proces-
sor. The authors conclude that the FPGA evaluates individuals
22 times faster than a PC with a Celeron processor 2.4GHz.
Similarly, Kumar et al. also evolved FPGA configurations [4]
for noise removal in images, although in this case the exact
performance, in terms of speed up, compared to a traditional
CPU is unclear.

Fig. 1. The training and validation image set. All images arepresented
simultaneously to the GPU. The first column of images is used to compute
the validation fitness, the remaining twelve for the training fitness. Each image
is 256 by 256 pixels, with the entire image containing 1024 by1024 pixels.

Since FPGA based approaches are limited to binary op-
erations, using a GPU we are able to work using floating
point numbers - which makes direct comparison difficult.
FPGA implementations also suffer from the need for specialist
hardware and software skills.

Evolved image filters have already been applied to a real
world problem [7]. There programs were evolved to produce
filters that could detect the changes between two images, for
the detection of mud slides. The programs had to be insensitive
to noise and other artifacts in the supplied images. Anotheruse
for genetic programming in image operations is for automatic
feature extraction [12]. However, we consider these types of
applications to be distinct from the one presented in this paper.

A. Our Approach

The approach we employ here is similar to the one in
reference [2], where noise reduction filters were evolved. In
this paper we expand that work, but into a more general
purpose approach.

In [2] we used 4 images for our training, and none for
validation. Here we use 16 different images (Figure 1), that
are largely taken from the USC-SIPI image repository. With
12 used for fitness evaluation, and 4 for validation. This allows
us to be confident that evolved filters will generalise well. As
we are employing the GPU for acceleration, we are able to test
all the images at the same time (see section V) and obtain both
the fitness score and the validation score at the same time.

In this work, we allow the filters to be iterated. Evolution
is allowed to determine how many times the evolved program

should be run. After iterating the program once, the new image
is copied back and used as the source image, so that it can
be operated on by subsequent iterations. An instruction in the
function set allows the evolved program to know what iteration
it is currently on, and potentially use this information to direct
program flow.

III. E XPERIMENT OVERVIEW

The original input images (Figure 1) were combined to-
gether to form a larger image. A filter was applied using GIMP.
We then used the evolutionary algorithm to find the mapping
between the input image and the output images. The fitness
function attempts to minimize the error between the desired
output (the GIMP processed image) and the output from the
evolved filters.

The genetic programming technique is described fully in
the following section. Section V describes the implementation
of this algorithm and the fitness function on the GPU. The
parameters and function set are given in Section VI. The
choice of function set is determined by the functions available
in the MS Accelerator API.

IV. CARTESIAN

GENETIC PROGRAMMING

Cartesian Genetic Programming was originally developed
by Miller and Thomson [5] for the purpose of evolving digital
circuits and represents a program as a directed graph. One
of the benefits of this type of representation is the implicit
re-use of nodes in the directed graph. The technique is also
similar to Parallel Distributed GP, which was independently
developed by Poli [6], and also to Linear GP developed by
Banzhaf[15]. Originally CGP used a program topology defined
by a rectangular grid of nodes with a user defined number of
rows and columns. However, later work on CGP always chose
the number of rows to be one, thus giving a one-dimensional
topology, as used in this paper. In CGP, the genotype is a
fixed-length representation and consists of a list of integers
which encode the function and connections of each node in
the directed graph.

CGP uses a genotype-phenotype mapping that does not
require all of the nodes to be connected to each other, resulting
in a bounded variable length phenotype. This allows areas of
the genotype to be inactive and have no influence on the
phenotype, leading to a neutral effect on genotype fitness
called neutrality. This unique type of neutrality has been
investigated in detail [5], [14], [16] and found to be extremely
beneficial to the evolutionary process on the problems studied.

Each node in the directed graph represents a particular
function and is encoded by a number of genes. The first
gene encodes the function the node is representing, and the
remaining genes encode the location where the node takes its
inputs from, plus one parameter that is used as a constant.
Hence each node is specified by 4 genes. The genes that
specify the connections do so in a relative form, where the
gene specifies how many nodes back to connect[3]. If this
address is negative, a node connects to an input. Modulo

arithmetic is used to handle conditions where the index goes
beyond the number of inputs.

The graph is executed by recursion, starting from the output
nodes down through the functions, to the input nodes. In this
way, nodes that are unconnected are not processed and do not
effect the behavior of the graph at that stage. For efficiency,
nodes are only evaluated once with the result cached, even if
they are connected to multiple times.

To clarify, figure 2 shows an example CGP program applied
as a filter. The genotype for such a graph would be:

ADD 2 6 4.35
MIN 1 7 2.3
MULT 3 8 3.2
ADD 1 2 -54
MAX 2 13 1.23

In addition, each individual in our population also stores an
integer that specifies the number of times filter is applied. This
iteration counter is bounded between 1 and 5.

We chose to use CGP as in addition to having experience in
using it, it provides some features such as bounded length pro-
grams and shared sub-trees that are useful on the constrained
GPU platform. These can reduce the amount of memory (and
processing) required to perform a given task.

V. GPU IMPLEMENTATION

A. General Requirements

Graphics processors are specialized stream processors used
to render graphics. Typically, the GPU is able to perform
graphics manipulations much faster than a general purpose
CPU, as the graphics processor is specifically designed to
handle certain primitive operations. Internally, the GPU con-
tains a number of small processors that are used to perform
calculations on 3D vertex information and on textures. These
processors operate in parallel with each other, and work
on different parts of the problem. First the vertex proces-
sors calculate the 3D view, then the shader processors paint
this model before it is displayed. Programming the GPU is
typically done through a virtual machine interface such as
OpenGL or DirectX which provide a common interface to
the diverse GPUs available thus making development easy.
However, DirectX and OpenGL are optimized for graphics
processing, hence other Application Programming Interfaces
(APIs) are required to emply the GPU as a general purpose
device. Here we use the Microsoft Accelerator tool to provide
a layer of abstraction between the evolutionary algorithm and
the underlying API, drivers and hardware [11], [10].

B. Running Filters on a GPU

Running the filters on the GPU will allow us to apply the
kernel to every pixel (logically, but not physically) simultane-
ously. The parallel nature of the GPU will allow for multiple
kernels to be calculated at the same time. This number will
be dependent on the number of shader processors available.
Using the Microsoft Accelerator architecture, it will appear
to be completely parallel, although internally, the task will be
broken down into chunks suitable for the GPU.

The image filter is made of an evolved program that takes a
pixel and its neighbourhood (a total of 9 pixels) and computes
the new value of that centre pixel. On a traditional processor,
one would iterate over each pixel in turn and execute the
evolved program each time. Using the parallelism of the GPU,
many pixels (in effect all of them) can be operated on simulta-
neously. Hence, the evolved program is only evaluated once.
Although the evolved program actually evaluates the entire
image at once, we can break down the problem and consider
what is required for each pixel. For each pixel, we need a
program that takes it and it’s neighbourhood, and calculates a
new pixel value. Therefore, the evolved program requires as
many inputs as there are pixels in the neighbourhood and a
single output. In the evolved program, each function has two
inputs and one output. These inputs are floating point numbers
that correspond to the grey level values of the pixels. Figure
2 illustrates a program that takes a 9 pixel sub image, and
computes a new pixel value.

Mapping the image filtering problem to the parallel architec-
ture of the GPU is relatively straightforward. It is important to
appreciate that the GPU typically takes 2 arrays and produces a
3rd by performing a parallel operation on them. The operation
is element-wise, in the same way as matrix operations. To
clarify, consider 2 arrays:a = [1, 2, 3] b = [4, 5, 6]. If
we perform addition, we getc = [5, 6, 9]. With the SIMD
architecture of the GPU, it is difficult to do an operation such
as add the first element of one array to the second of another.
To do such an operation, the second array would need to be
shifted to move the element in the second position to the first.

For the image filtering, we need to take a sub image from the
main image as inputs for a program (our convolution kernel)
- keeping in mind the matrix like operations of the GPU.

To do this we take an image (e.g. the top left array in Figure
3) and shift the array one pixel in all 8 possible directions.This
produces a total of 9 arrays (labeled (a) to (i) in Figure 3).

Taking the same indexed element from each array will return
the neighbourhood of a pixel. In the figure, the neighbourhood
is shaded grey and a dotted line indicates how these elements
are aligned. The GPU runs many copies of the evolved
program in parallel, and essentially each program can only
act on one array index. By shifting the arrays in this way, we
have lined up the data so that although each program can only
see a given array position, by looking at the set of arrays (or
more specifically a single index in each of the arrays in the set)
it can have access to the a given pixel and its neighbourhood
becoming the inputs to our evolved program.

For example, if we add array e to array i the new value of
the centre pixel will be 6 - as the centre pixel in e has value
5 and the centre pixel in i has value 1.

It is important to note that the evolutionary algorithm itself
remains on the CPU, and only the fitness function is run on
the GPU.

Fig. 2. In this example, the evolved program has 9 inputs - that correspond to a section of an image. The output of the program determines the new colour
of the centre pixel. Note that one node has no connections to it’s output. This means the node is redundant, and will not be used during the computation.

Fig. 3. Converting the input image to a set of shifted images allows the element-wise operations of the GPU access a pixel and its neighbourhood. The
evolved program treats each of these images as inputs. For example, should the evolved program want to sum the centre pixel and its top-left neighbour, it
would add (e) to (i).

C. Fitness Function

For the fitness function, we compute the average of the
absolute difference between the target image and the image
produced using CGP. The lower this error, the closer our
evolved solution is to the desired output.

Using the GPU, we can obtain both the training and
validation fitness at the same time. This reduces some of the
overhead of moving images and evolved programs to the GPU,
and returning the fitness.

We take the output from the evolved program, subtract
it from our desired output and then its absolute value is
calculated. This provides an array containing the difference of
the two images. Next a mask is applied to remove the edges
where the sub-images meet. This is done because when the
images are shifted, we will be overlapping data from different
images, and could introduce undesirable artifacts to the fitness
computation. Edges are removed by multiplying the difference
array by an array containing 0s and 1s. The 1s label where
we wish to measure the difference.

To calculate the training error, we multiply the difference

array by another mask. This mask contains 1s for each pixel
in the training images, and 0 for pixels we do not wish to
consider. We then sum the content of the array, and divide by
the number of pixels to get the fitness value.

A similar mask can then be used to find the validation
fitness.

VI. GENETIC ALGORITHM

AND PARAMETERS

The algorithm used here is a simple evolutionary algorithm.
We have a population of size 25. The mutation rate is set to
be 5%, i.e. each gene in the genotype will be mutated with
probablity 0.05. We do not use crossover. The iteration counter
is also mutated with a 5% probability. The counter is mutated
by adding a random number in the range -2 to 2. The counter
is bounded between 1 and 5.

Selection is done using a tournament selection of size 3.
The 5 best individuals are promoted to the next generation
without modification. The CGP graph is intialised to contain
100 nodes (it is important to note that not all nodes will be

Function Description

ITERATION Returns the current iteration index
ADD Add the two inputs
SUB Subtract the second input from the first
MULT Multiply the two inputs
DIV Divide the first input by the second
ADD CONST Adds a constant (the node’s parameter) to the first input
MULT CONST Multiplies the first input by a constant (the node’s parameter)
SUB CONST Subtracts a constant (the node’s parameter) to the first input
DIV CONST Divides the first input by a constant (the node’s parameter)
SQRT Returns the square root of the first input
POW Raises the first input to the power of the second input
COS Returns the cosine of the first input
SIN Returns the sin of the first input
NOP No operation - returns the first input
CONST Returns a constant (the node’s parameter)
ABS Returns the absolute value of the first input
MIN Returns the smaller of the two inputs
MAX Returns the larger of the two inputs
CEILING Rounds up the first input
FLOOR Rounds down the first input
FRAC Returns the fractional part of number, x - floor(x)
LOG2 Log (base 2) of the first input
RECIPRICAL Returns1/firstinput
RSQRT Returns1/

√

firstinput

TABLE I
CGP FUNCTION SET

used in the generated program).
Evolution was allowed to run for 50,000 evaluations.
Table I shows the available functions. The functions operate

upon floating point numbers.

VII. R ESULTS

The results for evolving each filter are summarised in Table
II. In the following sections, the best validation result is
shown, alongside the output of the target filter from GIMP.
We include examples of the evolved programs to illustrate
the type of operations that evolution found to replicate the
target filters. Due to space constraints, we are unable to include
such analysis for every filter type. For implementation of the
original filters, there is extensive coverage in the literature and
also in the source code for GIMP.

A. Dilatation and Erosion

Figure 4 shows the result of evolving the ’Dilate’ filter. In
’Dilate2’ (figure 5), the filter is applied twice. Figure 6 shows
the result of evolving the ’Erode’ filter. In ’Erode2’ (figure7),
the filter is applied twice.

We can analyse the evolved program to determine how the
filter works. For erosion, the best evolved program contains
8 operations and requires 5 iterations to run. The evolved
expression is:

Output = Max (Log2 (I8) ,
Min (I8+ (Min(I3,I7)-Max(I7,I8)),
Floor(I1)))

WhereI1 to I9 are the input pixels, as shown in figure 3.
The best dilation program contains 4 instructions, and again

requires 5 iterations. The evolved program is :
Output = Max(Max(I9,

Max(I1,I5)),Max(I3,I7))

In contrast, the best evolved program for applying both
erosion and dilation twice, both contain 17 instructions (and
again require 5 iterations). It is unclear why these programs
should need to be so much more complicated.

B. Emboss, Sobel and Neon

The Emboss, Sobel and Neon filters are different types of
edge detectors. We chose to evolve these different types as the
outputs are very different. Emboss is a directional filter, where
as Sobel and Neon are not. We found that all three types of
filters could be accurately evolved.

Figure 8 shows the result of evolving the emboss filter.
We find when that visually compared the evolved emboss
filter is very similar to that used by GIMP (for this and the
other sample images here, the most representative and visually
useful sub image is used). The evolved program to evolve this
filter contains 20 nodes:

Output = ABS(MIN(-0.3857,
POW(SQRT(I2/((I8+RSQRT(I5))-0.863)),I8))
+ CEIL(MIN(((I3-I9)+(I1-I7))
-129.65,FRAC(I5))))

Figure 9 shows the result of evolving the neon filter.
GIMP has two versions of the Sobel filter. Figure 10 shows

the result of evolving a normalized ’Sobel’ filter. In ’Sobel2’
(Figure 11), the target was the standard Sobel filter. The
standard Sobel filter receives poor error rates, however the
visual comparison is very good. It would appear that the
evolved output is scaled differently, and hence the pixel in-
tensities are different. If both images are normalized, theerror
is reduced. However, our fitness function does not normalize
automatically, and leaves this task to evolution.

The evolved Sobel filter is quite complicated:

Filter Best error Avg Validation Error Avg Validation Evals Avg Train Error Avg Train Evals

Dilate 0.57 0.71 2422 0.67 3919
Dilate2 5.84 6.51 11361 6.10 39603
Emboss 3.86 8.33 15517 7.41 34878
Erode 0.56 0.78 3892 0.73 4066
Erode2 5.70 6.72 26747 6.64 40559
Motion 2.08 2.32 29464 2.24 43722
Neon 1.32 2.69 15836 2.41 35146
Sobel 8.41 22.26 26385 20.12 45744
Sobel2 1.70 3.82 19979 3.55 39155
Unsharp 5.85 5.91 301 5.61 37102

TABLE II
RESULTS PER EVOLVED FILTER. ‘B EST ERROR’ IS THE LOWEST ERROR SEEN WHEN TESTING AGAINST THE VALIDATIONIMAGES. ’ AVG VALIDATION

ERROR’ IS THE AVERAGE OF THE BEST VALIDATION ERROR. ’AVG VALIDATION EVALS ’ IS THE AVERAGE NUMBER OF EVALUATIONS REQUIRED TO FIND

THE BEST VALIDATION ERROR. ’AVG TRAIN ERROR’ IS THE AVERAGE OF THE LOWEST ERROR FOUND ON THE TRAINING IMAGES. ’AVG TRAIN EVALS ’
IS THE AVERAGE NUMBER OF EVALUATIONS REQUIRED TO FIND THE BEST TRAINING FITNESS. EACH EXPERIMENT WAS REPEATED FOR20 TRIALS.

A = I7 - I3

B = I9 - MAX(I1,LOG2(A))
OUTPUT = 2.0 * (MIN(MAX(ABS(B)+FRAC(1)+ABS(2.0 *
A),
MAX(FLOOR(LOG2(A)),2.0 * B)),
(CEIL(FRAC(I5)) * -0.760)+127.24))

The best evolved program for Sobel2 was considerably
shorter:

Output = Max (ABS((I9 - I1) * 0.590),
POW(I3 - I7,SQRT(0.774)) / -2.245)

Again, both programs required 5 iterations. This suggests
there is some bias in the algorithm to increase the number of
iterations to the maximum allowed.

C. Motion blur

Figure 12 shows the result of evolving the motion filter. The
output of the evolved filter did not match the desired target
very accurately. Although there is a degree of blurring, it is
not as pronounced as in the target image. Motion blur is a
relatively subtle effect, and as the target and input imagesare
quite similar, it is likely that evolution will become trapped in
a local minima.

D. Unsharp

Figure 13 shows the result of evolving the ’Unsharpen’ filter.
Unsharpen was the most difficult filter to evolve. We suspect
this is due to the Gaussian blur that needs to be applied as
part of the procedure. It is difficult to see how, with the current
function set, such an operation can evolve. We will need to
rectify this in future work.

VIII. GPU PERFORMANCE

Using the Graphics Processor greatly decreases the evalu-
ation time per individual. On our test system (NVidia 8800
GTX, AMD Athlon 3500+, Microsoft Accelerator API), we
obtained approximately 145 million Genetic Programming
Operations Per Second (GPOps), and a peak performance of
324 Million GPOps. The processing rate is dependent on the
length of the evolved programs. Some filters benefit more from
the GPU implementation than others.

At present, it is unclear of the relationship of this figure to
Floating Point Operations Per Second. Executing the evolved
programs using the CPU bound reference driver, we obtain
only 1.2 million GPOps, i.e. a factor of 100 times slower than
the GPU. However, using the reference driver incurs significant
overhead and may not be an accurate reflection of the true
speed of the CPU.

The high processing rate suggests that this technique may
also be suitable for real time image processing, and the
possibility of continual adaptation. We hope to explore this
problem in a future paper.

We also investigated the performance of applying a small
number of images, i.e. 4 instead of 16. We found that the
processing time was the same, suggesting that there is a large
overhead of moving images to the GPU.

IX. CONCLUSIONS

In this paper we have demonstrated that it is possible to
use genetic programming to reverse engineer image processing
algorithms. We have also demonstrated that such techniques
are well suited for implementation on GPUs. Using the GPU
greatly speeds up evaluation, and allows for a more robust
fitness test - as multiple images, with different properties,
can be used. The increased evolutionary power also allowed
us the opportunity to investigate the evolution of some more
unconventional filters that have yet to be used as problems in
the genetic programming community.

We expect that our technique could be used to reverse
engineer proprietary image processing algorithms. Assuming
that a user has access to the unprocessed version of the image,
it should be possible to discover an algorithm that replicates
the original processing technique. Such a system could be
practical in providing open source versions of closed source
products. Another possible use is to optimise existing hand
design processes. By first designing a procedure by hand, the
system could then be used to find an equivalent filter. It should
be possible to evolve filters that require fewer operations,
as the GP would automatically be able to reduce multiple
conventional convolutions into a single program.

Filter Peak GPOps Avg GPOps

Dilate 116 62
Dilate2 281 133
Emboss 254 129
Erode 230 79
Erode2 307 195
Motion 280 177
Neon 266 185
Sobel 292 194
Sobel2 280 166
Unsharp 324 139

TABLE III
MAXIMUM AND AVERAGE GENETIC PROGRAMMING OPERATIONSPER SECOND (GPOPS) OBSERVED FOR EACH FILTER TYPE.

REFERENCES

[1] GNU. Gnu image manipulation program (GIMP). www.gimp.org, 2008.
[Online; accessed 21-January-2008].

[2] S. Harding. Evolution of image filters on graphics processor units
using cartesian genetic programming. InIEEE World Congress on
Computational Intelligence, WCCI 2008, Hong Kong, China, June 1-
6, 2008, volume 5050 ofLecture Notes in Computer Science, pages
1921–1928. Springer, 2008.

[3] S. Harding, J. F. Miller, and W. Banzhaf. Self-modifyingcartesian
genetic programming. In H. Lipson, editor,GECCO, pages 1021–1028.
ACM, 2007.

[4] P. N. Kumar, S. Suresh, and J. R. P. Perinbam. Digital image filter
design using evolvable hardware. InICIS ’05: Proceedings of the Fourth
Annual ACIS International Conference on Computer and Information
Science (ICIS’05), pages 483–488, Washington, DC, USA, 2005. IEEE
Computer Society.

[5] J. F. Miller and P. Thomson. Cartesian genetic programming. In R. Poli
and W. B. et al., editors,Proc. of EuroGP 2000, volume 1802 ofLNCS,
pages 121–132. Springer-Verlag, 2000.

[6] R. Poli. Parallel distributed genetic programming. In D. Corne,
M. Dorigo, and F. Glover, editors,New Ideas in Optimization. McGraw-
Hill, 1999.

[7] P. Rosin and J. Hervas. Image thresholding for landslidedetection by
genetic programming.Analysis of multi-temporal remote sensing images,
pages 65–72, 2002.

[8] K. Slan and L. Sekanina. Fitness landscape analysis and image filter
evolution using functional-level cgp.Lecture Notes in Computer Science,
2007(4445):311–320, 2007.

[9] S. L. Smith, S. Leggett, and A. M. Tyrrell. An implicit context represen-
tation for evolving image processing filters. In F. Rothlauf, J. Branke,
S. Cagnoni, D. W. Corne, R. Drechsler, Y. Jin, P. Machado, E. Marchiori,
J. Romero, G. D. Smith, and G. Squillero, editors,Applications of
Evolutionary Computing, EvoWorkshops2005: EvoBIO, EvoCOMNET,
EvoHOT, EvoIASP, EvoMUSART, EvoSTOC, volume 3449 ofLNCS,
pages 407–416, Lausanne, Switzerland, 30 Mar.-1 Apr. 2005.Springer
Verlag.

[10] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: usingdata parallelism
to program GPUs for general-purpose uses. InASPLOS-XII: Proceed-
ings of the 12th international conference on Architectural support for
programming languages and operating systems, pages 325–335, New
York, NY, USA, 2006. ACM.

[11] D. Tarditi, S. Puri, and J. Oglesby. Msr-tr-2005-184 accelerator: Using
data parallelism to program GPUs for general-purpose uses.Technical
report, Microsoft Research, 2006.

[12] L. Trujillo and G. Olague. Synthesis of interest point detectors through
genetic programming. InGECCO ’06: Proceedings of the 8th annual
conference on Genetic and evolutionary computation, pages 887–894,
New York, NY, USA, 2006. ACM.

[13] Z. Vacek and L. Sekanina. Evaluation of a new platform for image
filter evolution. InProc. of the 2007 NASA/ESA Conference on Adaptive
Hardware and Systems, pages 577–584. IEEE Computer Society, 2007.

[14] V. K. Vassilev and J. F. Miller. The advantages of landscape neutrality in
digital circuit evolution. InProc. of ICES, volume 1801, pages 252–263.
Springer-Verlag, 2000.

[15] G. Wilson and W. Banzhaf. A comparison of cartesian genetic pro-
gramming and linear genetic programming. InProceedings of the 11th

European Conference on Genetic Programming (EuroGP 2008), volume
4971, pages 182–193. Springer Berlin, 2008.

[16] T. Yu and J. Miller. Neutrality and the evolvability of boolean function
landscape. In J. F. Miller and M. T. et al., editors,Proc. of EuroGP
2001, volume 2038 ofLNCS, pages 204–217. Springer-Verlag, 2001.

Fig. 4. Dilate: Evolved filter and GIMP filter

Fig. 5. Dilate twice: Evolved filter and GIMP filter

Fig. 6. Erode: Evolved filter and GIMP filter

Fig. 7. Erode2: Evolved filter and GIMP filter

Fig. 8. Emboss: Evolved filter and GIMP filter

Fig. 9. Neon blur: Evolved filter and GIMP filter

Fig. 10. Sobel: Evolved filter and GIMP filter

Fig. 11. Sobel2: Evolved filter and GIMP filter

Fig. 12. Motion blur: Evolved filter and GIMP filter

Fig. 13. Unsharp blur: Evolved filter and GIMP filter

