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Abstract  An artificial regulatory network able to reproduce a number of phenom-
ena found in natural genetic regulatory networks (such as heterochrony,
evolution, stability and variety of network behavior) is proposed. The
connection to a new genetic representation for Genetic Programming is
outlined.

Keywords: Regulatory Networks, Artificial Evolution, Evolutionary Algorithms,
Genetic Programming, Development, Heterochrony

1. Introduction

Artificial evolution has proved useful in the optimization of numer-
ical parameters in long-standing combinatorial problems, as well as in
structural design problems. The former are known under labels such as
Genetic Algorithms [15, 12], Evolutionary Strategies [26, 28] and Evo-
lutionary Programming [10, 9], the latter are mostly known as Genetic
Programming [20, 3].

One key problem of all search algorithms is the ’curse of dimension-
ality’ [4]. This expression refers to the exponential growth of the search
space’s volume as a function of dimensionality. Thus even if there is an
evolutionary computation solution to a problem of given size, the same
problem with increased dimension might be completely unsolvable. The
entire hope of Evolutionary Computation rests with the fact that meth-
ods can be implemented which are not volume-based but path-based.
This means that history-, or otherwise constraint-dependent search op-
erators scan only a small part of the search space around the present
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areas of probing. It is expected that it will be possible to approach good
solutions with this method.

In biology, developmental processes restrict the path of evolution to
but a tiny fraction of the search space of possible forms and behaviors
in Nature [13]. This fact was a point of debate among biologists for
more than a century. Why would Nature restrict itself so radically,
to the point of risking extinction of entire classes of organisms when
changing conditions would dictate adaptations which were impossible
to reach from a particular branch of the tree of life? We cannot but
think that there is some advantage to this approach in natural search
spaces. Perhaps the density of solutions is equal everywhere? Perhaps
neutral variations' are easily achieved in natural evolutionary systems,
so as to relax the constraints somewhat? Perhaps the pressure to achieve
solutions quickly resulted in a somewhat stream-lined search process?

Evolutionary and developmental biology were separated for most of
the 20th century. However, a recent convergence of principles in biology
suggests the evolutionary computation community should also take a
closer look at development. Since GP search spaces seem to be closer
to natural search spaces (density of solutions, ubiquity of neutral varia-
tions), the time has come to explore developmental approaches, notably
in connection with GP. A number of researchers have, over the last
decade, explored some aspects of developmental approaches to GP, in-
cluding the genotype-phenotype map [1, 2, 29, 17, 25, 21], the genetic
code [11, 18], the mechanisms of gene expression and regulation (see, for
example [16]).

Over recent years, a key insight of biologists studying development
and evolution was that variety in the living world can be traced back to
three genetic mechanisms, active both in development and evolution:

1 Interactions between the products of genes
2 Shifts in the timing of gene expression (heterochrony)
3 Shifts in the location of gene expression (spatial patterning)

If we take this conclusion seriously, and go to the root of its natural im-
plementation, we arrive at regulatory networks. Nature uses regulatory
networks as a means to set up and control these mechanisms. This way,
Nature unfolds the patterns and shapes of organism morphologies and of
their behavior. In addition, regulatory networks mediate between devel-
opment and evolution, since many evolutionary effects can be followed
through their regulatory causes.

INeutral variations are changes in genotypes that do not lead to fitness changes of phenotypes.
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How can we make use of these insights in artificial evolutionary sys-
tems? Previous work in the area is scattered. Eggenberger [8] has stud-
ied the patterning of artificial 3D-morphologies. Reil [27] has set up an
artificial genome and studied some consequences for artificial ontogeny.
Kennedy [19] examined a model of gene expression and regulation in
an artificial cellular organism. Bongard and Pfeifer have considered the
relation between evolving artificial organisms and behavior [5].

This chapter presents a new model of an artificial regulatory network
which should be useful for algorithms like GP employing structural evo-
lution. The model is a simplification and abstraction of the key elements
of protein-genome interaction. It is not yet connected to a semantics of
structures. That will be the next step. At this point, we can merely
study the inner workings of the model and outline uses for it in GP.
Section 2 explains the overall view of the regulatory network model, sec-
tion 3 views it from the static (structural) perspective, while section 4
looks at the dynamic perspective. Section 5 explains the concept of hete-
rochronic control. Section 6 exemplifies the plasticity of such systems to
evolutionary pressure, section 7 discusses stability of steady states and
means of communication. Finally, section 8 summarizes the discussion
and outlines future steps. Our entire discussion here is qualitative, be-
cause only sample networks showing typical behavior will be presented.

2. A new genetic representation based on
artificial regulatory networks

Our regulatory network model consists of a bit string, the 'genome’,
and mobile information-carrying molecules, ’proteins’, which are equipped
with bit patterns for interaction with the genome. Together, they repre-
sent a theoretically closed world with a network of interactions between
genome and proteins, and a dynamics determined by this network.

A mechanism for reading off genes and for producing proteins with
particular bit-patterns is used often called a ’genotype-phenotype map-
ping’. Proteins are able to wander about and to interact with any pat-
tern on the genome, notably with ’regulatory sites’ located upstream
from genes. By attaching to these special sites, they can influence the
production of (other) proteins. We observe the production of proteins
and the dynamics of their concentration changes as a result of the inter-
play between all the interactions taking place simultaneously.

The genome is implemented as a sequence of 32-bit (integer) num-
bers. The length of the sequences, Lg, determines the length of the
genome and is frequently used as a parameter. A particular START
pattern, the ’promoter’, is used to signal the beginning of a gene on
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the bit string (analogous to an open reading frame (ORF) on DNA),
starting at the next integer. The signal used is arbitrary and was chosen
as ’XYZ01010101°, with XYZ arbitrary bytes and the one-byte pattern
which in a genome generated by randomly choosing ’0’s and ’1’s will
appear with a probability of 278 ~ 0.0039 = 0.39%. Genes follow the
promoter and have a fixed length of [, = 5 32-bit integers resulting in
an expressed bit pattern of 160 bits for each gene.

Upstream from the promoter site there are two special sites. One en-
hancer site and one inhibitor site both are of length 32 bits. Attachment
of proteins to these sites will result in changes in protein production
of the corresponding gene. It is assumed that a very low production
of proteins takes place if both sides are unoccupied. Usually, however,
there will be proteins around to influence expression rate of a particu-
lar gene, and we shall look at that in more detail later. In this simple
model, we restrict ourselves to just one regulatory site for expression
and one for suppression of proteins. This is a radical simplification with
regard to natural genomes, where 5-10 regulatory sites that might even
be occupied by complexes of proteins are the rule.

‘XYZOlOlOlOl 11000101010000100010011101101101010001111010111000101110100001000...................
T

‘ Promoter sequence ‘

Majority rule for bits

11111110

Figure 4.1. The genotype-phenotype mapping. Proteins are produced from genes
via the genotype-phenotype mapping function.

In this model, we disregard the transcription process completely. Fur-
ther, there are no introns, no RNA-like mobile elements and no trans-
lation procedure resulting in a different alphabet for proteins. Instead,
proteins consist of bit patterns of a particular type: Each protein is a
32-bit number resulting from a many-to-one mapping of its gene: On
each bit position in the gene’s integers the majority rule is applied so
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as to arrive at one bit for the protein. In the case of a tie (not possible
with an odd number for [;), it is resolved by chance (see Figure 4.1).
Proteins can now be examined as to how they 'match’ the genome :
Each bit pattern of a protein can be compared to the genome pattern.
The comparison is implemented by an XOR operation which results
in a ”1” if both patterns are complementary. Thus, complementarity
between genome and protein bit patterns - and therefore their match - is
determined by the number of bits set resulting from this XOR operation.
In general, it can be expected that a Gaussian distribution results when
measuring the match between a protein and all the bit sequences of a
random genome. Notably, there are a few high-matching and a few low-
matching positions and many average-matching ones on the genome.

3. Static view

Table 4.1 gives three examples of genomes with increasing size. We list
the number of genes which roughly follows the 0.39% rule, the maximum
match between resulting proteins and their genome at any location, and
the number of times such a maximum match has been found. As can be
seen the number of proteins with maximum match remains about the
same, but their specificity increases.

Table 4.1. Sample genomes of increasing size. Specificity of highest matches increase.

| Genome length Lg | Number of genes | Max. match | Freq. max. match |

1,000 3 25 3 |
10,000 37 28 4 |
10,0000 409 30 3 |

Viewed from a protein’s point of view, which scans the genome for
good matching sites, Figure 4.2 depicts a typical situation: There is a
wide variety of matching degrees, with very few high and low peaks.
Average match is 16 bits just in the middle between 0 (min) and 32 bits
(max), and statistically a Gaussian distribution emerges.

Let’s change perspective and look from the genome’s point of view,
and more specifically, from the point of view of regulation sites. A num-
ber of proteins are produced and floating by, with some providing better
matches to the site, other proteins providing worse matches. In princi-
ple, each protein has the potential to interact with each regulatory site,
and the degree of matching will determine the probability of occupation
of a certain site with a certain protein. The situation is depicted in
Figure 4.3.



Because proteins are competing for attachment to regulatory sites,
the probability of occupation with a particular protein is dependent on
the degree of matching of all other proteins to this site. It is there-
fore necessary to normalize the degree of matching between the various
proteins.

Under the simplifying assumption that the occupation of two regula-
tory sites per gene modulate the expression of the corresponding protein,
a network of interactions between genes and proteins can be deduced,
which can be parametrized by strength of match. Figure 4.4 shows a
sample network, taken from an example genome with 32 genes / proteins.

Although no evolution has taken place (recall these genomes are gen-
erated by randomly drawing bits), the network of interactions shows a
highly structured view of the resulting interactions. Despite this impres-
sion, however, the networks must be considered very complex (in terms
of layers vs. participating nodes) and a deep hierarchy of interactions is
visible.

A different picture emerges if we slightly change the strategy of gener-
ating our random genome. Figure 4.5 shows another genome which was
generated by 'growing’ a genome from a single 32-bit integer number. A
series of length duplications, followed by mutations was applied to arrive
at a genome of the same length Lg = 10,000. As can be seen from the
figure, the result is a much shallower hierarchy, with particular master
genes holding sway over an entire set of other genes, and other genes
merely connected to their master gene.

T
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Figure 4.2. Matches of a sample protein with its genome. The genome was generated
randomly, and matches are visibly distributed randomly as well.
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Figure 4.3. Interaction between genome and proteins, as seen from the regulatory
sites. Fach protein matches more or less to all regulatory sites.
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Figure 4.4. Network of interactions resulting from matches of proteins with the
genome for a larger example. Depicted are 9 out of proteins and their matches with
the regulatory sites of all 32 genes of this example (L& = 10, 000). Black: Enhancing
interactions; Gray: Inhibiting interactions.

As has been observed in natural genome organization [6], shallow
hierarchies, up to the point of modularity, are a hallmark of biological
organisms. It is interesting to note that a simple process of duplication
and divergence suffices to reach a similar state, even from a random
genome.

4. Dynamic view

Our discussion will now leave the static picture and concentrate on
dynamics of the interaction network. A match between protein and
regulatory site of a gene leads to activation or inhibition of protein pro-



Figure 4.5. Network of interactions resulting from matches of proteins with a genome
generated through a growth algorithm: A series of genome length duplications is
followed by diversifying mutations (Lg = 10,000). Matching parameter is at higher
values for arriving at a network complexity of approximately the same size as before.
Black: Enhancing interactions; Gray: Inhibiting interactions.

duction of the corresponding gene. Generally, the influence of a protein
i with ¢ = 1,...,n, on an enhancer/inhibitor site is exponential in the
number of matching bits, ezp(5(u; — Umaz)) Where ty,,, is the maximum
match achievable.

The concentration of protein molecules ¢; of protein 7 modulates this
strength to produce the following excitatory / inhibitory signals for the
production of protein :

1 _
e =~ %:Cjeﬁ(uj—uim) (4.1)

1 _
in; = N z]: Cjeﬁ(uf ~tmaz) (4.2)

where a scaling was done as to have a maximum match for the best
matching protein, both in excitatory and inhibitory signals.

Given these signals, protein ¢ is produced via the following differential
equation

% =d(e; —ing)e; — P (4.3)

A flow term assures that concentrations remain in the simplex, >, ¢; =
1, resulting in competition between sites for proteins.

If we look at the dynamics of concentration changes of proteins, start-
ing from a state of equal concentration that reflects the native low-level
expression of all genes, we can observe some proteins increase their level
of concentration, then fall again, with usually one being left over. Thus,
a typical dynamic system behavior can be seen, well known under the
name ’point attractor’ in dynamical systems theory [14].
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For different random genomes (different number of genes, matching
etc) the dynamics is remarkably different. There are cases of longer and
shorter time scales, there are complicated and simple dynamics. Figures

4.6 to 4.9 show four different dynamics resulting form four different
genomes.
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Figure 4.6. Time development of protein concentrations. Different dynamical sys-
tems are realized by different genomes (see later figures). Here, a dampened (nonlin-
ear) oscillator type of dynamics is exhibited.
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Figure 4.7. Time development of protein concentrations. Slow and smooth devel-

opment of concentrations due to the particular bit patterns - and thus couplings
strengths - between genes and proteins.

It should be noted that this richness of dynamics is merely a result of
different genomes of the same length, with different patterns for proteins
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Figure 4.8. More examples of dynamics: Quick settlement into a point attractor.
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Figure 4.9. Extended transition phase with one protein achieving high values of
concentration and a subsequent switch to expression of one other gene.

resulting in different matching and regulation results. No development
or evolution has yet been put in place.

5. Heterochronic control

If we look at this from the perspective of how many proteins are above
or below a certain production threshold we can observe the turning on
or turning off of genes (on/off could be set equal to x 2 or x 1/2 of
initial production, or it could be based on an absolute concentration
value). This translates into a timing of onset/offset of gene production.
Figure 4.7, right, for instance, shows the timing of onset and offset of
concentrations above 0.8 for protein 7 (arrows), t,, = 9,000,t,55 =
22,000.
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Changing the degree of matching between regulatory sites and pro-
teins by one or two bits can result in dramatic changes in the dynamics,
but it need not. Sometimes there are no changes at all and we have a
neutral variation. Sample changes that actually varied the expression
are shown in Figure 4.10 and 4.11. It is interesting to note that varia-
tions in patterns are translated by the ARN into time variations, similar
to what was observed in natural GRNs [7]

Protein 1
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Protein 4
Protein 5
Protein 6
Protein 7

eomO XX+
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Concentration

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Time

Figure 4.10. Genome of Figure 4.9. Degree of matching between protein 7 and
inhibitory site to gene 4 changed by one bit. Timing of expression of protein 7
changes substantially: t., = 14,500, t,;; = 30, 500.
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Figure 4.11. Genome of Figure 4.9. Degree of matching between protein 7 and
inhibitory site to gene 4 increased by another bit, timing changes even further t,, =
30,000, tof s = 53,000.

Heterochrony, i.e. a variation in the timing of onset or offset of certain
genes are heavily used in development for generating particular struc-
tural effects [23, 22]. As we can see by comparing Figures 4.10 and 4.11,
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and 4.9, small changes cause small effects. The same principle could be
also of use in physiological reactions, for instance under the control of
external factors exceeding certain threshold values.

Interestingly, the range of possible changes is partitioned logarith-
mically, due to the change of occupation probability, that is depending
on an exponentiated matching difference between proteins and DNA bit-
patterns. This can be seen most easily, if we put all concentration curves
of protein 1 and 7 into one plot, see Figure 4.12. We can clearly see the
range of changes expanding with further additions of bit flips.

Protein 1, Inh(
Protein 7, Inh(
Protein 1, Inh(
Protein 7, Inh(

omOx X+

7,4)+
7,4)+
7,4)+
7,4)+

Concentration

0
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Time

Figure 4.12. Genome of Figure 4.7. Degree of matching between protein 7 and
inhibitory site to gene 4 changed progressively. Timing of expression of protein 7
changes in increasing step sizes.

6. Evolution

The most important question to be addressed with such a model is
whether it would be possible to define arbitrary target states and evolve
the genome / protein network toward this target state. Our first results
in a typical simulation are shown in Figure 4.13. It shows the progress of
a network in approaching the target concentration of a particular pro-
tein, here protein 6. As we can see, the evolutionary process quickly
converges towards this target state. It must be emphasized, that the
very simplest way of doing evolution was used here, a (1 + A) evolution
strategy, with A = 1 [26]. Various experiments were performed with the
same genome (not shown here), allowing evolution of other concentra-
tion levels for other proteins. We can see from the figure, that steep
declines in the deviation (error) curve are followed by apparent stag-
nation periods. These stagnation periods, are, however, accompanied
by continued changes in the genome under evolution. It is merely the
mapping of the genome that does not show many consequences of these
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variations. By construction we designed a system with many neutral
pathways. Evolutionary progress is thus interrupted superficially, but
goes on in genomes due to neutral steps.

1
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Figure 4.18. Evolution at work: 3 different runs of a (1 + A) strategy to arrive at a
prespecified concentration of one particular protein: cg = 0.085 at time ¢ = 100.

This can be seen if we consider the changes in concentration levels
of all proteins at ¢ = 100 in Figure 4.14. Here we can discover that all
protein concentrations change over time, with many stagnation periods
for all proteins. Huge steps are sometimes shown by certain proteins,
which are not reflected in the fitness of an individual, due to the focus
on measuring only the deviation from cg = 0.085 for fitness.

When comparing the figures for heterochronic control one cannot but
have the impression of rather small variations between the different ex-
pression patterns. Changes in exon content could bring about more ef-
fects. Figures 4.15 and 4.16 shows two 1-bit mutations in the expressed
part of gene 4 and 1, respectively.

Differences are striking, though still some similiarity (particularly in
the earlier iterations) remains. Around iteration 60,000, however, a rad-
ical switch occurs in the behavior that could not be observed without
the mutation. This gives an indication how novelty might be generated
in such a system: by slight changes in patterns, entirely new ’phases’
appear in the phenotype.

Here we have not been concerned with diffusion and spatial variation,
another fruitful area when examining development in biology. Much
is already known about the early pre-structuring of organisms and the
subsequent unfolding of these patterns into real organs and structures.
This process, however, requires that cells are able to communicate with
each other, which in turn manifests itself in a common language.
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Figure 4.14. Evolution at work: Same run as in Figure 4.13, with all protein conen-
trations protocolled at ¢ = 100. As can be seen, protein concentration of selected
protein 6 meanders towards goal state ce = 0.085, whereas other protein concentra-

tions pass through huge swings.
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Figure 4.15. One-bit mutations in the expressed part of gene 4. Mutation does not
change the phenotype.

7. Stability and Communication

What would be easier than using the mobile elements producable by
cells, to let them carry meaning? This theme is the subject of the present
section. We report on a few experiments with proteins that have been
added or removed from a network, thus simulating the import from or
export to other cells.

Two question will be asked: (i) Is the regulatory network providing
a stable environment, so that the export of protein does not perturb
the behavior of the network? (ii) Is the regulatory network sensitive
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Figure 4.16. One-bit mutations in the expressed part of gene 1. Mutation radically
changes the phenotype. A completely new behavior, including the dominance of
another protein is visible in the right figure.

enough to change its behavior upon the impingement of protein from
the outside?

It is clear that both requirements are somewhat contradictory. Never-
theless, both questions can be answered in the affirmative. Some proteins
are very stable, regardless whether one adds or removes them, others are
sensitive to addition, still others to removal (see Figures 4.17 - 4.22 for
examples. Obviously, the network provides again a very rich behavioral
environment, where various features can be selected upon.
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Figure 4.17. Removal of protein produced by the network. Removal of protein 1, 10
% . There is only a slight adaption of the dynamics, no real change in the behavior
visible.
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Figure 4.18. Removal of protein produced by the network. Removal of protein 1, 100
% . There is only a slight adaption of the dynamics, no real change in the behavior

visible.

Protein 1
Protein 2
Protein 3
Protein 4
Protein 5
Protein 6
Protein 7

eomO XX+
L

o
3
T
oot
seaseeseees”

Concentration

o 5
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Time

Figure 4.19. Removal of protein produced by the network. Removal of protein 1,
300 % . There is only a slight adaption of the dynamics when removing the protein.

8. Summary and Perspectives

In this contribution we have shown that a simple model for artificial
regulatory networks can be formulated which captures essential features
of natural genetic regulatory networks. Although we have only shown
qualitative results, the difference in behavior of these networks from
usual genetic representations can be seen already from the few examples
shown here.

Our next steps are to move from an analyis of qualitative behavior
to quantifying certain features like stability and evolvability. Even more
interesting, however, is to press ahead and find a proper connection of
this type of genetic representation to genetic programming. Here we can
only outline our present thinking in this direction.
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Figure 4.20. Addition of protein produced by the network. Addition of protein 1,
200 % . There is a stronger reaction of the dynamics when adding the protein.
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Figure 4.21.  Addition of protein produced by the network. Addition of protein 7, 200
% . The opposite from Figure 4.20: There is only a slight adaption of the dynamics

when adding the protein..

The proteins used here as a means for regulation might carry a second
role, namely that of agents or objects behaving in the outside world. This
would mean that a translational mechanism would be put into place that
translates the protein pattern into another representation useful in the
‘outside’ world. A plain method, for instance, would be to interpret the
32 bits of the protein as an instruction for a 32-bit processor. There
are some GP-systems able to digest bit patterns of arbitrary type and
generating useful behavior from it (see [3] and [24]). Concentrations
could be used to fix an order for the sequence of instructions to be
executed. Much more complex relationships between the information
carried by the protein and program constructs are reasonable and will

be introduced in due time.
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Figure 4.22. Removal of protein produced by the network. Removal of protein 7,
200 % . The opposite from Figure 4.19: There is a strong reaction when removing
the protein.
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