
Dynamic Subset Selection Based on a Fitness
Case Topology

Christian W.G. Lasarczyk christian.lasarczyk@cs.uni-dortmund.de
Department of Computer Science, University Dortmund,
Joseph–von–Fraunhofer–Str. 20, 44227 Dortmund, Germany

Peter Dittrich dittrich@minet.uni-jena.de
Jena Centre for Bioinformatics and Friedrich–Schiller–University Jena, Department of
Mathematics and Computer Science, Bio Systems Analysis Group, 07743 Jena,
Germany

Wolfgang Banzhaf banzhaf@cs.mun.ca
Department of Computer Science, Memorial University of Newfoundland,
St. John’s, NL, A1B 3X5, Canada

Abstract
A large training set of fitness cases can critically slow down genetic programming, if no
appropriate subset selection method is applied. Such a method allows an individual
to be evaluated on a smaller subset of fitness cases. In this paper we suggest a new
subset selection method that takes the problem structure into account, while being
problem independent at the same time. In order to achieve this, information about
the problem structure is acquired during evolutionary search by creating a topology
(relationship) on the set of fitness cases. The topology is induced by individuals of the
evolving population. This is done by increasing the strength of the relation between
two fitness cases, if an individual of the population is able to solve both of them. Our
new topology–based subset selection method chooses a subset, such that fitness cases
in this subset are as distantly related as is possible with respect to the induced topology.
We compare topology–based selection of fitness cases with dynamic subset selection
and stochastic subset sampling on four different problems. On average, runs with
topology–based selection show faster progress than the others.

Keywords
Genetic Programming, search space, topology, diversity

1 Introduction

Evolving programs is often a time–consuming task. Usually, the most costly part is
evaluating the fitness of individuals. To evaluate an individual’s fitness GP–systems
use a set of fitness cases. A fitness case is an input/output pair, which measures how
well an evolved individual predicts the output(s) from the input(s). In order to reduce
the effort, many methods try to reduce the number of fitness cases evaluated during
fitness calculation. Methods differ in how they choose proper subsets of the set of all
fitness cases for evaluation.

The simplest technique is to use a static subset. Historical subset selection (Gather-
cole and Ross, 1994), for instance, records all fitness cases that are not solved by the

c©2004 by the Massachusetts Institute of Technology Evolutionary Computation 12(2): 223-242

C. Lasarczyk, P. Dittrich, W. Banzhaf

best population member in any given generation over a small number of runs. These
fitness cases become part of a static subset and are used in further GP runs.

Random subset selection (Gathercole and Ross, 1994) chooses a new subset for each
generation. Each fitness case is selected independently with equal probability, which
leads to varying subset sizes. Stochastic sampling (Nordin and Banzhaf, 1997; Banzhaf
et al., 1998) chooses a new subset for each generation and for each individual, respec-
tively, with all fitness cases having the same probability of being selected. In this article
we use a third variant that we call stochastic subset sampling (SSS), where we choose a
new subset each generation with a fixed subset size. These stochastic methods can be
used to balance accidentally caused advantages or disadvantages of certain programs
given particular fitness cases, in order to prevent a biasing influence of subset selection
on evolution.

Dynamic subset selection(DSS) (Gathercole and Ross, 1994; Gathercole and Ross,
1997; Gathercole, 1998) is a procedure based on two assumptions: (i) There is a ben-
efit in focusing GP’s abilities on difficult fitness cases, i.e., the ones that are frequently
misclassified; and (ii) there is a benefit in checking fitness cases that have not been
looked at for several generations. Dynamic subset selection, hence, assigns a difficulty D
and an age A to every fitness case i and updates these measures in every generation
g. Initial difficulty is zero and increases in integer steps each time an individual is not
able to solve the corresponding fitness case. The difficulty is reset each time the fitness
case is selected for the subset. Age represents the duration since the fitness case was
selected for the subset the last time. Initial age is one and is incremented as long as the
fitness case is not part of the subset. A reset occurs upon selection. In order to balance
between an individual’s age and its difficulty, A and D are taken to the power of some
parameters a and d, respectively, and summed up to give a weight W for each fitness
case i:

Wi(g) = Ai(g)a +Di(g)d .

For our comparison we set the age exponent a to 3.5 and the difficulty exponent d to
1.0(Gathercole, 1998). A subset with target size S can now be assembled from a total T
of fitness cases (training set) by selecting fitness case i with probability

Pi(g) =
Wi(g) · S
∑T
j=1 Wj(g)

.

Active data selection (Zhang and Cho, 1998) associates training cases with individ-
uals. During evolution these individual subsets are recombined and enlarged by small
numbers of fitness cases taken from the base data set. This procedure should ensure
diversity of the training data. In the final generation, every individual uses all fitness
cases. Zhang and Cho call this process incremental data inheritance.

None of the methods mentioned considers the problem’s structure in terms of a
relation on the fitness cases. In this article we suggest to gather information about the
structure of a problem by creating a topology on the set of fitness cases. This relation
will be created on the fly, during evolution. The relation between two fitness cases will
be strengthened, if an individual of the population is able to solve both fitness cases.
The resulting topology reflects the problem structure. The exploitation of information
contained in this topology helps to improve the performance of genetic programming
by allowing dynamically smaller and more suitable subsets to be selected.

This paper is organized as follows: Section 2 presents our method, how we define
topology, and how we select fitness cases based on this topology. Section 3 then re-
ports our results, partitioned into the different search problems and a comparison with

224 Evolutionary Computation Volume 12, Number 2

Topology Based Subset Selection

dynamic subset selection and stochastic subset selection. Section 4 discusses our results in
the light of population diversity and contrasts our approach to guided local search and
fitness sharing. Section 5 summarizes and gives perspectives.

2 Topology–based Selection

2.1 Motivation

During evolution individuals acquire “knowledge”1 about how to solve fitness cases.
Usually, an individual of the initial population is not able to solve all fitness cases, but
can handle only a small subset. If the GP optimization process goes well, individuals
become better and better from generation to generation, meaning that the best individ-
ual is able to solve more and more fitness cases. But often the population stops improv-
ing while the best individual just solves a subset of all fitness cases, and an increasing
number of individuals tends to solve the same fitness cases the same way. Evolution
settles down into a so called local optimum. So why are these individuals able to solve
some but not all fitness cases?

It is well known that structure influences the efficiency of heuristics working on it
(Hogg, 1996; Walsh, 1999). Inspired by this, we shall take a relation between the fitness
cases into account, a relation detected during evolution, coded into an individual’s
genotype, and spread through the population by recombination or other conservative
operations.

If one or a group of individuals is able to solve a subset of all fitness cases better
than the rest of the fitness cases, then we suppose that these individuals contain some
kind of knowledge about the relationship between the fitness cases solved. Fitness
cases can be neighbors in a space we call similarity space (according to Goldberg and
Richardson (1987)), a space formed by the knowledge of all individuals.

An individual’s knowledge can spread through the population if it leads to a
higher fitness of the individual (Holland, 1975; Koza, 1992b). On the other hand, the
lower the fitness gain is, the slower this knowledge spreads.

2.2 Topology Definition

During evolution the population induces a structure on the set of fitness cases V . We
represent the topology of this structure by an undirected weighted graph G = (V,E),
where E is the set of all possible edges between the fitness cases V . A weight is asso-
ciated with each edge. The weight represents the information gathered by individuals
during evolution on how closely the fitness cases are related. High values mean a close
relation. At the beginning, all weights are initialized to zero.

An individual can strengthen the relation between two fitness cases. If it is able to
solve both of them, the weight on the edge between them is increased. Therefore, a bi-
nary rating of an individual’s ability to solve a fitness case is required. For a continuous
regression problem like the sine approximation in Sec. 3.2, a threshold value is used to
decide whether the individual is able to solve the fitness case or not. For a classification
problem, correct classification means that this fitness case is solved.

We suggest that these relations are not of the same importance, because there must
be a reason why some of the individuals of the initial population solve many fitness
cases while others solve only two or three. Hence the weight of a detected relation will
depend on the number of fitness cases solved by an individual.

1Knowledge could be anything leading to the individual’s result, such as blocks of code, automatically
defined functions(ADF) etc.

Evolutionary Computation Volume 12, Number 2 225

C. Lasarczyk, P. Dittrich, W. Banzhaf

At the end of every generation, we adapt the edge weights between fitness cases
for each individual of the population. Formally, after each generation we perform the
following two steps:

Step 1: For each individual, let V ′ ⊂ V be the set of fitness cases solved by the individual,
E′ the set of all edges between nodes from V ′, and we the weight of edge e. If
|V ′| > 1 each edge weight we, e ∈ E′ is adapted by

we := we +
2

|V ′|(|V ′| − 1)
, e ∈ E′ . (1)

Step 2: To reduce the impact of relations detected in the past each edge e ∈ E is multiplied
by the loss rate λ < 1:

we := λwe, e ∈ E . (2)

Test runs showed that λ can be chosen between 0.5 and 0.9. For the experiments
reported here, λ = 0.7 has turned out to be a good value.

An above average edge value between two fitness cases indicates a similarity be-
tween these two fitness cases. Thus, there is a higher probability that a randomly cho-
sen individual is able to solve both fitness cases instead of just one of them.

2.3 Subset Selection — Algorithm

Our target is to evolve an individual able to solve as many fitness cases as possible.
Emerging clusters of heavily related fitness cases show that different knowledge is ac-
cumulated within the population. Weak connections between clusters are evidence that
knowledge is missing on how to solve fitness cases from different clusters. Our new
method should direct the attention of evolution towards this kind of knowledge by
weighting clusters equally. To do so, one fitness case is selected from each cluster for
the subset. In order to outcompete others, an individual has to acquire knowledge that
spans clusters.

To encourage this type of progress all fitness cases connected with an edge weight
higher than an adaptive threshold value are excluded from selection into the same sub-
set. In the next section (Sec. 2.4) we will describe how to adapt this threshold value.

Fitness cases for the subset are selected according to the following algorithm at the
beginning of each generation:

1. Empty the set of selected fitness cases and the set of excluded fitness cases.

2. Select randomly a fitness case into the subset from the set of all fitness cases not yet
selected or excluded.

3. Exclude all fitness cases connected with the selected one, provided the edge value
exceeds the threshold.

4. Goto Step 2, until no fitness case is left or the desired subset size is reached.

Figure 1 illustrates the two steps of the algorithm for subset selection.

2.4 Adapting the Threshold Value

The selection of one fitness case to be included into the subset leads to the exclusion
of all fitness cases that are connected to it stronger than an adaptive threshold. Thus,
the threshold value plays an important role. A badly chosen value could lead to the

226 Evolutionary Computation Volume 12, Number 2

Topology Based Subset Selection

1.
 s

el
ec

tio
n

2.
 e

xc
lu

si
on

= treshold

4

8

4
8

4

8

4

8

8

44

4
8

4

8

4

8

8 8

8

4

t t+1 t+2

4

8
4

8

4
8

Figure 1: The figure illustrates the selection of three fitness cases into the subset. Each
node in the graph represents one fitness case. Thickness of the lines represents the
weight of edges. Selection and exclusion take turns alternating. After random selec-
tion of a fitness case into the subset, topology–based selection excludes every fitness
case that is connected with the selected fitness case via an edge weight higher than a
threshold or that has already been selected before. The random choice is restricted to
the remaining fitness cases.

following problems: If the threshold is too high, not enough fitness cases are excluded
from selection into the subset. In the extreme case, the algorithm would not exclude any
fitness case and would always select randomly. In this case topology selection does not
differ from stochastic subset sampling. If the threshold is too low, too many fitness cases
are excluded, and the desired subset size will not be reached. The resulting subset size
would lead to an overrated influence of single fitness cases.

Choosing the threshold is a dynamic task, because edge weights vary during evo-
lution. For this reason we determine the threshold value based on the distribution of all
weights. Therefore we sort the list of all weights and adjust an index position j we take
the threshold τ from. Given a desired size m of the subset, the set of all fitness cases
V (training set), and the number of fitness cases n = |V |, the threshold τ is adapted by
the following binary–search–type of algorithm (see also Fig. 2):

1. Sort all edge weights in ascending order.
The weight of non–existing edges is zero.
Let τi be the i–th weight in the sorted list.

2. Initialize the step size σ (we use the number of fitness cases here, σ := n). Set the
current index j to the value of the last selection (0 at the outset).

Evolutionary Computation Volume 12, Number 2 227

C. Lasarczyk, P. Dittrich, W. Banzhaf

3. Repeat smax times or until the desired subset size is achieved:

(a) Set the threshold to the edge weight at the current index position: τ = τj .
(b) Select a subset according to the algorithm explained previously (Sec. 2.3). Let

m′ be the size of that subset.
(c) If the selected subset is too small (m′ < m), do:

i. If the selected subset had been previously too large, half the current step
size: σ := σ/2.
(This means, if we change the direction of adaptation, we decrease the step
size in order to approach the optimum more carefully.)

ii. Increase j by the current step size: j := j + σ.
(d) If the selected subset is too large (m′ > m), do:

i. If the selected subset had been previously too small, half the current step
size: σ := σ/2.

ii. Decrease j by the current step size: j := j − σ.

For each subset selection the algorithm can take up to smax = 30 attempts to select a
good subset, but on average requires less then five to adapt τ . For an analysis of the
adaptation behavior see Lasarczyk (2002). Alternatively we could start a binary search
in the middle of the list of sorted edge values, but this would take more adaptation
steps.

As can be seen, topology–based subset selection requires additional computing
time for adapting the topology, adjusting the threshold value and selecting the sub-
set. The most expensive task is the adaptation of the topology and sorting of the edge
values, which scales approximately quadratically with training set size2. Therefore we
recommend this method for problems where the evaluation of a fitness case is costly,
such as evolving control programs for robots (Miglino and Walker, 2002).

2.5 Example of the Induced Structure and its Time Evolution

Figure 3 shows how the structure of fitness case relations changes during the evolution
of a sample problem. Only edges with a weight exceeding the threshold value are
drawn. In the first generation just a small number of fitness cases have been part of the
first subset, therefore the population only detected relations between those few fitness
cases. After t = 150 generations all fitness cases have been part of a subset at least once.
It is difficult to visually detect clusters during this stage of evolution. Later (t = 300)
clusters become more visible. Although the optimal solution is found in this example,
it seems that many individuals are trapped in suboptima and induce large clusters.
Maybe the “knowledge” required to solve the fitness cases of these large clusters can
be easily protected against destruction.

Figure 4 shows graphs for the same problem. Here, only those edges are drawn
that connect a selected fitness case and those excluded through it. Each fitness case in
the subset represents a different cluster. While the selected fitness case is connected
to every other in this cluster by an edge with an edge weight above the threshold, the
nodes of a cluster are not necessarily fully connected. Note that the first fitness case
selected will cause the largest expected exclusion. And the last selected fitness case
will only exclude a small number of fitness cases, because there are not many left to be
excluded. This also explains the different cluster sizes visible in Fig. 4.

2If V is the training set, the time complexity of sorting the |V |2 edge values is bounded by
O(|V |2 log |V |2).

228 Evolutionary Computation Volume 12, Number 2

Topology Based Subset Selection

.

.

.

.

.

.

}
0
0

SORT

to
o

m
uc

h
av

ai
la

bl
e

su
bs

et
 to

o
sm

al
l

PSfrag replacements

j + 1
j + 2

j
j − 1
j − 2

Figure 2: Adaptation of the threshold is performed with an index on a sorted list of all
edge values. Topology–based selection has more than one attempt to select a subset, be-
cause the size of the selected set could vary heavily. Starting with index j adopted from
the previous subset selection, the index is decreased if selection is not strong enough
and the index is increased if subset gets too small.

3 Results

To show the advantages of the new subset selection method we compare it with dynamic
subset selection and stochastic subset sampling on four different problems, namely, two
approximation and two classification problems. Despite of the problem domain, our
experimental settings differ in population size, number of available fitness cases, and
subset size. Tables 2 and 3 summarize the settings for the GP–system described next.

3.1 GP–System and Settings

We have used a simple linear genetic programming system (Banzhaf et al., 1998). Each
instruction consists of four integers coding for an operation, two source registers, and
one target register, respectively. The target register could be one out of five registers
initialized with zero. The source register could be one of these registers, registers con-
taining the problem specific input, or registers containing constant values (0, 1, 2, 5, 10,
20, 50, 100, π and e). The operator set consists of arithmetic operators, trigonometric
operators, logic operators, and a conditional assignment. The tables detail which oper-
ations are provided for which problem. We allow a maximum of 256 instructions per
individual, thus length of an individual is variable but bounded. The return value of an
individual is the result of the last operation, independent from that operation’s target
register.

With dynamic subset selection and topology–based selection the fitness of the best in-
dividual varies heavily on the current subset used to evaluate the individuals and the
testing set. The reason for this behavior is that these subset selection methods concen-

Evolutionary Computation Volume 12, Number 2 229

C. Lasarczyk, P. Dittrich, W. Banzhaf

t = 1 t = 150 t = 300

Figure 3: Evolution of the fitness case connections for a simple test problem. Each
fitness case is represented by a dot, connections are drawn when the edge value is
above the threshold. The topology is valid for the whole population of one generation.

t = 1 t = 150 t = 300

Figure 4: Same graphs as above (Fig. 3), with drawing edges between a fitness case and
those that are excluded from selection if this fitness case is selected.

trate sometimes on subsets that do not represent a uniformly distributed subset of all
fitness cases. For this reason we determine the best individual by using a third set, the
so called validation set, then we calculate the best validating individual’s fitness on the
test set. The “mean” of the this value (as listed in the following tables; Tab. 4, 5, 6, and
7) is computed as the average over 100 independent runs. Validation set and test set
are independent from the training set V . They are never used for selection and do not
influence the evolutionary process. They are solely for the purpose of monitoring.

As search operators we use mutation as well as crossover. A single mutation oper-
ates by replacing an instruction by a randomly created new instruction. The crossover
operator is a simple one–point crossover. If an offspring exceeds the allowed length of
256 instructions, we cut off instructions at its front. We do so to underline the conser-
vative aspect of crossover. Individuals return the result of their last operation and so
their tail is the more important half.

In order to demonstrate that the improvement by our new subset selection method
does not stem from a specific setting of the search operators, we use two quite different
settings (see table 1 for direct comparison):

Setting 1: With this setting 60% of the offspring are produced by crossover. For
crossover we perform tournaments of size four and recombine the two best in-

230 Evolutionary Computation Volume 12, Number 2

Topology Based Subset Selection

Setting 1 Setting 2

Crossover 60% 0.1%
Reproduction 40% 99.9%

Mutation probability 90% 99.9%
Number of mutations 8 8

Table 1: Settings for evolution parameters

Problem ID sin F6 (mod.)

Problem type Approximation Approximation

Problem function sin(x) 0.5+
sin2
√
|x+y|−0.5

[1.0+0.001·(x2+y2)]2

Number of inputs 1 real value 2 real values

Fitness function mean square error correlation

Training set size 400 3000
Subset size 25 400
Ratio 0.0625 0.1333

Validation set size 400 1000
Testing set size 400 1000

Generations 1000 1000
Size of population 2500 1500

Instruction set +, −, ·, /, ∨, ∧, if, =,
<

+, −, ·, /, ∨, ∧, if,
=, <, sin(x), cos(x),
tan(x),

√
x, x2

Table 2: Problem–specific parameter settings for the two approximation problems.

dividuals3 of each tournament in order to get two offspring, which replace the
two losers of the tournament. 40% offspring are created by tournaments of size
2, where the looser is replaced by a copy of the winner. Each offspring is mu-
tated with a probability of 90% ; in that case eight instructions (lines of the linear
program) are replaced by random instructions.

Setting 2: Crossover rate is reduced significantly. Just 0.1% of all offspring are created
by crossover. 99.9% of the offspring are created by reproduction. All offspring are
mutated with probability 99.9% .

3.2 Sine Function Approximation

Approximation of the sine function with non–trigonometric functions is a non–trivial
but illustrative problem. The set of fitness cases V = {(x1, y1), (x2, y2), . . . , (xn, yn)} is
created in the following way. In the interval [−π, π] n = 400 equidistant values xi are
used to calculate values yi = sin(xi), i ∈ {1, 2, . . . , n}.

3For clarity note that the individuals are evaluated on the subset selected from the training set V .

Evolutionary Computation Volume 12, Number 2 231

C. Lasarczyk, P. Dittrich, W. Banzhaf

Problem ID spiral thyroid

Problem type Classification Classification

Problem function 2 intertwined spirals real world data
Number of inputs 2 real values 21 (6 real values, 15 bi-

nary values)

Fitness function classification error

Training set size 194 3772
Subset size 20 200
Ratio 0.103 0.053

Validation set size 192 1000
Testing set size 192 2428

Generations 2000 1000
Size of population 2000 2000

Instruction set +, −, ·, /, ∨, ∧,if, =, <, sin(x), cos(x), tan(x)

Table 3: Problem–specific parameter settings for the two classification problems con-
sidered.

Given a subset V ′ of the training set V , the fitness function is the mean squared
error of the individual I applied to all fitness cases of the subset:

f(I) =


 ∑

(x,y)∈V ′
(I(x) − y)2



/
|V ′| .

(x, y) denotes a fitness case in the subset V ′ of size |V ′|, x the input and y the desired
output.

As mentioned above, we have to define a function that specifies when a fitness
case is solved by an individual. We define a fitness case as solved by an individual if the
error (I(x) − y) is less than 0.1. Hence we increase an edge value between two fitness
cases, if an individual’s error is less than 0.1 on both of them.

Table 4 summarizes the performance for all three subset selection methods. For
both settings, evolution benefits from topology–based subset selection. This is most
obvious for Setting 2 (mainly mutation). We can also see that all methods benefit from
Setting 2.

3.3 Modified F6–Function

As a second approximation problem we modify the F6–Function taken by Schaffer et
al. (1989) 4

F6mod.(x1, x2) = 0.5 +
sin2

√
|x1 + x2| − 0.5

[1.0 + 0.001 · (x2
1 + x2

2)]2
. (3)

5000 points ~x = (x1, x2) are created with uniform random distribution within a
distance of 100 from the origin. Corresponding values y = F6mod.(~x) are determined.

4Schaffer et al. (1989) used the F6–Function as an objective function (fitness function) in order to evaluate
the performance of genetic algorithms. In addition to using the stability index to rate the individual fitness,
our modifications have been necessary to succeed in this approximation problem.

232 Evolutionary Computation Volume 12, Number 2

Topology Based Subset Selection

Time mean 95% confidence interval
(Gen.) TBS DSS SSS TBS-DSS TBS-SSS DSS-SSS

Setting 1

250 0.71 0.79 0.79 [-0.128, -0.033] [-0.136,-0.034] [-0.052,+0.043]
500 0.59 0.67 0.71 [-0.133, -0.034] [-0.166,-0.068] [-0.082,+0.016]
750 0.54 0.62 0.65 [-0.130, -0.031] [-0.157,-0.057] [-0.079,+0.025]

1000 0.49 0.58 0.60 [-0.136, -0.035] [-0.151,-0.052] [-0.067,+0.035]

Setting 2

250 0.62 0.69 0.71 [-0.152,+0.017] [-0.165,-0.024] [-0.106,+0.053]
500 0.49 0.58 0.61 [-0.184,+0.002] [-0.203,-0.044] [-0.118,+0.054]
750 0.40 0.50 0.54 [-0.186, -0.006] [-0.218,-0.050] [-0.122,+0.047]

1000 0.34 0.43 0.47 [-0.178, -0.010] [-0.212,-0.049] [-0.117,+0.044]

Table 4: Mean squared error for sine function approximation. For different time steps
we take the best individual of the validation set and evaluate its fitness on the test set.
For every subset selection method we show its mean fitness averaged of 100 runs on
the left and the 95% confidence interval for the paired differences between the selection
methods on the right.

1000 points are set apart as validation set and 1000 as the testing set. The remaining
3000 fitness cases form the training set V , from which we have to choose the subsets.

As in Keijzer (2001) , we use the square of the correlation coefficient r (stability
index) to rate an individual’s fitness. One can think of the stability index as a value
that shows how much of the variation of one value could be described via a linear
transformation by the variation of a second value. In this case one value is the desired
output y, the other value is the individuals output I(~x). Let (~xi, yi) be the i–th fitness
case. ~xi is the input and yi the desired output of an individual I . Given a set of n fitness
cases, the correlation coefficient is defined as:

r(I) =

∑n
i=1 (I(~xi) · yi)−

∑n
i=1 I(~xi) ·

∑n
i=1 yi/n√(∑n

i=1 I(~xi)2 − (
∑n
i=1 I(~xi))

2
/n
)
·
(∑n

i=1 y
2
i − (

∑n
i=1 yi)

2
/n
) . (4)

The fitness of individual I is defined by:

f(I) = 1− r(I)2 .

We define a fitness case as solved by an individual, if the Euclidean distance be-
tween the desired and the individuals output is less than 0.05. As before, the algo-
rithm increases the edge weight between two fitness cases, if one individual produces
a smaller error for both of them.

Figure 5 shows a plot of the modified F6–function on the left side. On the right
side the input–output function of the best individual found by evolution is plotted.
We can see significant deviations at the corners of the functions domain, because they
have a distance greater than 100 and so there are no fitness cases that would punish a
deviation in that region.

Evolutionary Computation Volume 12, Number 2 233

C. Lasarczyk, P. Dittrich, W. Banzhaf

Figure 5: Left: A plot of the modified F6–function. Right: The approximation of the
best individual.

Table 5 shows the average fitness and the confidence interval for the paired differ-
ences between the best fitness values. The results are based on 100 runs for each of the
three different selection methods. Runs using topology–based selection show the best
results on average for both settings.

3.4 Intertwined spirals problem

To solve the intertwined spirals problem, a solution has to classify points belonging
to one of two spirals in the x–y–plane. The spirals are intertwined and described by
97 points each. This problem has been already examined by means of neural net-
works (Lang and Witbrock, 1989) and genetic programming (Koza, 1992a).

Instead of using the 194 example sized dataset, however we created an additional
set including 192 examples. For this validation set we chose points next to the original
points in the training set. We used this set to monitor the individuals during the evolu-
tion and the whole original dataset to test the individuals. Figure 6 displays the fitness
cases from the original dataset. To make the task more difficult, we used a subset size
of n′ = 20 fitness cases. Since each fitness case can be classified either correctly or not,
this leads to 20 different fitness levels.

Table 6 summarizes the average results. For the first setting, runs using the
topology–based selection show the best results on average. All subset selection tech-
niques profit from the second setting. If we compare the results of both settings we
can see a premature convergence into a local optimum with the second setting. It is
assumed that the loss of diversity in conjunction with convergence leads to less infor-
mation about the relation between fitness cases. As a result similar individuals would
perceive similar relations between fitness cases and there is not much to be gained from
topology.

3.5 Thyroid–Problem

The thyroid–problem is a real world problem. The individual’s task is to classify hu-
mans thyroid function. The dataset was obtained from the UCI–repository (Blake and
Merz, 1998). It contains 3772 training and 3428 testing samples, each measured from
one patient. A fitness case consists of a measurement vector containing 15 binary and

234 Evolutionary Computation Volume 12, Number 2

Topology Based Subset Selection

Time mean 95% confidence interval
(Gen.) TBS DSS SSS TBS-DSS TBS-SSS DSS-SSS

Setting 1

250 0.82 0.89 0.93 [-0.122,-0.030] [-0.151,-0.071] [-0.076,+0.005]
500 0.74 0.84 0.89 [-0.151,-0.043] [-0.199,-0.103] [-0.103, -0.005]
750 0.69 0.81 0.87 [-0.171,-0.059] [-0.234,-0.125] [-0.118, -0.011]

1000 0.66 0.77 0.85 [-0.164,-0.044] [-0.249,-0.133] [-0.143, -0.031]

Setting 2

250 0.83 0.91 0.94 [-0.125,-0.036] [-0.151,-0.069] [-0.068,+0.008]
500 0.75 0.86 0.91 [-0.167,-0.052] [-0.213,-0.105] [-0.099, -0.001]
750 0.67 0.83 0.89 [-0.222,-0.092] [-0.276,-0.161] [-0.114, -0.010]

1000 0.60 0.80 0.87 [-0.277,-0.125] [-0.338,-0.208] [-0.130, -0.014]

Table 5: Mean fitness (on the test set of the best individual on the validation set) for
approximation of the modified F6–Function (small values denote good performance) at
different time steps is shown on the left side. The fitness value is inversely proportional
to the square of the correlation coefficient r. On the right side you can see the confidence
interval for the paired differences between the subset selection methods. The results are
based on 100 runs for each method.

6 real valued entries of one human being and the appropriate thyroid function (class).
There are three different classes for the function of the thyroid gland, named hyper

function, hypo function and normal function. As Gathercole (1998) already showed, two
out of these three classes, the hyper function and the hypo function, are linearly sepa-
rable. Given the measurement vector as input, an individual of the GP system should
decide whether the thyroid gland is normal functioning or should be characterized as
hyper or hypo function.

Because more than 92% of all patients contained in the dataset have a normal func-
tion, the classification error must be significantly lower than 8%. The classification error
is the percentage of misclassified fitness cases.

The selection algorithm picks its subsets out of the 3772 training examples. From
the set of testing examples we remove the first 1000 examples to form a validation set.
The remaining examples form the testing set.

As Gathercole did, we assign the following meaning to the output of the indi-
viduals. A positive output (≥ 0) denotes normal function, otherwise hyper or hypo
function.

Table 7 shows that topology–based selection acquires the best average results for
the first setting. For the second setting there is no statistic significant difference between
the three selection methods.

4 Discussion

In the previous section we have empirically compared topology–based subset selection
to other techniques for subset selection. We found evidence that evolution can be sig-
nificantly faster for both settings. Now we shall take a closer look at what causes the
population to evolve faster.

One of the main targets of good GP runs is to prevent the population from pre-

Evolutionary Computation Volume 12, Number 2 235

C. Lasarczyk, P. Dittrich, W. Banzhaf

temp[3] = (1 < 100);
temp[0] = cos(5);
temp[4] = temp[3] + temp[0];
temp[1] = input[0] * M_PI;
temp[1] = temp[1] * temp[4];
if (temp[1] != 0)
temp[3] = input[1] / temp[1];
else temp[3] = 0;

temp[1] = 5 + temp[3];
temp[3] = tan(temp[1]);
if (temp[3] > 0) temp[1] = temp[0];
temp[1] = tan(temp[1]);
temp[2] = temp[1] * input[0];
temp[4] = M_E - 20;
temp[4] = temp[2] + temp[4];
temp[1] = input[1] * M_PI;
temp[4] = temp[4] - temp[1];
temp[1] = cos(temp[4]);

if (temp[1] >= 0) result=1; //BLACK
else result=0; //WHITE

Figure 6: Left: The white and black areas show the classification of the best individual
(error approx. 7%). The triangular and round symbols represent the two classes of the
intertwined spiral problem introduced by Lang and Witbrock (1989). Right: C code of
the best individual used for the classification on the left side.

mature convergence. Thus, a closer look at the population’s diversity (Sec. 4.1) is war-
ranted. In Sec. 4.2 and Sec. 4.3 we compare topology–based selection with two other
methods (fitness sharing and guided local search), which examine many peaks without
focusing the entire population on one peak alone.

4.1 Population Diversity

In order to demonstrate what happens to the population when using topology–based
selection, diversity is measured as the average normalized edit distance of the effective
code between individuals of the population. For the purpose of this discussion, we
chose the optimization problem that has led to the largest difference between selection
methods, namely the regression problem of the modified F6–function with parameter
setting 2 (see Tab. 5).

Topology–based selection is expected to increase diversity. High diversity alone,
however, cannot explain good performance5. To explain this, we take the concept of
“appropriate diversity” (see Goldberg and Richardson (1987)). Usually, a population
shows its greatest diversity after initialization. While this is a good point to start from, it
is a bad point to stay, because the fitness of many individuals is low. Good individuals
are the important base for evolution’s success. Just looking at the pure average fitness
of the population does not allow us to predict the ability for further improvements. If
all individuals are the same, average fitness may be good but improvements become
less likely. Thus, good performance needs both, a good average fitness combined with
a high diversity, which we call appropriate diversity

In order to measure diversity, we take 300 individuals randomly from the pop-
ulation, remove all instructions from the genome that are not used and calculate the
distance between the remaining (effective) code of two individuals by the Levenshtein

5E.g., increasing the mutation rate leads to higher diversity, but not necessarily to higher performance.

236 Evolutionary Computation Volume 12, Number 2

Topology Based Subset Selection

Time mean 95% confidence interval
(Gen.) TBS DSS SSS TBS-DSS TBS-SSS DSS-SSS

Setting 1

500 0.38 0.40 0.42 [-0.040, -0.005] [-0.056, -0.024] [-0.033, -0.002]
1000 0.36 0.40 0.40 [-0.054, -0.017] [-0.057, -0.019] [-0.019,+0.014]
1500 0.35 0.40 0.40 [-0.059, -0.023] [-0.065, -0.024] [-0.020,+0.013]
2000 0.34 0.38 0.39 [-0.066, -0.030] [-0.069, -0.037] [-0.022,+0.012]

Setting 2

500 0.31 0.32 0.33 [-0.024,+0.008] [-0.032, -0.002] [-0.025,+0.007]
1000 0.30 0.30 0.31 [-0.019,+0.015] [-0.029,+0.005] [-0.028,+0.008]
1500 0.29 0.29 0.30 [-0.021,+0.020] [-0.026,+0.009] [-0.028,+0.010]
2000 0.28 0.29 0.29 [-0.029,+0.015] [-0.028,+0.010] [-0.021,+0.017]

Table 6: Mean classification error on the test set for the intertwined spiral problem.
For different time steps we take the best individual of the validation set and evaluate
their fitness on the testing set. For every subset selection method you can see its mean
fitness averaged of 100 runs on the left and the 95% confidence interval for the paired
differences between the selection methods on the right.

(1966) method (edit distance). Then the distance is normalized by dividing through the
average number of instructions of effective code.

To compare the relation of diversity to average fitness for the different subset selec-
tion methods, we partition the space of ’average edit distance’–’average fitness’–pairs
into squares (bins) of size 0.05 × 0.05. Then we count for each bin (and for all 100
runs) how frequently the population is in the respective state, namely possessing the
respective average edit distance and average fitness. Figure 7 shows the histograms
and the contour lines of equipotential surfaces for different frequencies. One can see
that topology–based selection leads to populations with a good average fitness (here,
equal to a low fitness value) and a high edit distance.

4.2 Fitness Sharing

Fitness sharing, proposed by Goldberg and Richardson (1987), is a frequently used
technique in the field of genetic algorithms. Fitness sharing should avoid “premature
convergence [. . .] before obtaining sufficiently near–optimal points”. The authors point
out that maintaining diversity for its own sake is not the issue, instead the aim of fitness
sharing is to achieve “appropriate diversity”. Here, “appropriate” means that the size
of a subpopulation exploring a fitness peak is adequate to the peak’s fitness.

In fitness sharing, the fitness in a region of the search space becomes a resource
shared by individuals in that region, forming its own species. This leads to an ad-
ditional source for competition. To decide whether or not individuals are of the same
species a similarity measure, the sharing function is introduced. Individuals whose dis-
tance is less than a threshold are defined to belong to the same species, and thus share
their fitness values. This is achieved by dividing the original fitness by the so called
niche count, a value proportional to the number of individuals an individual shares its
fitness with.

While fitness sharing directly depreciates areas of the similarity space to valorize

Evolutionary Computation Volume 12, Number 2 237

C. Lasarczyk, P. Dittrich, W. Banzhaf

Time mean (×10) 95% confidence interval (×10)
(Gen.) TBS DSS SSS TBS-DSS TBS-SSS DSS-SSS

Setting 1

250 0.51 0.53 0.51 [-0.037,+0.004] [-0.026,+0.024] [-0.007,+0.039]
500 0.48 0.50 0.50 [-0.051,+0.003] [-0.052,+0.006] [-0.025,+0.026]
750 0.45 0.49 0.49 [-0.070, -0.010] [-0.069, -0.009] [-0.025,+0.027]

1000 0.43 0.47 0.48 [-0.070, -0.007] [-0.072, -0.015] [-0.035,+0.024]

Setting 2

250 0.50 0.49 0.50 [-0.019,+0.042] [-0.023,+0.025] [-0.041,+0.019]
500 0.46 0.46 0.47 [-0.041,+0.026] [-0.047,+0.018] [-0.039,+0.025]
750 0.43 0.44 0.45 [-0.054,+0.019] [-0.064,+0.008] [-0.042,+0.021]

1000 0.41 0.43 0.44 [-0.059,+0.018] [-0.059,+0.016] [-0.036,+0.034]

Table 7: Mean classification error on the test set for the thyroid problem (small values
denote good performance). Because 92% of all fitness cases belong to one class, even
the fitness of bad individuals is lower than 0.08. For different time steps we take the
best individual of the validation set and evaluate their fitness on the testing set. For
every subset selection method you can see its mean fitness averaged of 100 runs on the
left and the 95% confidence interval for the paired differences between the selection
methods on the right. Note that the fitness values are scaled by a factor of 10 for easy
comparison.

other areas, this happens indirectly with our topology–based subset selection. Here we
depreciate areas in the set of fitness cases, which are used to evaluate the fitness. To do
so, we first have to correlate fitness cases. This happens during evolution, where we
build up and adapt the similarity space — a space describing the similarity of fitness
cases from the current and past populations point of view.

In order to explain the effect of increasing diversity, assume that the subset used to
evaluate the individuals contains only two similar fitness cases. In that case, a mutation
that leads to an adaptation to one fitness case will also likely lead to an adaptation to
the other fitness case, thus significantly increasing the fitness. In a second scenario,
assume that the subset contains two different fitness cases. Now it is harder to achieve a
large fitness gain by a “simple” mutation, because it is more unlikely that an adaptation
to one fitness case will lead also to an adaptation to the other. On the other hand, in
the second scenario, two different adaptation strategies can lead to a fitness gain. So,
the space of viable offsprings that are fitter than their parents is larger than in the first
scenario, which may explain the higher observed diversity when our topology–based
subset selection is applied.

4.3 Guided Local Search

Guided local search (GLS) proposed by Voudouris and Tsang (1996) has been applied
to a wide range of combinatorial optimization problems (see Voudouris (1998) for a list
of references). GLS is a heuristics that guides search in vast search spaces by changing
the objective function dynamically during evolution. This happens by adapting a set of
additional penalty terms between two iterative search steps. A penalty term refers to a
solution feature and a part of its domain. When search stagnates in a local optimum, the

238 Evolutionary Computation Volume 12, Number 2

Topology Based Subset Selection

Figure 7: Histograms and contour lines of equipotential surfaces for different frequen-
cies for a population being in a state with a specific average normalized edit distance
and average fitness sampled over all generations of 100 runs for each selection method
(bin size: 0.05× 0.05). The solid contour lines are the level curves for the lowest (same)
frequency for each selection method. Runs using topology–based selection are showing
populations with good average fitness and high edit distance. While good individuals
are the base of success, a large edit distance widens this, which can be taken as an ex-
planation for the good performance of topology–based selection. (The 2–D–histogram
shows the frequency only for average fitness better than 0.7. Here, a small fitness value
denotes a good individual.)

penalty terms of one or more features exhibited by solutions within this local optimum
are incremented. Search continues with the modified objective function. As a result,
search will avoid regions covered by these penalty terms and focus on more promising
regions of the search space.

In contrast to fitness sharing and topology–based subset selection, GLS does not
just depreciate detected local optima, but entire subspaces of solution features. While
GLS adds penalty terms for one or more features of the local optimum and so depreci-
ates all solutions that include those features, fitness sharing directly depreciates solu-
tions that are close to other solutions within a distance in similarity space smaller than
σshare. As mentioned above our technique does not try to influence the solution space
directly. Instead, topology–based selection tries to provide a global problem view to
evolving individuals. Fitness cases solved by one or more individuals are therefore not
prevented from getting into the subset. Each “known” region of the fitness case space
is allowed to be represented by at least one fitness case. Excluded from the subset are

Evolutionary Computation Volume 12, Number 2 239

C. Lasarczyk, P. Dittrich, W. Banzhaf

only those cases that are often solved by the same individuals and already represented
by one fitness case.

A further difference to GLS is that GLS does not start its counter measures until
search gets caught in a local optimum. In contrast, our method continuously tries to
prevent solutions from settling down in local optima during the search process.

5 Conclusion and Outlook

We have shown that a topology–based selection of a subset accelerates evolutionary
search. We investigated this behavior in genetic programming for four problems from
two different problem domains, including as function approximation and classification.
In order to ensure that the observed success does not depend on the chosen evolution
settings, we performed experiments with two quite different parameter settings. We
found that the topology on the fitness cases, which is induced by the population of in-
dividuals contains useful information, which can be exploited to control diversity and
in doing so improve the performance of genetic programming. We defined appropriate
diversity as a combination of high diversity and good average fitness. We have shown
exemplarily that runs using a topology–based selection exhibit such appropriate diver-
sity.

Wagner and Altenberg (1996) describe evolvability (see Altenberg 1994) as a
genome’s ability to produce adaptive variants. In their opinion “adaptations are possi-
ble if improvement can be achieved in a cumulative or stepwise fashion”. As a struc-
tural key feature they consider that “improvements in one part of the system must not
compromise past achievements”. Topology–based selection supports this requirement
by not overvaluing achievements. Overvaluing would lead to an increasing selection of
single achievements, penalizing others. By preventing this we hope to advance a higher
degree of variability. Investigations on the influence of subset selection on evolvability
are an interesting aspect for further research.

The emerging topology might prove to be an interesting source of information
about the fitness cases. For example, experts of the problem domain could be interested
in the reason why some individuals behave similarly with the same fitness cases. Or the
topology might help to automatically detect measurement errors (outliers) within the
fitness cases (e.g., if fitness cases are taken from measurements of a real world process).
We suppose that in later phases of evolution such fitness cases are weakly connected to
others.

The method and the definition of similarity of fitness cases is problem indepen-
dent. Furthermore the method is independent from the learning method. Thus inves-
tigating the applicability of topology–based selection to other learning methods from
artificial and computational intelligence is an interesting task for future research.

Acknowledgment

This research was funded by a grant to W.B. within the DFG program ”Sozionik” under
Ba 1042/7–2. P.D. acknowledges financial support by the BMBF (grant 0312704A).

References

Altenberg, L. (1994). The evolution of evolvability in genetic programming. In Kin-
near, Jr., K. E., editor, Advances in Genetic Programming, pages 47–74. MIT Press,
Cambridge, MA.

240 Evolutionary Computation Volume 12, Number 2

Topology Based Subset Selection

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1998). Genetic Programming
— An Introduction. Morgan Kaufmann, San Francisco, CA.

Blake, C. L. and Merz, C. J. (1998). UCI repository of machine learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Gathercole, C. (1998). An Investigation of Supervised Learning in Genetic Programming.
PhD thesis, University of Edinburgh.

Gathercole, C. and Ross, P. (1994). Dynamic training subset selection for supervised
learning in genetic programming. In Davidor, Y., Schwefel, H.-P., and Männer, R.,
editors, Parallel Problem Solving from Nature III, volume 866 of LNCS, pages 312–321,
Berlin. Springer-Verlag.

Gathercole, C. and Ross, P. (1997). Small populations over many generations can beat
large populations over few generations in genetic programming. In Koza, J. R.,
Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L., editors,
Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 111–
118, Stanford University, CA, USA. Morgan Kaufmann.

Goldberg, D. E. and Richardson, J. (1987). Genetic algorithms with sharing for multi-
modal function optimization. In Grefenstette, J., editor, Genetic Algorithms and their
Applications (ICGA’87), pages 41–49. Lawrence Erlbaum Associates.

Hogg, T. (1996). Refining the phase transition in combinatorial search. Artificial Intelli-
gence, 81(1-2):127–154.

Holland, J. (1975). Adaption in natural and artificial systems. MIT Press, Cambridge, MA.

Keijzer, M. (2001). Scientific Discovery using Genetic Programming. PhD thesis, Technical
University of Denmark.

Koza, J. R. (1992a). A genetic approach to the truck backer upper problem and the
inter-twined spiral problem. In Proceedings of IJCNN International Joint Conference
on Neural Networks, volume IV, pages 310–318. IEEE Press.

Koza, J. R. (1992b). Genetic Programming: On the Programming of Computers by Natural
Selection. MIT Press, Cambridge, MA.

Lang, K. J. and Witbrock, M. J. (1989). Learning to tell two spirals apart. In Proceedings of
the 1988 Connectionist Models Summer School, pages 52–59, San Mateo, CA. Morgan
Kaufmann.

Lasarczyk, C. W. G. (2002). Trainingsmengenselektion auf der Grundlage einer
Fitnesscase–Topologie. Diploma thesis, University of Dortmund.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics - Doklady, 10(8):707–710. Original in Russian in Doklady
Akademii Nauk SSSR, 163, 4, 845–848, 1965.

Miglino, O. and Walker, R. (2002). Genetic redundancy in evolving populations of
simulated robots. Artificial Life, 8(3):265–277.

Evolutionary Computation Volume 12, Number 2 241

C. Lasarczyk, P. Dittrich, W. Banzhaf

Nordin, P. and Banzhaf, W. (1997). An on-line method to evolve behavior and to con-
trol a miniature robot in real time with genetic programming. Adaptive Behaviour,
5(2):107–140.

Schaffer, J. D., Caruana, R. A., Eshelman, L. J., and Das, R. (1989). A study of control
parameters affecting online performance of genetic algorithms for function opti-
misation. In Schaffer, J. D., editor, Proceedings of the 3rd International Conference on
Genetic Algorithms, pages 51–60, San Mateo, California. George Mason University,
Morgan Kaufmann Publishers.

Voudouris, C. (1998). Guided local search – an illustrative example in function optimi-
sation. BT Technology Journal, 16(3):46–50.

Voudouris, C. and Tsang, E. (1996). Partial constraint satisfaction problems and guided
local search. In Wallace, M., editor, Proceedings of the Second International Conference
on the Practical Application of Constraint Technology (PACT’96), pages 337–356. The
Practical Application Company Ltd.

Wagner, P. and Altenberg, L. (1996). Complex adaptations and the evolution of evolv-
ability. Evolution, 50(3):967–976.

Walsh, T. (1999). Search in a small world. In Thomas, D., editor, Proceedings of the
16th International Joint Conference on Artificial Intelligence (IJCAI’99), volume 2, pages
1172–1177, San Francisco, CA, USA. Morgan Kaufmann Publishers.

Zhang, B.-T. and Cho, D.-Y. (1998). Genetic programming with active data selection.
In Newton, C., editor, Proceedings of the Second Asia-Pacific Conference on Simulated
Evolution and Learning (SEAL’98), volume 1.

242 Evolutionary Computation Volume 12, Number 2

