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Modularity represents a recurring theme in the attempt to scale evolution to the design of complex systems.

However, modularity rarely forms the central theme of an artificial approach to evolution. In this work, we

report on progress with the recently proposed Tangled Program Graph (TPG) framework in which programs

are modules. The combination of the TPG representation and its variation operators enable both teams of

programs and graphs of teams of programs to appear in an emergent process. The original development of

TPG was limited to tasks with, for the most part, complete information. This work details two recent ap-

proaches for scaling TPG to tasks that are dominated by partially observable sources of information using

different formulations of indexed memory. One formulation emphasizes the incremental construction of mem-

ory, again as an emergent process, resulting in a distributed view of state. The second formulation assumes

a single global instance of memory and develops it as a communication medium, thus a single global view

of state. The resulting empirical evaluation demonstrates that TPG equipped with memory is able to solve

multi-task recursive time-series forecasting problems and visual navigation tasks expressed in two levels of

a commercial first-person shooter environment.
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1 INTRODUCTION

Modularity is a widespread structural principle in both natural and artificial systems. In artificial
systems [Simon 2019], it is a built-in design feature that simplifies the task of designing the system,
understanding the resulting mechanisms, guaranteeing the targeted functionality, and improving
and maintaining a so realized system [Clark and Baldwin 2000]. In computer technology, in particu-
lar, both in hardware and software, modular approaches are prevalent. It allows easy replacement
of failing parts as well as easy debugging of failing code segments [Parnas 1972] and has long
been a staple in software engineering. In natural systems under evolution, modularity is a result
of evolution, and thus an emergent property of the systems under consideration.

A rough general definition of modularity is offered by Callebaut [2005, p.6] when he says “...a
system may be characterized as modular to the extent that each of its components operates primar-
ily according to its own, intrinsically determined principles.” The literature is full of more technical
elaborations, which require that components of a module are tightly integrated but relatively in-
dependent from those of other modules. Modularity, therefore, is a matter of degree and can be
seen as a gradual property of systems [Wagner and Altenberg 1996]. It is argued that they provide
efficiency gains for evolvable systems.

Modularity is often associated with hierarchical organization, but modularity does not imply
hierarchy. Again, Callebaut comments on one of the examples given in Simon [2019], rooms con-
nected by corridors. While rooms connected by corridors can be considered modules, there is no
notion of hierarchy involved, at least as long as we do not speak of them as being part of a build-
ing. However, this example argues for something else: Repeated patterns can often be identified as
some kind of modules (in this case the “room” pattern versus the “corridor” pattern). So repetitive
patterns lay the groundwork for modules, in that patterns stand out from the background (their
components interact more strongly with each other than with the background). In an analysis
of computer code, a similar observation can be made about code segments that are used repeat-
edly throughout a program. Genetic programming systems have shown a tendency to produce via
evolution emergent repetitive patterns [Langdon and Banzhaf 2005, 2008]. In the present work,
modules are synonymous with programs that appear in multiple places throughout a genotype.

What do we mean, then, when we speak of a hierarchy? The notion of dependency or order/level
is key to understanding the concept of a hierarchy. A system that is organized in a way that its
components can be ranked in some kind of order taking the form of levels (dependency, member-
ship of different levels), is a hierarchical system. Hierarchical systems are not per se more efficient
than others, they are just “ordered.” But we can see that hierarchical organization (“order”) in con-
nection with modular organization (“repetitive structures”) allows efficiency gains. This is the core
idea of the many-to-one settings we often encounter in hierarchical modular systems.

So whether hierarchy implies modularity is not clear, but arguments have been made to the effect
that hierarchy requires modularity [Simon 2019], at least in natural and artificial contexts with
efficiency pressures. For example, in Biology, the spectacular experiments of Walter J. Gehring on
Drosophila Melanogaster identified the so-called homeobox genes [Gehring 1992] and deciphered
the function of the pax6 gene [Gehring and Ikeo 1999] as a master gene in the formation of organs
like the eye and the antenna of D. melanogaster. These are famous examples of the hierarchical
modular design resulting from natural evolution.

In genetic programming, both modularity and hierarchy play important roles. The classical at-
tempt to make use of modules has become known as automatically defined functions (ADFs for
short) [Koza 1994], which exploit the fact that some pieces of code are expected to be reused and
should therefore be separated as modules that can be repeatedly called (hierarchically ordered ac-
cording to call sequence). This is not an emergent process, though, as the ADFs are defined before
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a GP run starts, and a number of parameters have to be fixed (like number of arguments, etc),
possibly before knowing what would be adequate in the problem setting. Encapsulation [Koza
1992] and module acquisition [Angeline 1994], however, allow the process of evolution to produce
emergent modules. Results at the time were mixed, though. Koza addressed the missing potential
for evolution by adding architecture-altering operations, allowing modules to be subject to more
influence in evolution [Koza et al. 1999]. Modularity and hierarchy in GP have been discussed in
other work [Banzhaf et al. 1999; Dostál 2013; Gerules and Janikow 2016; Woodward 2003], but the
notion of emergent modularity/hierarchy, i.e., the notion that it has to evolve in the course of the
GP run has not been studied sufficiently yet [O’Neill et al. 2010].

In natural systems, hierarchy often emerges in tandem with modularity able to make efficient
use of the separation of tasks provided by modules. Here, the transition to a module from elements
on a certain level is just repeated again and again recursively, by using lower level modules as
elements for higher level modules. Simon’s idea of the dominance of nearly decomposable systems
[Simon 1962] argues for an increase in the efficiency of natural and artificial processes to generate
complex systems, and an increase in the speed of their emergence [Simon 2002]. Simon’s famous
argument of “The Two Watchmakers” has been a vivid demonstration of this ability of modular
and hierarchical systems. This property is central to the approach adopted in this work, where
the resulting emergent organization of multiple programs into teams represents the first level
of a hierarchy. However, as individuals experience more of a task, teams can either incorporate
additional programs or identify conditions under which to pass execution over to other teams;
resulting in the emergent organization of graphs of teams of programs.

The evolutionary advantages of modular, hierarchical systems are clear [Callebaut 2005]. The
speed of their emergence in an otherwise noisy environment, the robustness of their response to
internal and external perturbations and the potential for combinatorial innovation are the three
main effects of such a design. While in artificial systems it is rational consideration that leads to a
realization of such principles, in natural and emergent systems, it is selection that acts as the engine
of emergence. Even artificial systems, like genetic and evolutionary computation algorithms can
make use of this engine of emergence, as discussed in more detail in Banzhaf [2014] for the case
of genetic programming.

Modularity also directly supports the scaling of phenotypes to environments that change in
systematic ways [Kashtan et al. 2007; Parter et al. 2008]. For example, as an agent becomes more
adept at surviving within a local environment, it has the potential to explore more, thus expanding
its ability to model the environment more accurately. Addressing the new challenges does not
require a total redesign of a current genotype. Instead, specific modules might need retuning and/or
new modules might need to be introduced. In this way, the effectiveness of modular representations
has been demonstrated under streaming data applications with shift and drift [Vahdat et al. 2015].

Tangled Program Graphs (TPG) is a framework for genetic programming (GP) that has
leveraged emergent modularity in building solutions to high-dimensional (visual) reinforcement
learning, e.g., Kelly and Heywood [2018b]; Kelly et al. [2019]. In TPG, a module is a program and
a complete solution is composed of multiple programs interconnected within a hierarchical graph
structure, or program graph. Two emergent properties are critical to the algorithm’s success: (1)
The identification of specialized, reusable modules that distinguish between context and action;
and (2) The hierarchical nature of the interdependence among multiple modules within a compos-
ite solution. For example, given a problem space, or state �s , individual programs are free to evolve
specialized behaviour in which they process only a small subset of the variables in �s . When multi-
ple programs are coevolved within a graph, their specialized sensitivity to particular inputs allows
the structure as a whole to develop an efficient spatial decomposition such that only salient vari-
ables from�s are processed. Furthermore, since we are particularly interested in temporal problems
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in which the input space, or environmental state, changes over time, emergent module interdepen-
dence would imply that a program graph discovers how many programs should interact to make
each prediction in a sequence, in what way those programs should interact, and to what degree
the subset of programs interacting should change as a function of the environmental state at each
time point, �s (t ).

In addition, the problem environments under which our system should be capable of operating
are partially observable. Thus, the state at any point in time, �s (t ), does not completely describe
the conditions of the environment. Such environments are widely encountered in practice. For
example, robots, drones or unmanned vehicles generally have limited sensor information, and are
deployed in environments that change over time. These systems rely on some form of temporal
memory to store salient properties of the environment such that a more complete estimation of
state can be made in the future. Moreover, as the dimension of the state space increases, the com-
putational cost of having agents make decisions based on all the state information also increases,
impacting the scalability and efficiency of agents. Conversely, if the agent can establish simpler in-

ternal models based on lower dimensional representations, then the resulting policies will be more
efficient, reducing the cost of deployment and improving scalability. In short, operation under
partially observable environments will not be possible unless the agent can construct an internal
model of state using memory �m(t ). Finally, to support operation in dynamic environments, it is
critical that the memory mechanism supports dynamic access. That is, the solution must be capa-
ble of reading and writing to distinct memory locations at any moment, based on the state of the
environment. Thus, just as a modular structure supports a read-only spatial decomposition of its
world view �s (t ), this work establishes how modular agents are capable of a read-write temporal

problem decomposition in �m(t ). As a consequence, the agent can answer questions such as how to
encode information for later recall, identify what to remember, and determine when to remember
what. At any point in time, the agent is free to access multiple encoded memories with distinct
time delays, and integrate this information to predict the best output for the current situation. This
is distinct from recursive structures that allow an agent to perform some memory tasks by accumu-
lating/integrating experience over time through feedback, e.g., Conrads et al. [1998]; Nordin et al.
[1998]. We note that a purely recursive agent does not directly support temporal decomposition,
because it is limited to a fixed time delay. Such a feedback structure is equivalent to static memory
access, for example, if the agent were limited to accessing the same memory register(s) at every
point in time regardless of the state of the world.

In summary, the objective of this work is to extend the scope of emergent modularity in TPGs to
address time-dependent problems that explicitly require the agent to make use of temporal mem-
ory. The significance of this development is twofold: (1) Temporal memory allows program graphs
to integrate experience over time, which is required for operation in partially-observable environ-
ments; and (2) Temporal problem decomposition is likely beneficial in dynamic, non-stationary
environments. The temporal problems we have in mind include time-series forecasting or stream-
ing data classification tasks when the underlying process generating the data stream changes sig-
nificantly over time [Agapitos et al. 2012; Heywood 2015], and visual reinforcement learning

(RL) environments in which the physics of the world and/or task objectives change over time, for
example, in video games as the player navigates complex environments without access to a global
world view or map.

These applications are assumed to represent two distinct design requirements for the memory
models. The non-stationary time-series prediction task is taken to require support for the very
precise indexing of previously encountered events, as in the configuration of a chaotic time series
in which changing a single value may completely change the properties of the task. Conversely,
state information in visual RL environments are generally high-dimensional (i.e., pixels from a
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frame of video) and both temporally and spatially redundant. That is to say, there is a signifi-
cant amount of correlation between what pixels represent in the local (spatial) neighbourhood
of the same frame and between consecutive frames. This motivates an approach to memory in
which large numbers of programs (modules) need to operate collectively (i.e., multiple modules
are necessary to efficiently sample different parts of high-dimensional spaces). Memory therefore
represents a communication medium (for hundreds of modules) as well as a repository of internal
state. Under such a setting, we formulate writing to memory as a probabilistic process such that
long- and short-term memory is supported. Read operations can then be indexed to make use of
these dependencies.

The remainder of this article is organized as follows: Section 2 provides a detailed description of
how program graphs are represented, evolved, and evaluated in the TPG algorithm. This section
finishes by placing the TPG approach into the wider context of other approaches for support-
ing modularity in GP. Sections 3 and 4 each propose unique ways to augment generic TPG with
dynamic memory. Relevant background and an empirical evaluation are provided in each case.
Specifically, Section 3 proposes a structural memory model that supports dynamic memory man-
agement through module interdependence within the program graph. An empirical evaluation in a
non-stationary time-series prediction task is provided. The task is univariate (i.e., low-dimensional)
but highly dynamic and sensitive to the chaotic process generating the data. Furthermore, no slid-
ing window of previous values, or autoregressive state, is provided to the agent, implying that
the task is only partially observable. As such, Section 3 establishes how TPG with dynamic mem-
ory exploits temporal problem decomposition to cope with a partially observable, non-stationary
environment.

Section 4 introduces a probabilistic memory model and evaluates how TPG manages tempo-
ral and spacial decomposition in a dynamic, partially observable, and high-dimensional visual RL
environment, VizDoom [Wydmuch et al. 2019]. That is to say, recent advances in visual reinforce-
ment learning (a state is defined in terms of video data alone) has demonstrated that end-to-end
navigational behaviours can be spontaneously discovered, albeit only after engineering a specific
formulation of a deep-learning framework with multiple forms of memory [Jaderberg et al. 2019].
We demonstrate in this work for the first time the ability to evolve a policy that learns how to
solve levels from the original Doom game engine. This is challenging, because a level consists of
multiple rooms and corridors but is only experienced from a first-person perspective, while also
requiring an agent to collect keys and associate the operation of switches with enabling additional
parts of the environment. In short, an agent has to navigate a world, solve puzzles, and maintain
health to complete levels.

2 TANGLED PROGRAM GRAPHS

To explicitly support the emergent discovery of modular structures, we assume a two-population
symbiotic model for evolution in which teams and programs are represented by independent pop-
ulations and coevolved (Figure 1). Symbiosis implies a hierarchical relation between the two pop-
ulations [Heywood and Lichodzijewski 2010], with members of the team population defined in
terms of individuals from the program population. The team population performs a (combinato-
rial) search for the relevant composition of a team under a variable length representation, i.e., no
prior assumption regarding the number of programs per team. In this work, task-specific fitness

is only ever defined at the level of the team (Section 2.2). After ranking the teams, and deleting
the worst performing (Steps 1c and 1d, Algorithm 1), any programs that are not associated with
a surviving team are also deleted (Step 1e).1 Finally, variation operators are applied first to teams

1Implies that a variable number of programs might be deleted per generation.
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Fig. 1. Symbiotic coevolutionary relationship between Team and (Bid-based) Program Populations. 1(a) Each
individual from the Team Population (tn ) defines a unique sample of individuals from the Program Popula-
tion. The same bid-based GP program can appear in multiple programs, but no more than once per team.
1(b) Each bid-based GP individual is defined by a discrete terminal, atomic action (ai ) and a program (pk ).
The same program (action) can appear in multiple bid-based GP individuals, but the combination of program
and action must be unique. A Linear GP representation is assumed [Brameier and Banzhaf 2007], where R[i]
is a reference to register i, Input[i] indicates a read only reference of index i of the vector of state input�s (t ).
Generic instruction set supports arithmetic operators, cosine, (protected) logarithm, (protected) exponential,
and conditional [Lichodzijewski and Heywood 2007; Wu and Banzhaf 2011].

(Steps 1(h)i to 1(h)iv) and then to programs (Step 1(h)v) as is selection at multiple levels (e.g., Wu
and Banzhaf [2011]). The overall process is elitist, with the best 1−Gap teams surviving, and only
this subset of teams representing the parent pool. Children therefore have to be competitive with
this elite to survive the next generation.

The output from a team is defined by assuming a bid-based approach [Lichodzijewski and Hey-
wood 2007] in which each program defines an action and a context. Actions, ai , are limited to a
single scalar value whereas contexts are defined by a program, pj (Figure 1(b)). At initialization all
actions are terminal. For example, in an RL task actions are initially limited to the set of discrete
terminal atomic actions specific to the task domain, ai ∈ A (e.g., enumeration of joystick position
into eight discrete directions). Given the current state of the environment, �s (t ), all the programs
from the same team are executed, and the single program with the maximum output “wins” the
right to suggest its action. Naturally, the bid-based approach makes the decomposition explicit
and simplifies credit assignment, i.e., variation can be made specific to a single program–action
pairing, thus credit/blame can also be attributed to specific parts of a team. Programs are therefore
synonymous with modules; thus, a rather different form of modularity than ‘classically’ adopted
within the context of genetic programming, i.e., Automatically Defined Functions [Koza 1994] or
Macros [Spector and Luke 1996].

The minimal composition of a team is two programs with different actions, thus the same
program–action pairing 〈ai ,pk 〉 can appear in multiple teams. Moreover, different programs can
appear in the same team with the same action, as long as there are at least two different actions
within the same team; see Figure 1(a). Variation operators modify structures at the team and then
program level after first cloning the corresponding parent(s). Moreover, new programs are only
introduced relative to a cloned parent program and team, implying that the original use of any
program (by other teams) is unchanged.

Crossover is only defined in terms of a team, not programs (Step 1(h)i, Algorithm 1). Specifically,
for two cloned parents selected with uniform probability from NewAgents, any program common
to both parents is copied to the child. Any remaining programs are copied to the child with a fifty
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ALGORITHM 1: Generic evolutionary cycle. AgentList is the set of teams that are retained post
fitness ranking. NewAgents are the subset of teams that are first cloned (Step 1g) and then available
for variation. Variation is also applied to members of the program population and also requires the
target program to be first cloned (Step 1(h)vB).

• Initialize Team(0)
• Initialize Proд(0)

(1) For (д = 0; !EndOfEvolution;д = д + 1) � Generation loop
(a) AgentList = ∅
(b) For all (team ∈ Team(д)) AND (team = root) � Identify valid agent

(i) agent = team;
(ii) update(AgentList, team)

(iii) For all (evaluations) � Evaluation loop (Section 2.2)
(A) Evaluate(agent)
(B) update(agent.Fitness)

(c) Rank(agents ∈ AдentList ) � Select parents
(d) Prune worst ranked Gap agents in AдentList and corresponding teams in Team(д)
(e) Prune all proд ∈ Proд(д) without a team
(f) Select (Parents ∈ AдentList )
(g) Clone (NewAgents, Parents)
(h) DO � Variation

(i) IF (rnd< px ) THEN agent = Xover (NewAgents) � Team crossover
(ii) ELSE agent ∈ NewAдents

(iii) newRoot = DeleteProgFromTeam(root ∈ agent, pd ) � Team mutation
(iv) newRoot = AddProgToTeam(newRoot, pa )
(v) IF (ModifyProgram(pm)) THEN � Program variation

(A) Select(prog ∈ newRoot)
(B) Clone (newProg, prog)
(C) ModInstr(newProg, pdel ,padd ,pmut ,pswp )
(D) ModAction(newProg, pmn ,patomic ) � Action variation (Section 2.1)

(vi) Insert(newRoot, AдentList ) � New team and progs added
(i) WHILE count(newRoot ) < Gap AND |AдentList | < Rsize

percent probability. The threshold px is the probability of applying crossover. Child teams can also
have programs deleted or added with probabilities pd and pa , respectively.2

Variation of programs is also subject to a cloning step (Step 1(h)vB), ensuring that any other team
using the same program is unaffected. Instructions can then be probabilistically deleted, added, mu-
tated or swapped (Step 1(h)vC). Finally, the action of a program can also be modified. Depending
on how this is performed, actions can remain terminal or can become pointers to other teams (de-
tailed in Section 2.1), resulting in the emergence of complex graph structures, or Tangled Program
Graphs.

2.1 Emergence of Tangled Program Graph Structures

Figure 1(a) illustrates the symbiotic relationship between team and program populations
when actions are limited to the set of terminal atomic actions, ai ∈ A. This means that

2Subject to the above minimal team composition constraint.
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Fig. 2. TPG representation from the perspective of 2(a) the underlying two population (symbiotic) coevo-
lutionary model and 2(b) equivalent phenotype (ignoring the details of each program, pk ). The root team

is identified by the bold circle whereas teams archived within the TPG graph are identified by the dashed
circles. At initialization all teams are root teams; thereafter, an increasing number of teams can be archived.
However, the same team can be archived by multiple root teams. Bold arcs represent programs associated
with terminal atomic actions, dashed arcs represent programs defining an action in terms of another team.

co-operation/decomposition only appears at a single level, that of single teams. Conversely, as
different aspects of a task are experienced, different specializations might appear across different
teams. TPG attempts to discover more general policies by taking the condition under which a ter-
minal atomic action was applied by team “i” and instead referencing team “j.” If team “j” represents
a better terminal action selector for the condition identified by team “i,” then the new more complex
policy will survive. Indeed, given state�s (t ) from the task environment, such a process might result
in team “i” deferring to team “j,” which itself defers to team “k” before a specific terminal atomic
action is identified. TPG represents a continuous emergent process through which the structure
associated with deferring judgement to other teams is discovered.

The key to the TPG approach is to let action mutation (Step 1(h)vD, Algorithm 1)3 choose be-
tween selecting a terminal atomic action (ai ∈ A) or a pointer to a team in the team population
(ai ∈ T ). Figure 2 illustrates how a TPG agent might express a multi-team relationship in terms of
the interconnection between individuals in the team and program populations, and the resulting
TPG agent. The team population now has two types of teams, those that are pointed to, and those
that are not. Only teams that have no incoming arcs (i.e., not pointed to) denote a root team. This is
important, because TPG agent evaluation is only performed relative to the root teams (Section 2.2),
thus only root teams represent eligible parents. Note that when cloning (Step 1g), it is therefore
only the root team that is cloned and variation operators applied to.

2.2 Evaluating a TPG Agent

Assuming the TPG agent from Figure 2(b) and a current state from the environment�s (t ). Execution
always begins relative to the TPG agent’s root team (Figure 3(a)). In this example, all programs in
team ta are therefore executed and the program with the maximum R[0] register value returned.
For example, arg max(pk ∈ ta ) → p7. As p7 is associated with terminal atomic action a1, this
would complete the evaluation of the TPG agent for state �s (t ). If, however, p5 was the winning

3Threshold pnm is the probability of action mutation and patomic (versus 1−patomic ) the probability of terminal atomic

action (versus team) selection.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 1, No. 3, Article 11. Publication date: August 2021.



TPG in Partially Observable Time-series and Navigation Tasks 11:9

Fig. 3. Determining the action of an example TPG agent. 3(a) The root team is indicated by the bold circle
and defines the first team to be evaluated under a new environmental state �s (t ). Subsequent evaluation
of TPG teams is a function of action selection, with evaluation complete when a terminal atomic action is
recommended. Each team evaluated is marked (the “star” in this figure). Should an action be recommended
that identifies a team marked with a star, then a loop has been detected, 3(d). This forces the use of a runner

up arc (i.e., program). Each team is guaranteed to have at least one arc terminating in an atomic action,
implying that any loop can be resolved in terms of a terminal atomic action.

program from team ta , then the corresponding action is actually another team, tb . Before moving
on to evaluate tb , the parent team is marked (illustrated by the “star” in Figure 3(b)). The process
of program execution is now repeated relative to tb as per Figure 3(b).

Steps 2 through 4 of Figure 3 illustrate this process for a “worst-case” scenario, i.e., each team
of the TPG agent are visited and at team td program p4 had the maximum R[0] register value.
At this point a loop is detected, because the action from program p4 is a previously visited team
(Figure 3(d)). Program p4’s contribution can now be ignored and the program with the next largest
R[0] register value used to identify the path from team td . Thus, as long as there is at least one
arc terminating in a terminal atomic action at any team, then loops can always avoided.4 After
finding a terminal atomic action for the current state, any marked teams are reset, and execution
commences relative to the next state from the root node.

2.3 Discussion

The underlying motivation for TPG is to scale GP to tasks through an emergent model of modular-
ity. However, modularity has been a reoccurring theme in GP. Automatically Defined Functions

(ADF) [Koza 1994] or Automatically Defined Macros (ADM) [Spector and Luke 1996] introduce
modularity through prior parameterization of what constitutes a function or macro. To do so, prior
decisions need to be made to define the number of functions or macros supported and the number
of arguments passed. This potentially leads to a requirement to perform runs over multiple param-
eterizations before adopting one that appears to work. This may lead to a limitation to the types of
task that GP can potentially be applied to. These issues do not appear in TPG, because modularity
is entirely emergent.

4Such a constraint is enforced during action mutation (Step 1(h)vD, Algorithm 1) to guarantee that any agent evaluates to

an terminal atomic action.
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Two examples of GP formulations that do explicitly support open ended modularity are
architecture-altering operations associated with the Genetic Programming Problem Solver

(GPPS) [Koza et al. 1999] and the “Adaptive Representations through Learning” framework of
[Rosca and Ballard 1996]. The architecture-altering operations of GPPS represent a family of oper-
ations that manipulate subroutines, such as duplication, creation, and deletion. They are deployed
in conjunction with a “structure preserving crossover” operation, itself based on the concept of
point-typing (Section 5 in Koza et al. [1999]). Although capable of emergent discovery of modular-
ity, the principle limitation of the approach appears to be computational.5 For example, applying
GPPS to the Two Spirals classification task required a population of 700,000 individuals executed
over 500 generations, with nine different types of “max argument” definitions for appropriately
limiting the properties of the modules (Section 23.2 in Koza et al. [1999]). A path for scaling GPPS
from a two input classification task to RL tasks with tens of thousands of inputs is therefore not
obvious.

Adaptive Representations through Learning (ARL) is based on the “bottom-up evolution
hypothesis” [Rosca and Ballard 1996], which maintains that the discovery of ADF like subrou-
tines become “stable” in a bottom-up fashion as evolution commences. The guiding principle of
adaptive representations was that useful module/subroutines can only be discovered through the
definition of suitable measures of performance. However, the design of subroutine-specific versus
overall fitness limits the application of the approach. ARL moved beyond the constraint of supply-
ing appropriate measures of subroutine performance by assuming that modules only be sourced
from offspring with the highest fitness improvement relative to their parent [Rosca and Ballard
1996]. This presents something of a problem with regards to RL tasks with fitness plateaus or non-
stationary environments. ARL also makes use of diversity measures to establish when to create
subroutines and limits the number of subroutines to some a priori limit.

The Push language emphasized a capacity for developing modular solutions [Spector and Robin-
son 2002]. To do so, a specific language class is introduced to make calls to encapsulated code (e.g.,
the CODE class). A case study was then developed around the even-parity task to illustrate the
ability of Push to discover solutions efficiently. However, it was also remarked that “the program
is clearly re-using code, which is one of the hallmarks of modularity. On the other hand, this is prob-
ably not the sort of modularity that any human would employ.” Moreover, solving each instance
of the even-parity task required an independent cycle of evolution and there is no independent
assessment of post training performance (all data appears during training). Conversely, Huelsber-
gen demonstrates that it is not so much modularity that is significant in solving all even-parity
problems, but recursion [Huelsbergen 1998]. Later work introduced modularity through “tagging,”
where this was benchmarked in simple grid worlds (lawnmower and obstacle-avoidance) when
used with Push [Spector et al. 2011], but appear to translate to tree structured GP [Spector et al.
2012]. We are not aware of work demonstrating the use of memory in Push.

Cartesian genetic programming (CGP) has been developed to include memory (through
recursion [Turner and Miller 2017]) and modularity [Walker and Miller 2008]. As such the study
conducted in Section 3 will use previous results for CGP for comparative purposes under single
sequence time-series forecasting tasks before demonstrating that TPG can generalize the result
to multi-sequence time-series forecasting. Modularity in CGP was again demonstrated using bit-
wise tasks with no independent test of generalization (e.g., parity, adder, comparator) as well as
the lawnmower and symbolic regression problems. Modularity was useful under bit-wise tasks,
but not so useful under lawnmower and symbolic regression. We are not aware of attempts to

5See commentary in Section 6.1.2 of the Field Guide to Genetic Programming [Poli et al. 2008].
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combine mechanisms for both memory and modularity, where both mechanisms will be necessary
for scaling genetic programming to the tasks appearing in Sections 3 and 4.

Modularity has also been investigated within the context of Grammatical Evolution (e.g., Harper
and Blair [2006] and Swafford et al. [2011]). Harper and Blair introduce “dynamically defined func-
tions,” which expand the grammar definition to support function calls with the ability to evolve
the number of parameters passed. The minesweeper grid world was used to demonstrate the ca-
pability of the approach, albeit without an independent post training evaluation (no variation in
mines or start condition). Swafford et al. [2011] develop an approach based on the encapsulation
of sub-derivition trees in which the provision of a suitable repair operator was demonstrated to be
of particular importance. Benchmarking assumed various simple grid world tasks (Santa Fe Trail,
lawnmower) and symbolic regression. Again, we are not aware of attempts to scale modularity
beyond these benchmarks to tasks requiring both modularity and memory mechanisms.

TPG itself represents a development from “hierarchical” symbiotic bid-based (SBB) GP [Kelly
and Heywood 2018a]. The approach assumed two phases. In phase 1, multiple SBB populations
were evolved on different versions of the ultimate task. The action set always takes the form of
terminal atomic actions. Diversity measures are used to encourage the development of a range of
agent policies. In phase 2, a final independent SBB population is evolved in which the action set is
defined solely in terms of pointers to the teams as evolved in phase 1. Thus, in phase 2 SBB learns
under what conditions to switch between some subset of the policies evolved in phase 1. Naturally,
hierarchical SBB is not an emergent form of modularity, but it is agnostic to the representation
assumed by GP. Conversely, both ADFs and ARL are specific to the concept of modularity through
subroutines under a tree structured representation.

Multi-trees are also agnostic to the specifics of the GP representation, but rely on prior knowl-
edge regarding the number of modules. That is to say, a multi-tree defines an ensemble of some
prior number of subtrees common to all individuals in the population. Thus, in classification prob-
lems the number of ensemble members is set by the number of classes [An et al. 2013; Muni
et al. 2004]. The concept of multi-trees has similarities with GP teams/ensembles [Brameier and
Banzhaf 2001]. Prior knowledge is again necessary regarding the number of result producing pro-
grams/modules (per team). For example, in classification tasks this is often synonymous with the
number of classes (a four-class classification problem would have four programs associated with
each team) [Thomason and Soule 2007]. Furthermore, it might be necessary to define fitness at the
level of program as well as team [Thomason and Soule 2007; Wu and Banzhaf 2011]. These issues
also appear in the case of modularity under the Potter–DeJong formulation of co-operative coevo-
lution [Potter and De Jong 2000] (as opposed to the variable length symbiotic model assumed by
TPG and SBB). Each gene comprising a solution represents a module6 in a fixed length genotype
and the content for each solution gene is sourced from an independent population. The context
for each solution gene is therefore explicit, i.e., each population only ever defines modules for a
specific solution gene location. However, decisions need to be made regarding how to sample the
populations and how to propagate fitness back to each module’s independent population (given
that fitness is only evaluated when all modules are defined). This can lead to issues about sample
effectiveness in addition to requiring prior knowledge regarding the common number of modules
that must appear in all solutions. Multi-trees have the same prior (regarding modules per solution),
but at least do not require fitness to be defined at the level of independent modules.

In summary, TPG provides the only example of genetic programming that embraces emergent
modularity as the defining principle. To demonstrate the utility of this property, TPG was origi-
nally benchmarked on the ALE suite of Atari reinforcement learning tasks [Kelly and Heywood

6Equivalent to a program under GP or a weight / neural network in the case of neuro-evolution [Gomez et al. 2008].
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2017]. Under this setting, TPG matched the performance of the deep-learning architectures, such
as DQN, and surpassed the performance of HyperNEAT (a well-known neuro-evolutionary ap-
proach), while discovering solutions that were several orders of magnitude simpler. In addition,
TPG was able to learn policies for playing five Atari titles simultaneously [Kelly and Heywood
2018b]. To date, the only genetic programming approaches to attempt to play titles from the ALE
benchmark only did so by making use of specialized image processing instructions as opposed to
composing solutions through modularity [Jia and Ebner 2017; Wilson et al. 2018].

3 BENCHMARKING OF A STRUCTURAL MEMORY MODEL IN MULTI-TASK

RECURSIVE TIME-SERIES FORECASTING

A time series is a sequence of measurements or observations in time. The goal of time-series fore-
casting is to predict unseen future values based on previously observed values. This has applica-
tions in many important real-world problems. For example, forecasting crop yields from year to
year, forecasting the demand on energy utilities, or forecasting an EEG trace to anticipate changes
in patient health. Most statistical and machine learning methods rely on prior inspection of the
time-series data to parameterize the prediction model using heuristics and/or human intuition
[Agapitos et al. 2012; Turner and Miller 2017]. However, this assumes that enough prior data is
available to estimate the characteristics of the time series. Furthermore, applying static model pa-
rameters assumes that the underlying process generating the time series is stationary. In reality,
many real-world forecasting environments change significantly over time [Wagner et al. 2007].

In this section, we propose a structural memory framework that incrementally builds the pre-
diction machine entirely through interaction with a non-stationary environment. In doing so, we
eliminate the need to hard-code any recursive structure into the machine or to pre-specify a fixed-
size sliding-window of historical values to analyze at any point in time. The resulting framework
is exceedingly general and is likely to have broad applications in memory-intensive problem envi-
ronments with non-stationary properties, e.g., Goyal et al. [2019]; Wagner et al. [2007].

In an initial study [Kelly et al. 2020], we evaluated the structural memory model described in
this section in three challenging forecasting benchmarks; Sunspots [SIDC 2019], Mackey-Glass
[Mackey and Glass 1977], and Laser [Hübner et al. 1989]. The Sunspots and Laser datasets are
obtained from real-world recordings, while Mackey-Glass is a chaotic series generated from a pa-
rameterized equation. TPG with emergent structural memory was found to generally match the
quality of state-of-the-art solutions in all three benchmark datasets. This provides a critical first
step toward the significantly more challenging task investigated here, namely, multi-task recur-
sive time-series forecasting. In multi-task forecasting, the goal is to build a single agent capable of
forecasting multiple independent data streams. In earlier work, we establish how hierarchical team-
based GP (a precursor to TPG) supports inter-task transfer learning when multiple related tasks
are learned together [Kelly and Heywood 2018a]. Here, we selected three unrelated time-series
datasets to test how a TPG agent could exploit its modular/hierarchical structure to automatically
decompose a multi-faceted problem. Sections 3.4.4 and 3.4.5 provide a detailed discussion of the
hierarchical task decomposition that emerges in our empirical evaluation of TPG with the struc-
tural memory model. In addition to testing the power of emergent modularity and hierarchy, this
problem is a suitable testbed for dynamic memory models for the following reasons:

• No autoregressive state. In typical forecasting methods, the forecaster is fed individual
samples in order from series �s () and, given sample �s (t ), must predict the value of �s (t + 1). It
is common to pack a sequence of previous values into a single autoregressive state represen-
tation. For example, one could define an embedding dimension D and a time delay T to pre-
define a sliding window of prior observations to present to the forecaster at each timestep. If
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D = 4 andT = 3, then input to the forecaster at time t would be [�s (t ),�s (t−3),�s (t−6),�s (t−9)].
Assuming the nature of a time series is stationary and known a priori, then D and T can be
estimated such that models with no temporal memory or recursive structure can still make
accurate predictions. However, in multi-task forecasting, multiple time series with unique
rates of change are modeled simultaneously by a single generalized forecaster. It is infeasi-
ble to design a single autoregressive state representation that captures the salient temporal
properties of all data streams. In this work, agents observe one sample at a time and therefore
rely entirely on temporal memory to store previously observed values, which are retained in
memory as long as necessary and selectively recalled to extrapolate future values. Related
studies have evolved “observation windows” in time-series forecasting, but still required hu-
man intuition to parameterize the window behaviour [Wagner et al. 2007]. By contrast, our
approach is entirely emergent.
• Non-stationary environment. In our testbed for multi-task forecasting, agents are evalu-

ated on multiple data streams, one at a time, in random sequence. The agent is not provided
with any input marking the time at which the process generating the signal changes. As
such, solutions are effectively required to discriminate signals and perform forecasting si-
multaneously. This represents a non-stationary environment that requires dynamic memory
management over multiple timescales. Related work has investigated coevolutionary multi-
task learning for non-stationary time-series environments [Chandra et al. 2018]. However,
in that case agents operate in non-stationary environments by learning to select from a prior
set of autoregressive state representations, which they refer to as timespans. Hence, critical
components of the solution still required prior specification.
• Recursive forecasting. Due to the fact that agents (program graphs) may only observe one

sample at a time with no autoregressive state, they must be primed with a series of samples
before future predictions can be made. In this work, agents are primed with 50 samples.
Thus, before predictions begin at �s (t ), the program graph is executed for each input sample
in series�s (t−50),�s (t−49), ...�s (t−1) and output values are ignored. When priming is complete,
recursive forecasting is used to predict future values. That is, after�s (t − 1), samples from�s ()
are no longer used as input. Instead, the agent’s output values, or predictions, are fed back as
input to predict future values. For example, the prediction for�s (t ) becomes the input at t +1,
and so on. Thus, once priming is complete, the “true,” or target, values are never fed into the
program graph during test. As such, recursive forecasting can be characterized as generative

signal reconstruction, and theoretically allows predictions to any time horizon [Herrera et al.
2007].

3.1 Structural Memory Model

TPG as described in Section 2 is designed for tasks in which solutions map sensor inputs to a set of
discrete atomic actions. To perform time-series prediction, we will extend this framework to build
program graphs capable of continuous (real-valued) output. This is achieved through a shared
memory mechanism, originally introduced in Kelly and Banzhaf [2020] and Kelly et al. [2020],
which serves the dual purpose role of enabling temporal memory and continuous output in the
team-based structure of program graphs.

In this memory model, programs assume the same linear representation as shown in Figure 1(b).
Internal register memory is stateless, that is, reset prior to each execution. To support temporal
memory, we introduce a third population of shareable memory banks that are stateful, that is, only
reset at the start of evaluation for each individual program graph. All programs have a pointer to
one external memory bank (Figure 4). In the case of sequential decision-making or time-series
tasks where the program is executed multiple times per evaluation, these shared stateful memory
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Fig. 4. Illustration of the relationship between teams, programs, and modular memory in the structural
memory model. Section 3.2 provides a detailed description of how a program graph maps each input state
(�s (t )) to a continuous output.

banks allow programs to communicate and integrate information across multiple timesteps. Two
types of program are now supported within a team (see Figure 4 and Algorithm 2):

(1) Memory-programs manage the content of stateful memory. They read from current envi-
ronmental state, �s (t ), and/or stateful memory, �m(t ), and write to �m(t );

(2) Path-programs define which parts of a program graph contribute to each prediction. They
can be characterized as directed graph edges that dynamically set their weight at time t as a
function of �s (t ) and �m(t ). Each team maintains at least two path programs. The team maps
�s (t ) to a single output by executing all programs in order and then following the path with
the largest weight. If the path-program is terminal, then its output value is the content of its
shared stateful memory registerM[0], i.e., a real value (see Algorithm 2). Otherwise, the path-
program will point to another team where execution continues (this process is described in
more detail in Section 3.2).

Evolution begins with a population of Rsize teams, each containing at least two path-programs
and two memory-programs, which share stateful memory banks (Figure 4). Two specialized muta-
tion operators are introduced to support the development of shared memory. First, just as mutation
operators are free to modify a program’s action pointer (Step 1(h)vD, Algorithm 1), they may also
change the memory pointer. Second, shared memory implies that the order of program execution
within a team now potentially impacts a policy’s output. As such, execution order is deterministic
and defaults to the order in which programs are added to the team. However, a mutation operator
is provided that may change the location of a program within the team’s execution order. Shared
memory also implies that a memory-program can appear more than once in the same team, since
its contribution to memory management might be useful at multiple locations in the execution
order. More details on parameterization are listed in Table 2.

Note that memory-programs have read/write access to �m(t ), while path-programs have read-
only access. This enforces a division of labour in which memory-programs manage stateful mem-
ory content, while path-programs define the path of execution through a program graph. When
the path-program is terminal, its role is to define the appropriate context, relative to �s (t ) and �m(t ),
in which its shared memory register M[0] should be selected as the output.

3.2 Evaluating a TPG Agent in the Structural Memory Model

Figure 5 provides an example of how a TPG agent in the structural memory model is evaluated over
two consecutive timesteps. Execution always begins at the root team (tc ). At timestep 1 (Figure 5(a))
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ALGORITHM 2: Example linear register machine in the structural memory model. Each program
has one internal private stateless register bank, R, and a mutable reference to one shareable stateful

register bank,M . R is reset prior to each execution (line 1), whileM is reset (by an external process)
at the start of each policy evaluation. Each instruction will have a reference to one target register
(r1[]) and one or two operand registers (r2[], r3[]). Mode bits in each instruction dictate the source
for the target and operands. Mode bits are constrained such that r3[] may refer to R, M , or input
�s (t ) while r1[] and r2[] are restricted to R or M . Furthermore, the rules governing the target, r1[],
differ depending on program type. For path-programs, shared memory is read-only, thus r1[] will
always refer to R. In memory-programs, r1[] may refer to either R or M . Note that path-programs
have two return values (line 8). Memory-programs have no return value as their purpose is only to
manipulate the content of shared memory. A complete list of operations and instruction formats
appears in Table 1.

1: R ← 0 � reset private memory bank

2: r1[0]← r2[0] ÷ r3[3]

3: r1[2]← cos r3[1]

4: if r1[0] < r3[2] then

5: r1[0]← −r1[0]

6: end if

7: if Path then

8: return (R[0], M[0]) � (bid, continuous output)

9: end if

Table 1. Operations and Instruction Formats

Path-programs encode eight operations in a 3-bit op-code. Memory-programs

use a 4-bit op-code to include 8 extra operations (highlighted). In addition,

memory programs have access to 18 constants: {−0.9, −0.8, ..., −0.1, 0.1, 0.2,

..., 0.9}, included as read-only registers at the end of their private register

bank R (see Algorithm 2).

all of tc ’s programs are executed in order (p2, p3, p4) with �s (t ) as input, and the path-program with
the highest bid (weight) defines the output. In this example p4 had the highest bid, and since p4 is
terminal, the value stored inM2[0] is returned and execution for timestep 1 is complete. At timestep
2 (Figure 5(b)), execution again begins at tc with�s (t + 1) as input. This time, p2 has the highest bid,
and since p2 is not terminal, execution continues at tb where programs p1, p5, and p6 are executed
for�s (t+1). Assuming (terminal) programp5 has the highest bid this time, the value ofM2[0] is again
returned. Note that in timestep 1 no memory-program with a pointer to M2 was executed, thus the
output (M2[0]) could only contain a value written from a previous timestep. However, at timestep
2 p1 is a memory-program with a pointer to M2 and thus p1 may have updated the value of M2[0]
prior to it being returned by p5. This example illustrates that the subset of teams/programs that
require execution is dynamically selected at runtime based on the current input sample and the
content of stateful memory. This has two important implications: (1) Teams are free to specialize
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Fig. 5. Determining the output of a TPG agent in the structural memory model. Execution at each timestep
begins at the root team (tc ) and continues until a terminal path-program is selected. The subset of the
program graph that requires execution is dynamically selected at runtime and may differ in each timestep
(highlighted in black). See Section 3.2 text for a detailed walk-through of this example.

on particular aspects of the problem and may be switched in and out of the model as needed; and
(2) Program graphs can dynamically select inputs and stateful memory registers that are relevant
to the current state observation (i.e., inputs and memory registers indexed by programs along
the active path) while ignoring inputs/memories that are not important at the current point in
time. This is conceptually similar to the modular structures and attention mechanisms explored by
Goyal et al. [2019], in which these properties where shown to improve generalization in dynamic
memory problems. However, in that case the total number of “modules” per solution required
prior specification, as did the number of “active” modules at any point in time. In this work, we
are specifically interested in how these model characteristics can emerge from an open-ended
evolutionary process.

3.3 Experimental Methodology

Our hypothesis is that emergent modularity in TPG (Section 2) combined with the temporal mem-
ory framework outlined in Section 3.1 can support multi-task time-series prediction. Specifically,
multi-task learning implies that a single evolutionary run simultaneously develops: (1) Indepen-
dent specialist solutions for each task; and (2) Multi-task generalists that adaptively recombine
multiple previously-independent specialists into a hierarchical structure that exhibits a high level
of competency in multiple tasks, as in compositional evolution [Watson and Pollack 2005]. This
section outlines the components of the evolutionary framework that specifically support multi-
task learning, adapted from an earlier study under multi-task reinforcement learning (Section 7 of
Kelly and Heywood [2018b]).

3.3.1 Datasets. Our dataset preparation matches that in Turner and Miller [2017]. All three
time-series datasets are univariate and contain 1,100 samples normalized to the interval [0, 1].
The fitness function measures how well solutions recursively predict the next 50 samples from
t50, t100, ..., t950. Thus, solution fitness is the MSE over 950 predictions in total. A validation pro-
cedure measures how well each solution recursively forecasts beyond the horizon used during
training. Specifically, models are used to predict the next 100 samples starting from t100, t200, ...t900.
MSE over the last 50 predictions from each validation set (a total of 450 predictions) is used as
the validation score. To obtain a final test score, the single program graph with the best validation
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score (over all generations)7 is used to predict the next 100 samples from t1000 (i.e., the model is
primed with samples �s (t950...t999).

3.3.2 Task switching. Each new program graph is evaluated on all three tasks as soon as it
appears in the population. However, for each consecutive block of ten generations, only one time-
series dataset is selected with uniform probability to be the active task. Fitness for a program graph
in any given generation is the MSE with respect to the single active task. Thus, selective pressure
is only explicitly applied for one task at a time. However, switching the active task at regular
intervals throughout evolution means that an individual’s long-term survival is dependent on its
ability to operate in all tasks.

3.3.3 Elitism. There is no multi-objective component in the fitness function. However, elitism
is used to ensure the population as a whole contains specialist policies for each task as well as gen-
eralist, or multi-task, policies. Specifically, the five program graphs with the best training fitness
in each task are protected from deletion, regardless of which task is currently active for selection.
However, this simple form of elitism does not protect multi-task policies, which may not have
the highest score for any single task, but are able to perform relatively well on multiple tasks. A
simple form of multi-task elitism identifies five elite multi-task teams in each generation using the
following two-step procedure:

(1) Normalize each root team’s fitness on each task relative to the rest of the current root
population. Normalized score for team tmi on task tj , or scnorm (tmi , tj ), is calculated as
(sc (tmi , tj ) − scmin (tj ))/(scmax (tj ) − scmin (tj )), where sc (tmi , tj ) is the mean score for team
tmi on task tj and scmin,max (tj ) are the population-wide min and max mean scores for task
tj .

(2) Identify the multi-task elite individuals as those with the highest minimum normalized
fitness over all tasks. Relative to all root teams in the current population, R, the elite
multi-task team is identified as tmi ∈ R | ∀tmk ∈ R : min(scnorm (tmi , t {1..n } ) >
min(scnorm (tmk , t {1..n } ), where min(scnorm (tmi , t {1..n } )) is the minimum normalized score
for team tmi over all tasks and n denotes the number of tasks. Note that this process ranks
teams by how well they perform at their weakest task and selects the five teams with the
best worst-case performance.

Thus, in each generation, elitism identifies 5 champion program graphs for each task and 5 multi-
task champions, for a total of 20 elite program graphs that are protected from deletion in that
generation.

3.3.4 Parameterization. Compared to the single-task time-series prediction with TPG described
in Kelly et al. [2020], the most significant parameter change under multi-task learning (TPG-MT)
is the number of root teams to maintain in the population, Rsize , which we reduce to 180 (from
360). With fewer root teams to evaluate in each generation, more generations (and more task
switching cycles) are possible within a fixed computational budget. Table 2 provides a complete list
of learning parameters. All evolutionary runs are performed on a shared cluster with a wall-clock
computational limit of 4 h per job. We perform 20 independent runs. At intervals of 100 generations,
the entire population is validated as described in Section 3.3.1. Test policies are identified from the
validation process using the steps outlined in Section 3.3.3 (i.e., 1 specialist for each task and 1
multi-task generalist).

7Experiments are run on a shared cluster with wall-clock computational limit of 4 h per job. Each run was allowed to

proceed for as many generations as possible within that time.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 1, No. 3, Article 11. Publication date: August 2021.



11:18 S. Kelly et al.

Table 2. Parameterization of Team and Program Populations

Team population
Parameter Value Parameter Value

Rsize 180 Rдap 50% of Roots

pmd ,pma 0.7 ω 10
pmm 0.2 pmn ,pms 0.1
pmo 0.5 px 0

Program population
Parameter Value Parameter Value

Size of reg. bank R 8 maxProgSize 100
Size of reg. bank M 8 patomic 0.5
pmDelete ,pmAdd 0.5 pmMutate ,pmSwap 1.0

For the team population, pmx denotes a mutation operator in which: x ∈ {d, a } are the

prob. of deleting or adding a program, respectively; x ∈ {m, n, s } are the prob. of

creating a new program, changing a path-program’s action pointer (leaf or team), and

changing a program’s shared memory pointer, respectively. pmo is the prob. of changing

a program’s position in the team execution order. ω is the max initial team size. No team

crossover is used here, i.e., px = 0. For the program population, pmx denotes a mutation

operator in which x ∈ {Delete, Add, Mutate, Swap } are the prob. for deleting,

adding, mutating, or reordering instructions within a program. patomic is the

probability that a modified action-pointer for a path-program will be atomic (leaf).

3.4 Results

3.4.1 Comparison Algorithms. The structural memory model is benchmarked in multi-task re-
cursive forecasting by comparing its prediction accuracy with 7 alternative recursive forecast-
ing algorithms over the 3 datasets outlined in Section 3.3.1. Turner and Miller [2017] estab-
lished the performance of common statistical and machine learning methods such as Autore-

gressive Integrated Moving Average (ARIMA) and a Multi-layer Perceptron (MLP), more
complex methods such as Recursive Cartesian Genetic Programming (RCGP), and a very re-
cent approach to neural architecture search, or Recursive Cartesian Genetic Programming of

Artificial Neural Networks (RCGPANN). In addition, we include results for Nonlinear Autore-

gressive Neural Network (NARNET) and Long Short-term Memory (LSTM) from the Matlab
Deep-learning Toolbox.8 Finally, TPG-CM [Kelly et al. 2020], our evaluation of TPG’s structural
memory model in single-task time-series forecasting, is also included. These represent a breadth
of modern time-series forecasting algorithms.

The evolutionary methods (RCGP, RCGPANN, and TPG) all perform a search over the struc-
ture of potential prediction machines, adapting the model complexity through interaction with
each time series. Conversely, the more standard neural network machine learning methods (MLP,
NARNET, and LSTM) require that structural properties of the network (i.e., number of hidden lay-
ers and number of nodes in each layer) be specified prior to training. Furthermore, the error back
propagation algorithms used to train these networks require that correct input-output pairs be
known for each prediction, thus the networks cannot be trained directly under recursive forecast-
ing in which only a portion of the actual time series is available as input (50 samples, or one-half
of each training slice; see Section 3.3.1). Turner and Miller [2017] propose a training methodol-
ogy to address these issues, which is adopted here. First, we perform a simple architecture search

8https://www.mathworks.com/products/deep-learning.html.
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over networks with 1 and 2 layers and 5, 10, 20, and 50 neurons in each layer. Thus, 8 unique
network architectures are trained in parallel for 1000 epochs using one-step-ahead prediction on
the training set (the first 1,000 samples in each dataset). After each training epoch, the networks
are evaluated on the validation set using recursive forecasting. That is, the network is evaluated
on how well it recursively predicts the next 100 samples from t = 100, t = 200, ..., t = 900 (when
given the previous 50 samples as input for priming). The single network configuration with the
best validation score after any epoch is then returned as the final trained network. This process
filters out any networks that may have overfit during training.

Finally, two important distinctions between TPG and the compared methods should be empha-
sized. First, all methods except TPG and LSTM employ some type of pre-specified sliding-window
(autoregressive) state representation (see Section 3). In contrast, TPG and LSTM observe only 1
input at a time, and thus rely entirely on memory to encode temporal properties of the time series.
Second, all methods except TPG-MT learn a solution for each time series independently, while
TPG-MT builds single-task solutions for all three time-series and multi-task solutions simultane-
ously from a single evolutionary run.

3.4.2 Single-task Test Performance. Figure 6 provides test MSE for champion single-task pro-

gram graphs in our multi-task experiment (TPG-MT), along with seven alternative recursive
time-series prediction algorithms outlined in Section 3.4.1. Given that the experimental method-
ologies differ significantly, Figure 6 is not meant to imply a definitive ranking. The goal of this
comparison is to confirm that single-task solutions discovered by TPG-MT are generally compet-
itive with state-of-the-art approaches to recursive time-series forecasting. Indeed, TPG-MT pro-
duces program graphs for the Sunspots datasets that improve on the mean MSE of all compared
approaches, while the specialist TPG-MT solution for the Laser and Mackey-Glass datasets rank
fourth and third, respectively, of eight compared algorithms. Kelly et al. [2020] provide addition
behavioural analysis of TPG-CM (i.e., single-task TPG). Having established that TPG-MT can still
produce competitive single-task solutions, the next section explores the test performance of multi-

task program graphs capable of predicting more than one time series.

3.4.3 Generalist Test Performance. Figure 7 reports the test performance for the best multi-task
program graph discovered for every combination of the three time-series tasks considered in this
work (i.e., four unique program graphs). The MSE for each multi-task generalist is compared to
the mean MSE of each single-task approach listed in Figure 6. For example, the best three-task
solution from TPG-MT, Figure 7(a), achieves an MSE that is better than the single-task mean of
all compared approaches on Laser, all but LSTM on Sunspots, and ranks in the middle of all com-
parison algorithms on Mackey-Glass. The best two-task solutions are shown in Figures 7(b), 7(c),
and 7(d). The two-task program graphs consistently rank in the top three of eight comparison
(single-task) algorithms. If multiple related tasks are learned together, then experience gained in
one task may improve learning in the another, i.e., transfer learning [Kelly and Heywood 2018a].
Conversely, this study specifically identifies three unrelated time-series tasks that should be chal-
lenging to learn simultaneously. As such, the multi-task results presented in Figure 7 are promising
even when they do not quite match the scores achieved by single-task solutions.

To confirm the importance of hierarchical models in the multi-task recursive forecasting task,
we also include results for a version of TPG parameterized withpatomic = 1.0 (SBB-MT in Figure 7).
In this case, TPG’s ability to construct program graphs is disabled, and all evolved prediction ma-
chines will take the form of a single team of programs. This increases the forecasting error in every
combination of tasks. However, hierarchical model building provides the greatest benefit under the
three-task scenario, Figure 7(a). In the next section, we investigate how multi-task program graphs
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Fig. 6. Test results for single-task recursive time-series forecasting. Points indicate mean and min MSE on
test data over 50 independent runs for each method. TPG-MT builds specialized solutions for all three time-
series tasks simultaneously from a single set of 50 runs. All other methods learn each task independently
from scratch (i.e., 50 runs are performed for each task). Results for ARIMA, MLP, RCGP, and RCGPANN are
from [Turner and Miller 2017]. Results for TPG-CM are from [Kelly et al. 2020]. Note that RCGP performed
so poorly on the Sunspots time series that its mean MSE is off the chart.

evolve and how emergent modularity/hierarchy in temporal memory structures specifically sup-
ports adaptation in this dynamic environment with multiple disparate timescales.

3.4.4 Training and Development. Figure 8 plots developmental properties of the TPG-MT run
that produced the best three-task generalist (Figure 7(a)). Fitness for the elite specialist in each
task is shown in Figure 8(a). While the most significant improvement takes place between gener-
ations 0 and 2,000, progress continues in all tasks throughout the duration of the run. Figure 8(b)
plots the development of hierarchical complexity for these specialist policies as measured by the
number of teams appearing within each program graph. Note that changes in fitness are typi-
cally correlated with transitions in hierarchical complexity. Program graphs often benefit from
subsuming additional teams, but the correlation between changes in hierarchical complexity and
fitness can also be neutral or negative. In either case, adaptively recombining multiple indepen-
dent teams into hierarchical structures, or compositional evolution, clearly plays a significant role
in model building with TPGs. Developmental data for the single multi-task generalist appears in
Figures 8(c) and 8(d). Note that generalist implies that all three fitness curves in Figure 8(c), as well
as the complexity curve in Figure 8(d), are derived from the same program graph. Compositional
evolution appears to also play a critical role in the development of generalists. For example, many
large and small changes in hierarchical complexity between generations 0 and 1,000 result in sig-
nificant fitness fluctuations, but overall improvement in all tasks. The hierarchy seems to stabilize
at generation ≈ 900. From there on, smaller hierarchical transitions result in relative fitness trade
offs throughout evolution. Interestingly, the champion generalist policy graph at generation 5,000
contains ≈ 33 teams (Figure 8(d)), indicating that it is no more complex than any of the specialist
program graphs (Figure 8(b)).

3.4.5 Solution Analysis. Figures 9 and 10 show example test behaviours for specialist and gener-
alist program graphs produced from a single evolutionary run. That is, the data for each benchmark
in Figure 9 is the result of an independent agent, while the data in Figure 10 is the result of one
agent capable of recursively forecasting two unrelated time series. Note that recursive forecasting
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Fig. 7. TPG-MT multi-task test performance. MSE for ARIMA, MLP, RCGP, RCGPANN, NARNET, and LSTM
are the mean over 50 single-task runs in each time-series task. That is, each method is trained from scratch
for each task. (Also listed in Figure 6). Results for TPG-MT are for the single best multi-task program graph
for each combination of tasks. SBB-MT is TPG parameterized with patomic = 1.0. In this case, TPG’s ability
to construct team hierarchies is disabled and all evolved prediction machines will take the form of a single
team of programs. For TPG-MT and SBB-MT, all 4 multi-task program graphs were evolved simultaneously
from a single set of 50 runs. The dotted line connecting points indicates that the MSE on each time series
is achieved by the same (multi-task) program graph. Note that RCGP preformed so poorly on the Sunspots
time series that its MSE is off the chart.

means that all test forecasts are produced without observing any of the 100 test points. That is,
once the model is primed (Section 3.3), all 100 predictions are generated entirely by feeding the
model’s output at ti back to its input at ti+1. This feedback signal, along with the content of stateful
memory registers at ti+1, is the only information available to generate a prediction for ti+2. As such,
the multi-task forecaster in Figure 10 effectively uses the priming stage to discriminate between
two independent signals and accumulate enough information in memory to trigger a recursive
forecast.

Since no autoregressive state is provided, each program graph must define a mechanism for en-
coding previous observations within stateful memory registers, and recalling or overwriting these
memories as required. Essentially, each program graph defines an embedding dimension that is
adapted to the characteristics of the particular dataset(s) observed during training. The predic-
tion at each timestep requires traversing one path through the program graph, where each team
along the path will read/write to a unique set of stateful memory registers. Thus, the time point
at which stateful memory registers are overwritten or left to accumulate is selected based on the
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Fig. 8. TPG-MT training fitness and hierarchical development. Panels (a) and (b) represent data from the
best single-task specialist solutions in each task. Panels (c) and (d) show data for the single best multi-task
generalist.

current input as well as the content of stateful memory. As the execution path changes over time,
the solution’s embedding dimension also becomes dynamic. In particular, the “age” distribution
of memories accessed at any point in time effectively defines a dynamic temporal window. For
example, in Figures 9 and 10, “Memory Window” depicts the agent’s memory timespan at each
timestep during test. The memory windows for time t1 to t100 are stacked vertically along the Y-
axis. Each horizontal line depicts the window width from the newest memory accessed at time t
(right-hand-side) to the oldest memory accessed at time t (left-hand-side). Notice how the agents
exhibit a unique pattern of dynamic memory access for each time series, and how the general rate
of change in the target data is reflected in the agent’s memory access. By contrast, our approach
is entirely emergent.

Figures 9 and 10 also show how the computational complexity of program graph execution is
a dynamic property. Interestingly, even though the champion program graphs may subsume up
to 60 teams per graph (see Figures 8(b) and 8(d)), typically only one to nine teams are visited per
timestep under test, and the rate of path switching again correlates with the target data and dy-
namic memory window. Naturally, each team executes a unique subset of programs, each with a
variable length list of instructions. Dynamic runtime complexity improves the efficiency of agent
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Fig. 9. Example test behaviour for three specialist program graphs produced from a single TPG-MT run. X-
axis in all plots indicates timesteps. Program intron removal is performed prior to execution, thus instruction
counts are for effective instructions only.

Fig. 10. Example test behaviour for a program graph capable of recursive prediction in the Sunspots and
Laser datasets (see Figure 7(c)). X-axis in panels (a) and (b) indicates timesteps. Instruction counts are post
intron removal. Panel (c) shows the program graph associated with these results. Each node represents one
team of programs. Green and blue nodes are used only for Sunspots and Laser, respectively, i.e., specialist
teams. Black and gray nodes are used for both datasets, i.e., generalist teams.

deployment when averaged over many timesteps. This is especially significant as complex (tem-
poral) problems call for increasingly complex agents, as will be investigated in Section 4.

Figure 10(c) shows the multi-task program graph capable of recursively forecasting the Sunspots
and Laser time series with an MSE that is comparable to all single-task methods (Test data for this
graph is reported in Figures 10(a), 10(b), and 7(c)). Each node in the graph represents one team of
programs. In total, the graph uses only nine teams during test for the Sunspots and Laser bench-
marks, and thus the structure and runtime complexity of this multi-task graph is no more than
any of the specialist agents in Figure 9. Furthermore, a task decomposition within the graph is
apparent, as it contains specialized teams that are used only for Sunspots (green) or Laser (blue),
as well as generalist teams that contribute to forecasting in both environments (black, gray). The
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generality of this solution comes at the cost of some prediction accuracy, as its MSE on each task
is worse than that of the specialist solutions. However, there is also a significant advantage for
multi-task behaviours in real-world environments. In health care, for example, multiple clinical
prediction tasks with continuously shifting conditions are routinely performed in parallel, and
having a generalized prediction machine that can handle multiple tasks while also modeling cor-
relations between tasks distributed in time is highly advantageous [Harutyunyan et al. 2019].

4 BENCHMARKING OF A PROBABILISTIC MEMORY MODEL

Section 3 demonstrates that the TPG can be extended to support an incremental model of indexed
memory. In this section a completely different approach is taken in which indexed memory is
available from the outset, but there is only one instance of indexed memory across the entire pop-
ulation of TPG agents. This means that indexed memory represents a “communication medium,”
so explicitly establishing a common view of internal state as experienced by all TPG agents. In ad-
dition, write operations are probabilistic, with the content of the writing program’s registers being
distributed across the common memory to simulate the properties of long- and short-term mem-
ory. Such a model of memory has previously been shown to be capable of supporting the emergent
discovery of navigation behaviours under “deathmatches” in ViZDoom tournaments [Smith and
Heywood 2019a] and Dota 2 one-on-one competitions [Smith and Heywood 2019b, 2020]. The
ViZDoom environment results in agents experiencing state from a high-dimensional first-person
three-dimensional perspective and will be returned to in this work, i.e., multiple partially observ-
able properties exist.

The model of memory developed here is motivated by an underlying desire to operate in high-
dimensional state spaces. In particular�s represents a N = 320 × 240 = 76, 800 dimension pixel space
(Section 4.2), or 75 times larger than that appearing in typical image classification benchmarks
such as CIFAR.9 However, pixel spaces from video input are also highly redundant. With pixels in
the same spatial and temporal locality describing similar content. Thus, unlike the recursive time-
series forecasting tasks of Section 3 (dimension N = 1) where the chaotic nature of the underlying
process results in a lot of sensitivity to specific values of input state, the visual RL task is consid-
ered less sensitive to the value of particular input pixels. However, to capture state across such a
large state space, we cannot assume that single programs index all the state space (a given under
Section 3). Instead, we provide TPG with one instance of indexed memory, �m, that all programs
may read from/ write to. In effect forcing a common view of (internal) state where the dimension
of indexed memory is very much lower than the state space (| �m | << D).

In the following, Section 4.1 develops the proposed probabilistic model of indexed memory. Prop-
erties of the ViZDoom benchmarking task are outlined (Section 4.2) after which two ViZDoom
tasks are characterized: Take Cover (Section 4.3) and Pathfinding (Section 4.4). The former is used
to conduct an ablation study (Section 4.6) and the latter represents a large scale challenge for mem-
ory (Section 4.7). Section 4.5 defines the common TPG parameterization assumed throughout.

4.1 Probabilistic Indexed Memory Model

Each TPG program is capable of stateful operation, thus under a linear GP representation
(Figure 1(b)) register values are not reset after execution. Let 〈pi (t ) : R〉 denote the value of each of
the Rmax registers associated with program i at interaction t with the environment. Thus, in a non-
Markovian task, 〈pi (t ) : R〉 potentially carries useful information between instances of program
execution. That said, register state has two basic limitations: (1) any instruction (from the same
program) can modify R, making it more difficult to retain long term properties (high likelihood of

9https://www.cs.toronto.edu/~kriz/cifar.html.
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Fig. 11. Probabilistic Indexed Memory Model. Indexed memory is organized as Rmax × L locations, where
Rmax is the number of registers a program may manipulate (see Figure 1(b)). 11(a) Write operations:
write(R) are probabilistic (Algorithm 3). The process can be visualized as distributing the value of a specific
register R[i] across L columns of indexed memory according to probability distribution Pwrite . Equivalently,
the R register values are written to column j with probability pwrite . 11(b) Read operations: R[i] = Mem[j]
assume a “column major” format in which the L sets of Rmax memory locations are concatenated into a
single vector of indexed memory.

disruption), and (2) 〈pi (t ) : R〉 is specific to each program, thus it is not possible to pass “memory”
between the multiple programs that make up TPG individuals.

Indexed memory is synonymous with the manner in which a CPU accesses “global” memory, i.e.,
with read/write instructions specifying an address. Previous research has considered the role of in-
dexed memory in the evolution of basic data structures [Langdon 1998; Teller 1994] and reviewed
memory models assumed for GP and neural networks [Smith and Heywood 2020]. Indexed mem-
ory was associated with the evolution of “mental models” for navigation within a 4× 4 grid world
[Brave 1996]. A two phase evolutionary cycle was necessary, with cycle 1 only writing content
and cycle 2 rewarded for reading back the relevant content. Such a two cycle process assumes that
the agent is able to navigate the environment in the first cycle. However, for the tasks addressed
in this work, memory is a pre-requisite for navigation. Indexed memory models have also been
proposed for use with robot controllers, e.g., Andersson et al. [1999]. In this case, a performance
measure was needed to define what memory content was actually saved as well as the criterion
for replacement. Moreover, each write operation wrote the entire state space to memory. Neither
would be feasible in the task environments considered here.

A theme developed further by our approach is the concept of retaining a single “instance” of
indexed memory [Spector and Luke 1996]. This implies that the state of indexed memory, �m(t ),
is never reset. Thus, each TPG agent inherits the indexed memory state as left from the previous
agent’s interaction. Moreover, indexed memory is never reset between generations. Our motiva-
tion is to ensure that all agents evolve a common/shared concept for what constitutes useful mem-
ory content, and where to find it. Thus, only at the evaluation of the first TPG agent at the first
generation does �m(0) = NULL.
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Indexed memory, �m, is formulated to provide a probabilistic write operation and indexed read,
Figure 11. We assume that the data written to memory takes the form of the vector of register state,
R, from program pi (t ) at the point where a write instruction is executed, or write(R).10 Thus,
register values are assumed to be a suitable low dimensional encoding for defining what the state
of the agent is, as opposed to �s (t ).

A write operation also has to define where in memory to write data. A probabilistic model is
assumed (Algorithm 3) in which the vector R is distributed across L columns of indexed memory,
Figure 11(a). Thus, from the perspective of a write operation, �m is organized as a Rmax × L matrix.
The probability of the write operation is defined by a probability distribution, Pwrite :

Pwrite

(L
2
± c
)
= α − (β × c)2, (1)

where α is the maximum probability (Figure 11(a)), β is a scaling factor used to ensure that Pwrite

extends over all the entire “width” of memory (i.e., a function of the value for L) such that Pwrite >
0 (Figure 11(a)), and 0 ≤ c < L

2 is the memory column index. Equation (4.1), therefore, implies that

columns in the region of L
2 are written to with a higher probability than columns in the regions

about 0 or L − 1 (Algorithm 3). This defines short- and-long term memory within �m, respectively.

ALGORITHM 3: Write function for Indexed Memory �m. Function called by a write instruction of
the form: write(R) where R is the vector of register content (R[0], . . . , R[Rmax-1]) of the pro-
gram when the write instruction is called. Step 2 identifies the mid point of memory �m, effectively
dividing memory into upper and lower memory banks. Step 3 sets up the indexing for each bank
such that the likelihood of performing a write decreases as a function of the distribution defined
in Step 4. Step 5 defines the inner loop in terms of the set of registers, R[i]∈ R, that can source
data for a write. Step 6 tests for a write to the upper memory bank and Step 9 repeats the process
for the lower bank.

1: function write(R)
2: mid = L

2
3: for offset := 0 < mid do

4: pwrite = α − (β × offset)2 � Define Pwrite (Figure 11(a))
5: for j := 0 < Rmax do

6: if rnd[0, 1) ≤ pwrite then � Upper Memory Bank
7: �m[mid + offset][j] = R[j]
8: end if

9: if rnd[0, 1) ≤ pwrite then � Lower Memory Bank
10: �m[mid − offset][j] = R[j]
11: end if

12: end for

13: end for

14: end function

Read operations assume a memory model in which �m is perceived as a single array of con-
secutively indexed memory locations, Figure 11(b), i.e., a “column major” format. A read instruc-
tion therefore specifies an index to read from and a target register, or R[i] = Mem[j] where
0 ≤ j < Rmax × L. In effect, we anticipate that over time read references to indexed memory will

10We do not preclude the same program performing multiple write (or read) operations.
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learn to distinguish between short- and long-term memory locations, whereas write references
will learn what (register) states are actually useful to record.

In summary, TPG will incrementally stitch together teams into a tangled program graph
(Section 2). To support indexed memory, programs are provided with read and write instructions
(Figure 11). The definition of the write instruction distributes register state,R, across indexed mem-
ory, �m, to support long- and short-term retention of state (Algorithm 3). Finally, by maintaining
a single instance of indexed memory, �m, we encourage initially independent TPG agents to share
a common “view” of indexed memory content. In doing so, we reduce the disruption potentially
resulting from different agents having incompatible indexed memory content, thus offspring are
more likely to be compatible.

4.2 ViZDoom Environment

ViZDoom11 represents an efficient multi-platform game engine [Kempka et al. 2016; Wydmuch
et al. 2019] that presents state from a “semi-realistic” three-dimensional first-person perspective.
Features that make the ViZDoom environment relevant to this research include:

• Visual state, �s (t ), can be defined over a range of pixel vector resolutions, from 160 × 120 =
19,200 pixels to 1,920×1,080 = 2,073,600 pixels. Resolution has an impact on the complexity
of the state space.
• ViZDoom describes a three-dimensional world in which the learning agent is limited to

state described by a first-person perspective alone. Hence, the same object can have multiple
perspectives, and the perception of location is subject to the orientation of the agent. This
makes object recognition much more difficult than in two-dimensional environments and
state information is generally incomplete.
• There are many different types of object to interact with, some of which might be explicitly

hostile, some beneficial, and others neutral. In addition, depending on the level design, the
agent might be required to solve puzzles (e.g., enabling doors by first operating levers or
switches in completely different rooms).
• ViZDoom is parameterized with eight source task scenarios12 as well as “target” tasks such as

Deathmatches. The source tasks can be used individually, or as part of a curricula to develop
agents with enough capability to address target tasks. Moreover, the original commercial (or
custom) level “maps” can be used as the basis for further types of assessment, such as puzzle
solving and complex navigation tasks.
• Light-weight game engine that does not need GPU support for operation [Kempka et al.

2016]. This means that the game can be played at 100’s of frames per second on a CPU.

In this work, we perform two studies using the ViZDoom environment:

• An ablation study using the Take Cover source task. The purpose of the ablation study
is to illustrate the contribution from different components of the TPG framework. Specifi-
cally, TPG will be assessed with and without hierarchical modularity and with and without
probabilistic indexed memory.
• A Level Pathfinding task in which the underlying goal is to navigate a level as fast as

possible. The particular interest to this work is learning to navigate a multi-room labyrinth
while simultaneously addressing interactions with hostile agents, stochastic spawn states
and simple puzzle solving (e.g., key to door association, switch to door activation). The

11https://github.com/mwydmuch/ViZDoom.
12https://github.com/mwydmuch/ViZDoom/tree/master/scenarios.
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ability to navigate was previously shown to appear spontaneously under Deathmatches
when memory was provided [Smith and Heywood 2019a].

In the following, we begin by summarizing the properties of each task and define their respective
performance functions (Sections 4.3 and 4.4). Parameterization of TPG is discussed in Section 4.5,
where this is common to both studies. Results for the ablation and pathfinding studies then appear
in Sections 4.6 and 4.7, respectively.

4.3 Take Cover Task

Take Cover represents a source task environment defined in the ViZDoom game engine [Kempka
et al. 2016]. The task scenario is designed to teach an agent to avoid projectiles, thus the agent
is rewarded for behaviours that maximize its lifespan. The world takes the form of a rectangular
room (so there is no place to “hide”) with the agent spawned in the centre of the longer wall.
Opponents are spawned from random locations on the opposite wall and launch “fire balls” at
the agent. The agent may only move left or right. The longer the agent lives, the more opponents
appear. The reward function is just the count of the number of game frames that the agent survives.
The agent perceives state from a first-person perspective, through sequential frames of video from
the game engine, or a state space of dimension (N ) of 320 × 240 = 76,800 pixels. The initial RGB
pixel format is concatenated into a single 24-bit number [Smith and Heywood 2018].13 This task
is challenging due to the high dimensionality of the state space (which pixels should be indexed
to make a decision), the need to estimate the direction from which projectiles appear, and the rate
of change of such projectiles.

4.4 Pathfinding Task

The Level Pathfinding environment consists of multiple rooms of different size/configuration con-
nected together by corridors and doors (Figure 12). There are also various objects distributed across
the environment, some are potentially beneficial14 and some may or may not be useful, e.g., bar-
rels of acid. Object locations are fixed, but the spawn points for TPG agents are selected randomly
and opponent Bots roam stochastically. Moreover, to succeed in this task, it is necessary to find
‘hidden’ items, such as a key to gain access to new parts of the environment. The comparatively
rare nature of key collecting and using it to open doors makes the task particularly challenging,
even for agents with memory.

For the purpose of this study, two map levels are assumed, Figure 12. State, �s (t ), at any point
in time represents a first-person perspective, thus agents are unaware of the global knowledge as
captured by the maps. As per the Take Cover task, state is defined by the content of a 320 × 240
frame buffer, or a dimension of N = 76,800. A set of eight discrete atomic actions (A) are assumed:
Forward, Backward, Turn Left/Right, Strafe Left/Right, Interact, and Shoot.

4.4.1 Curriculum and Performance Function. Attempting to evolve TPG agents directly against
the Pathfinding task is not possible “tabula rasa,” i.e., the performance objective of Pathfinding is
not sufficient to provide a useful search gradient. Such scenarios therefore require some form of
“curricula” to be constructed that represent simpler tasks. Success against a set of simpler “source”
tasks can then be used to achieve a level of ability before exposing the TPG agent to the “target”
task. Many mechanisms have been proposed for achieving this, including incremental evolution
[Gomez and Miikkulainen 1997], layered learning [Stone 2000], task decomposition [Whiteson
et al. 2005], or task transfer [Kelly and Heywood 2018a; Taylor and Stone 2009].

13Each of the original R-G-B channels is encoded in 8-bits and then concatenated into one 24-bit number.
14Medical kits, two types of armour, and several different forms of weaponry.
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Fig. 12. Topology of environment for pathfinding task. Up to three zones are identified (white, blue, yellow).
Agents are initialized in the white zone. Green regions within a zone identify an acid bath, i.e., negative for
agent health, (a) corresponds to “E1M1: Hanger” level from Doom. Level exit is at co-ordinate (2,900, −4,700)
and (b) corresponds to the ‘E1M2: Nuclear Plant’ level from Doom. The key to exit this zone is at co-ordinate
(1,000, 300). The door to exit the white zone is at co-ordinate (−750, 400), but can only be opened with the
key. The yellow zone contains the level exit at co-ordinate (−350, 2,300) and has two acid baths (green). Blue
zones (secret areas) typically have extra requirements for access and may detract from finding the shortest
path to the level exit.

In this work, a stochastic framework is assumed in which a “bag,” B, is defined, consisting
of the eight source tasks15 from ViZDoom.16 A source task is selected stochastically (without re-
placement) from B and fitness expressed in terms of performance over the last three source tasks
experienced by the agent [Smith and Heywood 2018]. Once Max. Bag iterations through the en-
tire set of B source tasks has been performed, the target Pathfinding task is introduced and fitness
thereafter only reflects performance on the target task.

The target task takes the form of finding an efficient solution for navigating the level 2 map17

(Figure 12(b)). There are three zones, of which only the white and yellow zones are important
for finding the shortest path through the level. The learning agent is spawned anywhere (at any
orientation) in the start zone and has to find a key before it can open a door to the finish zone. While
in either the start or finish zones a learning agent might gain access to the “blue zones,” which will
only make the task of getting to the exit door (in the finish zone) more difficult. Moreover, the agent
does not have access to the map depicted by Figure 12(b) and the various zones are not identified
by colour. Instead, the TPG-agent is only able to perceive game state through the first-person
perspective, thus has to use memory to facilitate navigation of the task.

Successfully finding the key represents a critical, but rare event, likewise, associating the key
with opening a specific door. In short, success in the Pathfinding task is only possible if the agent
is able to switch between multiple objectives that might well have changing priority through the
course of the navigation task, e.g., surviving might imply avoiding/ shooting opponent Bots, col-
lecting health packs/ shields, avoiding acid baths as well as attempting to navigate different regions
of the level. With this in mind, fitness rewards five specific properties/objectives, of which four
(rkey , rdoor , rexit , rswitch ) can only be satisfied sequentially, as per Algorithm 4. Having satisfied

15Basic, Deadly Corridor, Defend the Centre, Defend the Line, Health Gathering, My Way Home, Predict Position, Take

Cover.
16https://github.com/mwydmuch/ViZDoom/tree/master/scenarios.
17The “E1M2–Nuclear Plant” from the original 1993 release of Doom as designed by John Romero.
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Table 3. Relation between Opcodes and Operands

Opcode Instruction

〈op0〉 ∈ {<} IF R[x]〈op0〉R[y] THEN R[x] = −R[x]
〈op1〉 ∈ {cosine, ln, exp} R[x] = 〈op1〉(R[y])
〈op2〉 ∈ {+,−,÷,×} R[x] = R[x]〈op2〉R[y]

Register-Register instructions index registers alone, or x, y ∈ {0, . . . , Rmax − 1}. A

Register-Input reference uses a different range for the y operand: Register-Input

y ∈ {0, . . . , N − 1}. N is the number of pixels in the input. ln and exp are (protected)

natural logarithm and exponential operators (e.g., absolute value of the operand is

assumed) and NaN is trapped in the case of division.

Table 4. TPG Parameterization Assumed for Pathfinding Tasks

Parameter Value Parameter Value

Team population size 600 Max Team Size 12
Gap (%) 50 Max Instructions per Program 1,024

px 1.0 Max. Bags (Navigation) 50 (25,000)
pd 0.7 Max. Gen (Take Cover) 5,000
pa 0.7 pdel 0.5
pnm 0.2 padd 0.5

patomic 0.5 pswp and pmut 1.0

p denote probabilities of applying different variation operators. Max. Bags is the number of iterations

through the ten source tasks of the training curricula (Section 4.4) before performing Max. Navigation

generations on the navigation task.

the four sequential components, then rt ime ranks the quality of a qualifying solution. Each of the
four sequential objectives has a specific goal criterion, which contributes rmax when satisfied.

Note also that solving rswitch might be considered comparatively easy, whereas rkey and rdoor

might be considered “deceptive.” That is to say, rkey and rdoor only reward minimizing the Eu-
clidean distance (which may lead to dead ends) and ignores other factors such as agent health or
location of opponent Bots. Likewise, rexit ignores the need to “enable” doors by first throwing a
switch and ignores anything to do with survival.

4.5 Parameterization

Programs are expressed in an imperative programming language, or linear GP [Brameier and
Banzhaf 2007], with the specific form of instructions defined by Table 3. A mode bit selects between
one of two addressing modes: Register-Register and Register-Input. Each program has Rmax = 8
registers that are unique to each program. Read and Write instructions are defined independently
(Section 4.1). Write instructions assume a probabilistic model (Equation (4.1)) thus are parameter-
ized by the number of registers per program, Rmax = 8 and number of columns, L (Figure 11(a)).
We assume L = 100, thus | �m | = 800. A maximum probability of writing to memory of α = 0.25
implies that β = 0.01 defines the lowest probability at L = 0 or 99 (i.e., short-term memory is 25
times more likely to be written to than long term memory). A Read instruction assumes the form
R[i] = Mem[j] (Figure 11(b)) with 0 ≤ j < | �m |. Table 4 summarizes the TPG parameters assumed
for this work.

The only differences between the Take Cover and Pathfinding task parameterizations are that
the Take Cover task does not need to switch between multiple source tasks during training
(“bags” in Table 4) before encountering the target task. Thus, for Take Cover there is only ever
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ALGORITHM 4: Overall fitness is the combination of 5 rewards (rt ime , rkey , rdoor , rexit , rswitch ).
There are two parameters: τ (= 10−5) a minimum (e.g., for penalizing suicidal behaviour) and
rmax (= 1,000) representing maximum reward. Function “timeReward” receives argument tepisode ,
i.e., the time the agent has spent within the level in seconds of simulated time. Function “distRe-
ward” receives four arguments: cartesian (x ,y) co-ordinate of the TPG agent; (x ,y) co-ordinate
of the next objective; fitness value for the previous objective; and a boolean (True, False) value
indicating whether the agent satisfied the present objective or not. “Euclid” returns the scalar Eu-
clidian distance between two cartesian co-ordinates: current (x ,y) and target (x ,y)

1: function OverallFitness
2: rt ime = timeReward(tepisode )
3: rkey = distReward(player(x ,y), redKey(x ,y), rt ime , redKeyPickedUp)
4: rdoor = distReward(player(x ,y), redDoor(x ,y), rkey , redDoorOpened)
5: rexit = distReward(player(x ,y), exitDoor(x ,y), rdoor , exitDoorOpened)
6: rswitch = distReward(player(x ,y), lastSwitch(x ,y), rexit , lastSwitchActive)
7: return rt ime + rkey + rdoor + rexit + rswitch

8: end function

9: function timeReward(t)
10: reward = rmax ÷ t
11: if reward < τ then

12: return 0
13: else

14: return reward
15: end if

16: end function

17: function distReward(current (x ,y), target (x ,y), lastReward, condition)
18: if lastReward ≤ 0 then

19: return 0
20: else if condition == True then

21: return rmax

22: end if

23: dist = Euclid(current (x ,y), target (x ,y))
24: reward = rmax ÷max(dist, 1.0)
25: if reward < τ then

26: return 0
27: else

28: return reward
29: end if

30: end function

one task, not a curriculum of multiple tasks, hence the number of task exposures is expressed
as generations rather than “bags.” The Take Cover task also applied the mutation operations
five times per child, where this was observed to accelerate evolution irrespective of the TPG
formulation.18

18Pathfinding study performed before this was discovered.
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Fig. 13. Ablation study test performance on Take Cover task. Violin captures the distribution of all test runs
from each ablation. Inner box plot represents the 25th, 50th, and 75th quartile.

4.6 Results under Take Cover task

The Take Cover task is sufficiently concise yet challenging to enable an ablation study to be per-
formed in which the following scenarios are considered:

• SBB: represents the case of TPG limited to evolving single teams. Modularity is still present,
but the capacity to evolve hierarchical relationships is disabled. This represents the case of
symbiotic bid-based GP, a formulation that was previously demonstrated to be capable of
performing significantly better than GP without modularity under classification [Lichodzi-
jewski and Heywood 2010] and non-stationary streaming data classification tasks [Vahdat
et al. 2015].
• SBB-MEM: adds the probabilistic indexed memory model to SBB.
• TPG: represents the case of TPG without the probabilistic indexed memory model

(Section 2).
• TPG-MEM: adds the probabilistic indexed memory model to TPG 4.1.

Ten independent runs are performed for each ablation and the champion agent then exposed
to 100 test trials in which it is spawned at different points on the wall. Figure 13 summarizes the
resulting test performance (agent lifespan) where larger values are better. The distributions are
sufficiently normal for a Student’s t-test to be applied with significance at the 99% confidence in-
terval supporting a ranking of: TPG-MEM > TPG > SBB-MEM > SBB. In short, going from no
memory to memory provides a 23% (SBB) to 36% (TPG) improvement, whereas supporting hierar-
chical modular relationships provides a 140% (no memory) to 168% (with memory) improvement.

The relative complexity of the respective champion solution can also be characterized, Table 5.
In short, adding memory to SBB did not result in significant increases to the complexity of SBB
solution statistics. Similarly, TPG complexity with and without memory was also for the most
part very similar. The one exception being with regards to the average instructions executed per
decision (last row). This was 47% higher under TPG without memory. Naturally, TPG was always
more complex than the corresponding SBB scenario, although as indicated by the figures for the
best case champion, these could also be simple.

In conclusion, support for hierarchical modularity appears to be important when scaling to high-
dimensional tasks as it provides a mechanism for contextually organizing teams and programs
(e.g., only 4 of 14 teams visited or 28 of 92 programs executed per decision under TPG-MEM).
Memory provides the opportunity to co-ordinate state information globally across their multiple
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Table 5. Solution Complexities under Take Cover Task

Configuration SBB SBB-MEM TPG TPG-MEM

Num. Teams 1 (1) 1 (1) 15.4 (11) 14.4 (10)
Num. Programs 4.8 (4) 6 (9) 101.2 (52) 92.7 (35)

Programs/Team 4.8 (4) 6 (9) 6.8 (4.73) 6.58 (3.5)
Instructions/Program 716.6 (464.75) 698.9 (828) 626.2 (742) 598.8 (862.5)

Instructions/Team 3,571 (1,859) 4,086 (7,452) 4,115 (3,507) 3,932 (3,018)

Median Teams visited/Decision 1 (1) 1 (1) 3.9 (3) 4 (2)
Avg. Programs exe./Decision 4 (4) 6 (9) 30.7 (18) 28 (7)

Avg. Instr./Decision 3,571 (1,859) 4,086 (7,452) 19,647 (11,030) 13,294 (3,283)

Each “value” represents the average over all 10 solutions, parenthesis represents the value for the single best champion in

each ablation. “Configuration” defines the ablation. Rows 2 to 6 represent static properties. Rows 7 to 9 capture dynamic

properties.

Fig. 14. Training fitness of best TPG-agent on (a) 10 source tasks and (b) E1M2 navigation task. Colours in
panel (b) represent different parts of the navigation task being satisfied. Bold back line represents average
performance.

independent modules, thus providing the basis for retaining state information beyond any single
frame. Both properties appear to be beneficial both independently and collectively.

4.7 Results under Pathfinding Task

4.7.1 Training. Training is initially performed against the bag of eight source tasks or training
curricula for 50 iterations of bag content. Figure 14(a) summarizes progress against these source
tasks. Specifically, the performance of the best overall agent is plotted, with bag fitness normal-
ized by the best single TPG-agent on that bag. That is to say, the performance of the best special-
ist agent is used to normalize the performance of the TPG-agent with best average performance
across all 8 source tasks. The underlying curve improves, however, the trajectory for performance
of specific source tasks varies as the TPG-agent with best average performance switches and/or
improvements on some subset of the source tasks improves at the expense of a single source task.

Figure 14(b) illustrates the development of the champion TPG-agent relative to the Pathfinding
fitness function (Algorithm 4) on the E1M2 map (Figure 12(b)). The red key is first successfully
picked up w.r.t. stochastic spawn points anywhere in the white zone (Figure 12(b)) at ≈ 9,600
generation. The key is first successfully used to open the door to enter the yellow zone at ≈ 13,900
generation. The exit door is first discovered at ≈ 19,580 generation and the exit switch at around
generation 20,900. The last ≈ 4,000 generations are used to improve on the path time.
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Table 6. Performance Properties of Top 20 TPG Agents under Level 2 E1M2 Map

Training Avg. Avg. Avg. # Avg. # Avg. # Avg. #
Agent Time Health Ammo. Armour Enemies Barrels Final Final Succ.
Rank (min) Items Items Items Killed Destr. Health Armour Ratio

1 3.04 10 8 6 9 3 80 161 100
3 4.34 10 8 5 5 3 81 157 100
13 4.46 7 6 5 4 5 67 113 100
2 5.81 7 9 5 6 4 80 155 100
7 5.87 10 2 1 2 5 77 151 100
11 7.42 6 3 2 2 5 74 133 100
5 7.66 10 7 3 3 5 83 153 100
4 8.11 14 11 7 5 5 147 158 100

6 5.61 8 8 4 4 5 75 164 95.2
9 7.91 8 5 3 9 5 74 91 95.2

19 5.15 4 2 3 3 4 79 87 90.9
10 8.59 6 6 6 6 5 74 145 90.9

15 5.31 9 2 4 4 4 68 136 87.0
8 6.625 14 6 4 4 5 76 152 87.0

17 4.88 7 2 3 8 4 69 97 83.3
16 6.97 6 3 4 4 5 70 61 83.3
14 7.92 7 4 4 4 5 71 71 83.3
12 8.23 8 6 4 4 4 75 130 83.3
18 8.61 7 4 3 3 4 66 81 83.3

20 5.39 5 4 3 1 3 67 107 74.1

mean 6.395 8.15 5.3 3.95 4.5 4.4 77.65 123.25 91.8
median 6.25 7.5 5.5 4.0 4.0 5.0 74.5 133.0 93.1
StdDev 1.62 2.56 2.57 1.4 2.13 0.74 16.7 31.9 8.2

SD/Mean 25.4% 31.5% 48.5% 35.3% 47.4% 16.7% 21.5% 25.9% 8.35%

All columns reflect the average performance as evaluated across 20 successful navigations of the level. Better Times are

lowest. # Health/Ammo./Armour/Enemies Killed/Barrels Destroyed all reflect counts of items that could be maximized as

part of a strategy. Final Health/ Armour are the average final values of these properties once the agent completes the

level. Larger values are better. Success Ratio is the ratio of successful trials (always 20) to unsuccessful trials. An

unsuccessful trial would be one in which the agent’s health reached zero before exiting the level.

4.7.2 Test on previously seen map. Performance of the top 20 agents from the population with
respect to the previously encountered level 2 map is summarized in Table 6, where “rank” are
identified in terms of training fitness (Algorithm 4). Test conditions take the form of selecting a
spawn point (and orientation) from zone 1 (Figure 12(b)) with uniform probability, and measuring
the simulated time to successfully reach the level exit. The process is repeated until 20 successful
navigations are returned, i.e., some attempts might fail, due to agent health decreasing to zero
before reaching the exit. The performance of the top 20 agents is grouped into sets reflecting the
level of navigation success. Thus, agents with a 100% success ratio solved all 20 initializations
immediately, an agent with a success ratio of 87% needed to experience 23 initializations to return
20 successful level navigations. In the case of each evaluation, memory content is initialized to the
value at the end of training.

In all cases, the fitness function employed during training is the same. However, some agents
might adopt a navigation strategy that collects health packs and armour, resulting in a longer
path, but one that, say, makes use of health packs to correct actions associated with the path taken.
This appears to be the case of the agent with the slowest navigation time at the 100% success ratio
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Fig. 15. Example of paths taken by top four ranked TPG agents in E1M2 Pathfinding task. Start position is
at co-ordinate (0, −300). Key is located at co-ordinate (1,150, 400). The door that can only be opened with the
key is at co-ordinate (−700, 375). Level exit is at co-ordinate (−150, 2,300). Path colour transitions from red
to blue indicate the progression of time.

(agent 4). Conversely, the fastest agent has a much lower final health than agent 4 but also removes
the highest number of opponent bots (9), while also collecting health, ammunition and armour
items.

Some interesting “specialist” agents appear. Agent 7 has a success ratio of 100%, but achieves
this while for the most part ignoring armour entirely. All agents at some level “engage” with acid
barrels, in some cases shooting them. It is difficult to tell whether this is because some of the
opponent agents are also the same colour (green), or if this is part of a navigation strategy (the
location of barrels does not change).

Figure 15 illustrates the specific path used to navigate by agents 1 through 4 for the same spawn
point. Agent 1 was the top ranked agent under both training and test. The agent ignores the “hid-
den” zones and is comparatively direct in the path adopted. Indeed, when it comes to the acid bath
in zone 2, the agent chooses to cross it at the shortest point. Agent 2 wanders around the latter
half of zone 2, even jumping in the acid bath twice, but does immediately collect the health pack
after exiting the bath for the last time. Agent 3 has a particularly direct approach to zone 2, but
spends much more time in zone 1, returning the second ranked navigation time. Agent 4 returns
the longest of the navigation times for the agents with 100% success rate. Some of this appears to
be due to a detour into and out of one of the hidden zone attached to zone 1, and a considerable
amount of time also seems to be spent in the room at co-ordinate (−500, 0). For comparison the
“Par time” for E1M2 is 1 min, 15 s, where this reflects the time of the level designer (John Romero),
plus 30 s,19 whereas the best time of agent 1 was 2.8 min (168 s).

19https://doom.fandom.com/wiki/Par_time.
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Table 7. Structural Properties of Top 20 TPG Agents under Pathfinding Task

Statistic # Teams # Programs # Instructions Prog./Team Instr./Prog. Instr./Team

Mean 156.65 1,302 880,946.6 8.33 676 5,626
Median 158.0 1,306.5 874,773.5 8.42 674.9 5,610.6
Std Dev. 7.1% 13.2% 16.6% 12.1% 10.5% 15.3%

Table 8. Summary of Number of Agent outcomes in the Previously (Unseen)
Level 1 Pathfinding Task

Level 1 Success Death Time Out
Parameterization all agent 1 all agent 1 all agent 1

Initial 41 (10.25%) 4 (20%) 201 (50.25%) 7 (35%) 158 (89.75%) 9 (45%)
Modified 73 (18.25%) 11 (55%) 143 (37.75%) 7 (35%) 184 (46%) 2 (10%)

“all” represents a count over all 20 agents, each initialized 20 times (total of 400 tests). “agent 1” is the contribution of

agent 1 alone (best performing agent under level 2). “Initial” is the parameterization of level 1 as is. “Modified”

re-parameterizes the level to use the same wall/floor texture/colour and switch function as experienced by the agent

under training conditions.

Table 7 provides a summary of the size of the top 20 agents. The first three columns represent
total number of teams/programs/instructions per agent, whereas the last three columns represent
averages at a node or arc level. Note, however, that these are both “static” performance metrics.
To make a decision (map from state-to-action) only a fraction of the TPG agent’s graph need be
evaluated. Supplementary material provides a video of Agent 1 traversing E1M2 and the corre-
sponding path navigation superimposed on the global map. Relative to the static characterization
of TPG complexity (Table 7), there were on average 24 teams visited per decision (of a median of
158), during which 208 of the 1,300 programs were (on average) evaluated.

4.7.3 Test on previously unseen map. Performance is now tested using the previously never
experienced level 1 map (Figure 12(a)). The level 1 map represents a completely different con-
figuration and parameterization than experienced from level 2. Parameters include the layout of
objects (barrels, health packs, opponent Bots, armour) as well as the types of switches used to
activate doors and the texture/colour given to the floors and wall. Given that no prior experience
existed under this parameterization, the level 1 map was modified to provide the same wall/floor
texture/colour as experienced by the agents during training. Likewise, the switches were also up-
dated to ensure continuity of function (e.g., door enabling versus exit door enabling). Note that
the layout of the level is unchanged by either modification.

Table 8 summarizes the overall performance evaluation in terms of the number of times that
agents either successfully navigated to the level exit versus died (e.g., acid bath or hits from an
opponent Bot) versus a session time out (max. of 40 simulated minutes). The most successful agent
is again “Agent 1.” Figure 16 provides two illustrative summaries of the path taken by this agent.
In both cases the agent systematically performs a sweep of a room before “deciding” where to go
next. What differentiates between the length of the episode is that in Figure 16(a) agent 1 found
the switch to open the level exit door immediately, whereas in Figure 16(b) the same agent failed
to recognize the switch. This ultimately resulted in the agent backtracking several rooms before
finally returning to the exit room, where it found the switch, operated it and successfully completed
the level.

Table 9 summarizes statistics from 20 successful trials on the previously unseen E1M1 level by
agent 1 (success ratio of 40%). Given the much longer duration to navigate the level, the lower final
Armour and Health is anticipated. However, there are also less items to accumulate/interact with
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Fig. 16. Agent 1 navigating the previously unseen E1M1 level. Agent is stochastically spawned in left most
room. Level exit is always in room co-ordinate (3,000, −4,900) (a) Illustrates the systematic room-by-room
search that Agent 1 conducts. (b) Illustrates a search that took longer due to the agent doubling back and
repeating some of the search.

Table 9. Performance of Agent 1 on Previously Unseen E1M1 Level 1 Map

Avg. Avg. Avg. # Avg. # Avg. # Avg. #
Metric Time Health Ammo. Armour Enemies Barrels Final Final

(min) Items Items Items Killed Destr. Health Armour

mean 26 11 3 10 3 3 26 4
median 26 11 3 10 4 3 25 4
StdDev 4.88 2.21 0.99 1.63 0.75 1.4 16.25 2.23

SD/Mean 19.0% 21.1% 31.4% 16.6% 22.2% 50% 62.5% 50.8%

Results collected over 20 successful runs. Success ratio was 40%.

in this level than level 2. That said, the average number of Armour Items accumulated per trial is
significantly higher in level 1 than in 2.

5 CONCLUSION

TPG provides the basis for discovering complex systems through emergent modularity, or a divide-
and-conquer approach to model building. Thus, modules are synonymous with programs and are
adaptively coevolved to form the highly-modular hierarchical decomposition of a task. TPG was
originally demonstrated within the context of visual reinforcement learning tasks using the ALE
suite of benchmarks [Kelly and Heywood 2017, 2018b]. In this work, two approaches are pre-
sented in which the original TPG framework (Section 2) is generalized to support: (1) real-valued
actions under partially observable multi-task recursive time-series forecasting tasks or TPG-MT
(Section 3), and (2) visual reinforcement learning tasks requiring the development of multiple skills
over long temporal horizons using a probabilistic indexed memory model (Section 4). The ap-
proaches are distinct and complementary.

TPG-MT introduces multiple types of program/module, those that may read and write to their
own bank of indexed temporal memory, and those that can only read from memory, but define a
real valued action (both can read from external state). The TPG graph emerges as before (care of
action mutation). However, the structure of the TPG graph now also helps to establish the order
in which the state of local banks of memory are read from/written to. We demonstrate for the
first time that such an architecture is sufficient to learn to generate multiple non-stationary time-
series sequences without assuming an autoregressive representation of state. An ablation study
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demonstrates that only when the hierarchical form of modularity central to TPG is provided can
these behaviours emerge.

Conversely, the probabilistic indexed memory model assumes that any program may perform a
read or write to indexed memory. Moreover, the probabilistic definition of write operation results
in direct support for short and long term memory.20 However, there is only ever one instance of
memory shared across all modules. Modules should therefore learn to be “respectful” in their write
operations. As a result, memory acts as a global communication medium between all modules,
otherwise modules themselves would only be aware of their own state. The resulting empirical
evaluation demonstrates for the first time that TPG agents have the capacity to develop strate-
gies for solving a multi-faceted navigation problem that is high dimensional (>76,000), partially
observable, non-stationary and requires the recall of events from long term memory (key-to-door
and switch-to-door association as well as navigation). Moreover, the policy is sufficiently general
to support navigation under a previously unseen task (E1M1 from E1M2). An additional ablation
study demonstrates that: (1) TPG’s hierarchical form of modularity outperforms modularity as de-
fined by teams alone (no hierarchical relationships between modules), and; (2) probabilistic mem-
ory provides significant performance improvements over agents without memory.

Relative to prior work involving genetic programming and modularity (Section 2.3), we make
the observation that the earlier works have for the most part relied on toy tasks that had no in-
dependent assessment for post-training generalization.21 As such these results have not carried
the role of modularity beyond the confines of the specialist GP literature. Additionally, as the abla-
tion studies make clear, the combination of modularity and memory provides a joined mechanism
by which genetic programming may continue to scale. In taking up tasks such as non-stationary
time series, ALE, VizDoom or controllers for benchmarks in robotics, we hope to motivate other
researchers to adopt tasks that can increase the scope of genetic programming benchmarking.

The general flexibility of TPGs, their low computational footprint (CPU rather than GPU)
[Desnos et al. 2021], and the availability of multiple code bases22 provide an opportunity for future
research to be conducted in multiple directions. Streaming data applications might encompass fore-
casting for any number of prediction/detection problems. Research into multi-task and curriculum
learning will continue to scale for the development of TPG solutions to reinforcement learning ap-
plications. Likewise, the development of appropriate code bases that make use of parallel execution
will further decrease application development time. A longer term objective encompasses the com-
bination of multiple forms of memory within one TPG framework. This is not as straightforward
as it might at first appear, because memory introduces feedback loops into (internal) state. The
results of doing so can have unpredictable effects on agent operation, a feature that plays right to
the strength of an evolutionary algorithm like the one discussed here.
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