
The Evolution of Genetic Code in Genetic Programming

Robert E. Keller
Systems Analysis

Computer Science Department
University of Dortmund

D-44221 Dortmund, Germany
keller@icd.de

Phone:+49 231 9700 954

Wolfgang Banzhaf
Systems Analysis

Computer Science Department
University of Dortmund

D-44221 Dortmund, Germany
banzhaf@icd.de

Phone:+49 231 9700 953

category: genetic programming

ABSTRACT
In most Genetic Programming (GP)

approaches, the space of genotypes, that
is the search space, is identical to the
space of phenotypes, that is the solution
space. Developmental approaches, like
Developmental Genetic Programming
(DGP), distinguish between genotypes
and phenotypes and use a genotype-
phenotype mapping prior to fitness eval-
uation of a phenotype. To perform this
mapping, DGP uses a problem-specific
manually designed genetic code, that is a
mapping from genotype components to
phenotype components. The employed
genetic code is critical for the perfor-
mance of the underlying search process.
Here, the evolution of genetic code is
introduced as a novel approach for en-
hancing the search process. It is hy-
pothesized that code evolution improves
the performance of developmental ap-
proaches by enabling them to benefi-
cially adapt the fitness landscape during
search. As the first step of investigation,
this article empirically shows the opera-
tiveness of code evolution.

1 Introduction
Genetic programming (Koza 1992, Banzhaf et al. 1998) is an
evolutionary algorithm that, for the purpose of fitness eval-
uation, represents an evolved individual as algorithm. Most
GP approaches do not distinguish between a genotype, i.e.
a point in search space, and its phenotype, i.e. a point
in solution space. In other words, search space and solu-
tion space are identical. Developmental approaches, how-
ever, like (Banzhaf 1994, Keller and Banzhaf 1996, Koza et

al. 1996, Spector and Stoffel 1996), make a distinction be-
tween the search space and the solution space. Thus, they
employ a genotype-to-phenotype mapping (GPM) since the
behavior of the phenotype defines its fitness which is used
for selection of the corresponding genotype. This mapping is
critical to the performance of the search process:the larger the
fraction of search space that GPM maps onto good phenoty-
pes, the better the performance. Therefore it is of interest to
examine whether a developmental approach can evolve map-
pings along with the ultimately interesting phenotypes.

First, developmental genetic programming (DGP) (Keller
and Banzhaf 1996), an instance of a developmental GP ap-
proach, is introduced as far as needed in the context of this ar-
ticle. The concept of a genetic code as an essential part of the
employed GPM is defined. Second, the principle of the evolu-
tion of GPMs as an extension to developmental approaches is
presented in the context of DGP. Here, the genetic code is sub-
jected to evolution which implies the evolution of the GPM.
Third, the operativeness of this principle is demonstrated on
an easy artificial problem so that the process of code evolu-
tion can be made more transparent. Finally, further research,
especially real-world applicability of code evolution, is dis-
cussed.

2 Developmental genetic program-
ming

All subsequently described random selections of an object
from a set of objects occur under equal probability unless
mentioned otherwise.

2.1 Algorithm
A DGP variant uses a common generational evolutionary al-
gorithm, extended by a GPM prior to the fitness evaluation of
each generation, that is shown below.

creation of random initial generation
GPM (gives phenotypes)
fitness evaluation
(gives fitness values of phenotypes)

while run-termination criterion not met



selection of genotypes
based on their phenotype’s fitness

reproduction or variation
of selected genotypes
(gives next generation)

GPM
fitness evaluation

2.2 Genotype, phenotype, genetic code
The output of a GP system is an algorithm in a certain rep-
resentation. This representation often is a computer program,
i.e. a word from a formal language. The representation com-
plies with structural constraints which, in the context of a pro-
gramming language, are the syntax of that language. DGP
produces output compliant with the syntax defined by an ar-
bitrary context-free LALR(1) (look-ahead-left-recursive, look
ahead one symbol) grammar (Aho 1986). Such grammars
define the syntax of real-world programming languages like
ISO-C (Harbison and Jr. 1995).

A phenotype is represented by a syntactically legal sym-
bol sequence with every symbol being an element of either
a function set

�
or a terminal set � that both underlie a

genetic-programming approach. If, for instance, the syntax
of arithmetic expressions is given, then ����� and � are legal
symbol sequences constructed from the sets

����	 ��
 and
� ��	 �����
 . Thus, the solution space is the set of all legal
symbol sequences.

A codon is a contiguous bit sequence of ����� bits length
which encodes a symbol. In order to provide for the encoding
of all symbols, � must be chosen such that for each symbol
there is at least one codon which encodes this and only this
symbol. For instance, with � ���

, the codon ����� may encode
the symbol � , and ��� symbols at most can be encoded.

A genotype is a fixed-size codon sequence of �����
codons, like ��������������� �!����� with size � �#"

. By defini-
tion, the leftmost codon is codon 0, followed by codon 1 up
to codon �%$&� .

A genetic code is a codon-symbol mapping, that is, it de-
fines the encoding of a symbol by one or more codons. An
example is given below with codon size 3.

000 a
001 b
010 c
011 d
100 �
101 '
110 $
111 (

2.3 Genotype-phenotype mapping
In order to map a genotype onto a phenotype, the genotype
gets transcribed into a raw sequence of symbols, using a ge-
netic code. Transcription scans a genotype, starting at codon
0, ending at codon �)$�� .

The genotype ���*�����*�+��� �,� ��� , for instance, maps onto
“ '-'.�/( ” under the above sample code.

A symbol that represents a syntax error at a given position
in a given symbol sequence is called illegal, else legal. A ge-
notype is mapped either onto a legal or, in the case of “ '0'��/( ”,
illegal raw symbol sequence. An illegal raw sequence gets re-
paired according to the grammar, thus yielding a legal symbol
sequence. To that end, several repair algorithms are conceiv-
able. A complex mechanism, called “replacing repair”, is pre-
sented in (Keller and Banzhaf 1996), which replaces an illegal
symbol by a computed legal symbol.

A comparatively simple mechanism is introduced here,
called “deleting repair”. Intron splicing (Watson et al. 1992),
that is the removal of genetic information which is not used
for the production of proteins, is the biological metaphor be-
hind this repair mechanism. Deleting repair scans a raw se-
quence and deletes each illegal symbol, which is a symbol
that cannot be used for the production of a phenotype, until
it reaches the sequence end. If a syntactic unit is left incom-
plete, like “ �*$ ”, it deletes backwards until the unit is com-
plete. For instance, the above sample raw sequence gets re-
paired as follows: “ '1'��2(43 '5�/(63 �/( ”, then � is
scanned as a legal first symbol, followed by ( which is also
legal. Next, the end of the sequence is scanned, so that “ �/( ” is
recognized as an incomplete syntactic unit. Backward delet-
ing sets in and deletes ( , yielding the sequence � , which is
legal, and the repair algorithm terminates. Note that deleting
repair works for arbitrarily long and complex words from any
LALR(1) language.

If the entire sequence has been deleted by the repair mecha-
nism, like it would happen with the phenotype “ �!�!�5� ”, the
worst possible fitness value is assigned to the genotype. This
is appropriate from both a biological and a technical point
of view. In nature, a phenotype not interacting with its en-
vironment does not have reproductive success, the latter be-
ing crudely modeled by the concept of “fitness” in evolution-
ary algorithms. In a fixed-generation-size EA, like the DGP
variant used for the empirical investigation described here, an
individual with no meaning is worthless but may not be dis-
carded due to the fixed generation size. It could be replaced,
for instance, by a meaningful random phenotype. This step,
however, can be saved by assigning worst possible fitness so
it is likely to be replaced by another individual during subse-
quent selection and reproduction.

The produced legal symbol sequence represents the pheno-
type of the genotype which has been the input to the repair
algorithm. Therefore, theoretically, the GPM ends with the
termination of the repair phase. Practically, however, the le-
gal sequence must be mapped onto a phenotype representa-
tion that can be executed on the hardware underlying a GP
system in order to evaluate the fitness of the represented phe-
notype. This representation change is performed by the fol-
lowing phases.

Following repair, editing turns the legal symbol sequence
into an edited symbol sequence by adding standard informa-



tion, e.g. a main program frame enclosing the legal sequence.
Finally, the last phase of the mapping, which can be com-

pilation of the edited symbol sequence, transforms this se-
quence into a machine-language program processable by the
underlying hardware. This program is executed in order to
evaluate the fitness of the corresponding phenotype. Alter-
natively, interpretation of the edited symbol sequence can be
used for fitness evaluation.

Note that the presented GPM, using a given genetic code,
indeed defines a mapping from genospace into phenospace,
that is, each genotype gets mapped onto exactly one pheno-
type. This property is important, since otherwise, during a
DGP run, a genotype could get associated with at least two
different phenotypes and thus with two potentially different
fitness values over time. This would render even static prob-
lems dynamic which is detrimental to the search process per-
formance.

2.4 Creation, variation, reproduction, fitness
and selection

Creation builds a fixed-size genotype as a sequence of �
codons random-selected from the codon set. Variation is im-
plemented by point mutation where a randomly selected bit of
a genotype is inverted. The resulting mutant is copied to the
next generation. Reproduction is performed by copying a ge-
notype to the next generation. An execution probability � of a
reproduction or variation operator designates that the operator
is randomly selected from the set of variation and reproduc-
tion operators with probability � . An execution probability is
also called a rate.

Fitness-based tournament selection with tournament size
two is used in order to select an individual for subsequent
reproduction or variation. Adjusted fitness (Koza 1992) is us-
ed as fitness measure. Thus, all possible fitness values exist
in � �*����� , and a perfect individual has fitness value 1.

3 Genetic-code evolution
3.1 Biological motivation
GPM is a crude metaphor of protein synthesis that produces
proteins (phenotype) from DNA (genotype). In molecular bi-
ology, a codon is a triplet of nucleic acids which uniquely
encodes one amino acid, at most. An amino acid is a part of a
protein and thus corresponds to a symbol.

Like natural genotypes have evolved, the genetic code has
evolved, too, and it has been argued that selection pressure
works on code properties necessary for the evolution of or-
ganisms (Maeshiro 1997). Since artificial evolution gleaned
from nature works for genotypes, the central hypothesis in-
vestigated here is that artificial evolution works for genetic
codes, too, producing such codes that support the evolution
of good genotypes.

3.2 Technical motivation
In DGP, the semantics of a phenotype is defined by its ge-
notype, the specific code, repair mechanism and semantics

of the employed programming language. Especially, differ-
ent codes mean different genotypic representations of a phe-
notype and therefore different fitness landscapes for a given
problem. Finally, certain landscapes differ extremely in how
far they foster an evolutionary search.

Thus, it is of interest to evolve genetic codes during a run
such that the individuals carrying these codes find themselves
in a beneficial landscape. This situation would improve the
convergence properties of the search process. In order to
investigate and analyze the feasibility of code evolution, an
extension to DGP has been defined and implemented, which
will be described next.

3.3 Individual genetic code
So far, DGP variants used a global code, that is all genoty-
pes are mapped onto phenotypes by use of the same code.
This corresponds to the current situation in organic evolution,
where one code, the standard genetic code, is the basis for the
protein synthesis of practically all organisms with very few
exceptions like mitochondrial protein synthesis.

If evolution is expected to occur on the code level, the nec-
essary conditions for the evolution of any structure must be
met:

There have to be

� a structure population

� reproduction and variation of the individuals

� a fitness measure

� a fitness-based selection of individuals

A code population can be defined by replacing the global
genetic code by an individual code, that is, each individual
carries its own genetic code along with its genotype.

During creation, each individual could receive a random
code. Actually, for the empirical runs, a user-defined code is
supplied during creation for experimental reasons to be ex-
plained later. Two instances of random codes are shown:

000 a '
001 b (
010 c '
011 d �
100 � �
101 ' �
110 $ �
111 ( �

Note that a code, since it is defined as an arbitrary codon-
symbol mapping, is allowed to be redundant with respect to
to certain symbols. It may map more than one codon onto the
same symbol. This is not in contradiction to the role of a code,
since also a redundant code can be used for the production of a
phenotype. Indeed, redundancy is important, as the empirical
results will show.



3.4 Variation, reproduction, code fitness and
selection

A point code mutation of a code is defined as randomly se-
lecting a symbol of the code and replacing it by a different
symbol random-selected from the symbol set. This assumes
the existence of at least two different symbols. Point code mu-
tation has an execution probability like point mutation of an
individual. Reproduction of a code happens by reproducing
the individual that carries the code.

The same goes for selection. This corresponds to a simple
concept of “quality” of a code: since a code carried by an in-
dividual defines the fitness of the individual’s phenotype, this
fitness is a naive definition for the fitness of the individual’s
code. However, the same code, if carried by another individ-
ual with a different genotype, is likely to result in a different
phenotypical fitness when used for the mapping of the geno-
type. Thus, a finer measure for code fitness is needed.

For the following empirical investigation in the context of
an easy artificial problem, a code-fitness measure based on
search space enumeration and the knowledge of a perfect so-
lution is defined. The use of this measure is prohibitive in
the face of a real-world problem due to the associated search
space size and often unknown existence and structure of a
perfect solution. Code fitness of a given code is defined as
the fraction of the search space that is mapped on a perfect
solution under control of the code and the repair mechanism.
For instance, if the search space contains ��� � genotypes and
a given code maps 200 genotypes on a perfect solution, the
code fitness is about 0.05.

4 Hypothesis
The hypothesis to be investigated in this article is that code
evolution in terms of code fitness works, that is the best and
average code fitness rises over time.

We argue that, for a certain problem, some individual code
W, through a point code mutation, may have gained a higher
code fitness than another individual code L. Thus, W has
a higher probability than L that its carrying individual has
a genotype together with which W yields a good pheno-
type. Therefore, since selection on individuals is selection
on codes, W has a higher probability than L of being propa-
gated over time by reproduction and being subjected to code
mutation. If such a mutation results in even higher code fit-
ness, then the argument that worked for W works for W’s mu-
tant, and so forth. As a consequence, the average code fitness
should rise along with the average individual fitness.

5 Empirical analysis
A DGP run series using individual genetic codes is performed
on an easy artificial problem so that code fitness can be com-
puted in acceptable time. In order to test the hypothesis, the
means of best and average code fitness and best and average
individual fitness are measured. Also, the frequencies of the
symbols occurring in the codes are measured, which allows

an observation of code redundancy.
The problem is a symbolic function regression of a known

function on a four-dimensional parameter space. The function
is
��� ����,������	�
 � ��'-� . Three further parameters �,������	 are

introduced for noise generation. All parameter values shall be
real-valued and come from � ����� � . Due to the resulting real-
valued four-dimensional parameter space, a fitness case con-
sists of four real input values and one real output value. The
training set consists of 100 random-generated fitness cases.

A population size of 50 individuals is chosen for all runs
and 50 runs are performed. Each run lasts for exactly 50 gen-
erations. These relatively small values seem appropriate con-
sidering the simple regression problem. Especially, there is
no run termination when a perfect individual is found so that
the ongoing code evolution can be measured further until a
time-out occurs after the evolution of generation 49.	 �,������	/� �0� �1� '/� $�� (/
 serves as symbol set so that the per-
fect phenotype “ �1' � ” can be represented. 3-bit codons are
used which implies that a code maps ��� codons. As there
are 8 symbols in the symbol set, the code space contains ��
or approximately ������� � codes, including ��� codes with no re-
dundancy. Genotype size 4 is chosen, so that the only perfect
phenotype that can be evolved in the described setup is “ �'�� ”.
As the codon size equals 3, the search space contains ����� � or
approximately ��� ��� ��� individuals, so that the codon space is
significantly larger than the genotype space. This is benefi-
cial with respect to the empirical focus since we concentrate
on code evolution.

The execution probabilities are:

� reproduction 0.6

� point mutation 0.32

� point code mutation 0.08

Note that the individual mutation rate is over 50 percent of
the reproduction rate and point code mutation is only 25 per-
cent of the individual mutation rate. This has been set to allow
the DGP system to evolve the slower changing codes by use
of several different individuals that carry the same code, like
genotypes are evolved by use of several different fitness cases.
We hypothesize that these differing time scales are needed by
the evolutionary learning process to distinguish between ge-
notypes and codes.

The codes of an initial generation are not randomly created
but set to:

000 $
001 $
010 $
011 $
100 $
101 $
110 $
111 $



This way, all initial codes are identical and have code fit-
ness zero as there is no possible genotype in the search space
that gets mapped onto the perfect phenotype “ � ' � ” by delet-
ing repair. On the contrary, all initial genotypes get mapped
onto the same raw sequence “ $�$�$�$ ” which results in the
worst possible individual fitness, that is 0, for the associated
phenotypes.

That way, no initial code has a selective advantage over
another code, and the same goes for all initial genotypes. Ad-
ditionally, genotype evolution and the hypothesized code evo-
lution start under worst possible conditions.

6 Results and discussion
Subsequently, “mean” refers to a value averaged over all runs,
while “average” designates a value averaged over all individ-
uals of a given generation.

Top down, figure 1 shows the progression of the mean best
fitness, mean average fitness, mean best code fitness, and
mean average code fitness on a logarithmic fitness scale.

Figure 1 Top down the curves show the progression of
the mean best fitness, mean average fitness, mean best
code fitness, mean average code fitness on a logarithmic
fitness scale.

As explained, the resulting individual fitness and code fit-
ness values are zero in generation 0. Thus, due to the log-
arithmic fitness scale, the two individual-fitness graphs start
at generation 1, as ����� � � 
 is not defined. Both curves rise,
indicating convergence of the search process.

Convergence is slowed by the combination of tournament
selection, which is not an elitist selection variant, and of the
high individual mutation rate in relation to the reproduction
rate. Due to this combination, evolved good individuals may

get lost again before they reproduced sufficiently to get prop-
agated safely by selection and reproduction. The loss of
evolved perfect individuals is observed in the experiments.

Due to the small code mutation rate, the two code-fitness
curves start later, at generation 2. Convergence can be ob-
served, supporting the hypothesis that code evolution works
in principle.

The question is raised if better individuals tend to have bet-
ter codes and vice versa. To approach this topic, coupled fit-
ness is defined as the product of the fitness and the code fitness
of an individual. In the cases of bad individuals having bad
code and bad individuals having good code, averaged coupled
fitness is low. Only in the case of individual and code qual-
ity rising together, averaged coupled fitness rises. Figure 2
illustrates the coupled-fitness progression.

Figure 2 The mean coupled fitness is shown.

The rising graph indicates that indeed better individuals
tend to have better codes, backing the hypothesis that code
evolution works by propagation of those codes that define bet-
ter individuals which in turn propagate their codes.

Figure 3 illustrates the progression of the mean symbol fre-
quency in the code population over time.

The initially high frequency of the minus signs declines as
other symbol frequencies rise during exploration of the code
search space. Finally, the frequencies for the symbols � and ' ,
composing the perfect phenotype, emerge. Especially, more
and more codes become redundant on symbol � , which pre-
vails in the perfect phenotype, which can be seen from the
mean frequency 1.5 for � in generation 49. Put differently,
the system learns the significance of � and ' , while it rec-
ognizes the insignificance of the other symbols introduced as
noise.

A particular run that went over 200 generations produced



Figure 3 For each symbol and generation � , the mean
number of occurrences of the symbol in all codes of all
generations � over all runs is shown on a logarithmic
scale.

an � -redundancy of 2.9 and a ' -redundancy of 1.3 in gener-
ation 199 as top redundancies over all 8 symbols. From this
run, three evolved codes of good or perfect individuals and
their code fitnesses follow.

*aaa*/a- 0.156250
*aaaaa+a 0.158203
*aaa*/** 0.184570

7 Conclusion and further research
The evolution of genetic code has been introduced to gene-
tic programming. Several areas of investigation open up as a
consequence.

The performances of non-developmental GP and DGP with
and without code evolution will be compared on harder prob-
lems, in particular on real-world problems,.

We argue especially that there is a high potential in code
evolution for the application to data-mining problems. In this
domain, a “good” composition of a symbol set is typically
unknown since the functional relations between the variables
are unknown due to the very nature of data-mining problems.
We hypothesize that code evolution, through generation of re-
dundant codes, enhances the learning of significant functional
relations by biasing for problem-specific key data and filter-
ing out of noise.

Code evolution also has a potential for solving dynamical
problems, since a representation change through code evolu-
tion may help the search process to keep up with a changing
distribution of local optima in the search space.

It has been argued that strong causality is advantageous
for the convergence properties of an evolutionary algorithm
(Rechenberg 1994). Strong causality is equivalent to a fit-
ness landscape that is relatively smooth. The connections
between code evolution as a landscape-shaping phenomenon
and causality will be investigated.

Further topics are:

� The connection between code redundancy and genetic
diversity

� Parameter studies on beneficial ratios of code mutation
rate and individual mutation rate
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