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Glossary

Attractor A special set of system states approached by a dynamical system

after some time has passed when starting from a variety of initial states.

Autopoiesis The process by which systems maintain their identity and
organization and regenerate their components in the course of their operation.

Competition and Cooperation Types of interaction between two or
more elements of a system. Competition refers to each element striving to
maximize its use of a finite and/or non-renewable resource. Cooperation refers
to the elements engaging in a mutually beneficial exchange.

Complexity Measure of number of elements and way of their interaction
(structural c.); measure of variety of behavioral repertoire of a system (func-
tional c.).

Constructive system A system whose later components are generated



during the interaction of its earlier components.

Dynamics The quantitative development of a system’s state variables over
time.
Emergence The appearance of qualitatively new phenomena on higher

levels of a hierarchical system.

Evolution A process of structural or qualitative change in some direction.
Instability Inability of a system to keep its state or structure.
Mode Macroscopic behavior of a system caused by the interaction of its

microscopic parts via long-range correlations.

Non-equilibrium System state with inflow of matter, energy and/or
information causing it to stay away from its most probable state under the
hypothetical condition of isolation.

Phase Transition A point at which the appearance or behaviour, or
qualitative nature of the steady state of a system changes suddenly.

Resilience Measure of a system’s ability to remain within a domain of
stability in response to fluctuations of the system by a perturbation, and the
ability of the system to return to that stable domain having once left.

Self-organized Criticality The ability of a system to evolve in such a way
as to approach a critical point and then maintain itself at that point.

I Definition of Subject and its Importance

Self-organization is a core concept of Systems Science. It refers to the ability
of a class of systems (self-organizing systems (SOS)) to change their internal
structure and/or their function in response to external circumstances. Elements
of self-organizing systems are able to manipulate or organize other elements of
the same system in a way that stabilizes either structure or function of the whole
against external fluctuations. The process of self-organization is often achieved
by growing the internal space-time complexity of a system and results in layered
or hierarchical structures or behaviors. This process is understood not to be
instructed from outside the system and is therefore called self-organized.
Modern ideas about self-organization start with the foundation of cybernetics
in the 1940s. W. Ross Ashby, H. von Foerster and N. Wiener, among others, have
contributed to an early understanding. Later, the concept was adopted in physics



and nowadays pervades most of natural sciences. Many systems have been iden-
tified as possessing aspects of self-organization, though a clear definition is still
lacking. As a result of this inaccuracy, the theory of self-organization is still
in its infancy. While the concept has found applications in the social sciences
and engineering as well, SOSs are an area of active research, with fundamental
questions still being explored.

IT Introduction

Over the last decades a variety of features have been identified as typical for self-
organizing systems. Not all of these features are present in all systems able to
self-organize. Self-organizing systems are dynamic, often non-deterministic, open,
exist far from equilibrium and sometimes employ autocatalytic amplification of
fluctuations. Often, they are characterized by multiple time-scales of their inter-
nal and/or external interactions, they possess a hierarchy of structural and/or
functional levels and they are able to react to external input in a variety of ways.
Many self-organizing systems are non-teleological, i.e. they do not have a specific
purpose except their own existence. As a consequence, self-maintenance is an
important function of many self-organizing systems. Most of these systems are
complex and use redundancy to achieve resilience against external pertubation
tendencies.
Key aspects of self-organizing systems are:

— Growth of Complexity
— Emergence of new phenomena
— Positive and negative feedback loops of internal regulation

The process of self-organization has been invoked to explain numerous phe-
nomena in the natural sciences. From non-living systems like galaxies and stars
down to nanoparticle aggregates, self-organizing systems have been observed. In
the living world cells, organisms and ecosystems provide examples of systems
classified as self-organizing. The concept has found applications in man-made
systems like communication networks, societies, economies, and has been iden-
tified to be at work in the world of ideas in the development of world views,
scientific beliefs and norm systems.

III History of the concept of self-organization

II1.1 Early History

The concept of self-organization can be traced back to at least two sources:
Western philosophy influenced heavily by Greek thinking; and eastern philoso-
phy, centered around the process thinking of Bhuddism. The ideas derived from
both sources resound with the modern way of thinking about self-organization
although the word itself had never been used.



On wondering about the origin of the world, Greek atomists from Democritos
of Abdera to Epicuros of Samos argued that world order arose from chance
collisions of particles. First, the cosmos (from Greek kosmos = the ordered) did
not exist but chaos instead (from Greek chaos = the disordered). In modern
times chaos theory has taken up this topic again, with deep connections to ideas
about self-organization and the origin of order in the universe.

In the Christian tradition, St Thomas Aquinas contributed through his inter-
est in logical proofs for the existence of God. One of these proofs considered God
to be the ultimate organizer or designer. The argument was that everything had
to be organized and this called for an organizer. In turn, the organizer had to
be organized and so on back to the original organizer: this was God. Since God
is present without cause (otherwise he would have to be organized by another
entity), he must have somehow organized himself.

The Bhuddist way of thinking, on the other hand, was fundamentally process-
oriented. Things are considered not to be in static existence, but rather are
thought to be generated and maintained by proper processes. The emphasis on
processes is reminescent of self-organizing systems whose structure is determined
by proper processes of internal and external interactions.

II1.2 The first use of the term

Work on General Systems Theory (von Bertalanffy) [1] and Cybernetics (Wiener)
[2] paved the way for the idea of self-organization.

The concept of a self-organizing system was introduced by Ashby in 1947
[3] . In the 1950s a self-organizing system was considered to be a system which
changes its basic structure as a function of its experience and environment. The
term was used by Farley and Clark in 1954 to describe learning and adapta-
tion mechanisms [4]. Ashby [5], in 1960, redefined a self-organizing system to
include the environment with the system proper. Von Foerster argued [6], also
in 1960, that a self-organizing dynamical system possesses some stable structures
(eigenvalues, attractor states) which he later termed eigenbehavior.

II1.3 Further developments

This notion was further developed by Haken [7] in 1977 who termed the global
cooperation of elements of a dynamical system - resulting in it assuming an
attractor state - self-organization. Both Haken and Kauffman (1993) [41] argued
for a deep connection between self-organization and selection. Haken found that
modes of collective behaviour are competing against each other and considered
this process to be Darwinian selection in the non-living world. Kauffman, on
the other hand, emphasized the role of constraints on the direction of evolution
(mostly of the living), caused by self-organization.

Already in the 1970s, however, ideas branched out into different directions.
One branch of the development of the idea deepened the relation to studies
of learning and adaptation (Conrad, Kohonen, [9,10]), another branch studied
processes of self-organization in systems far from equilibrium (Prigogine, Haken)



[11,12]. Chaos theory (Thom, Mandelbrot) [13,14] was the line of inquiry into
nonlinear systems in mathematics, whereas autopoiesis and self-maintenance
where at center stage in biology (Eigen, Rosen) [15,16] neurophysiology (von
der Mahlsburg, Linsker [17,18]) and cognitive science (von Foerster, Maturana
and Varela) [19, 20].

In recent years, self-organizing systems have assumed center stage in the
natural sciences [21,22], and the social sciences [23, 24, ?]. Engineering is begin-
ning to see the usability of the concept [26] in connection with the approach of
nano-scale applications and the growing complexity of human artefacts.

IV Examples of natural self-organizing systems

Classical examples of natural self-organizing systems are the formation of Be-
nard convection cells in non-equilibrium thermodynamics, the generation of laser
light in non-linear optics and the Belousov-Zhabotinsky reaction in chemistry.
These are examples from the non-living world, and the complexity of resulting
macroscopic space-time patterns is restricted.

Nearly unrestricted complexity through self-organization can be achieved in
the living world. For instance, the interaction of species in foodwebs could be
looked at from this point of view [22]. Here, we shall briefly look at the self-
organization of the Earth’s biosphere known as the Gaia hypothesis [27]. This
hypothesis states that Earth’s living and non-living components self-organize
into a single entity called Gaia. Gaia can be understood as the whole of the
biosphere, that is able to self-stabilize. The model states, in other words, that
the biomass of Earth self-regulates to make conditions on the planet habitable
for life. In this way, a sort of homeostasis would be sought by the self-organizing
geophysical /physiological system of Earth.

In recent years, the Gaia hypothesis has found its place in Earth Systems
Science as the realization that there is just one global ecosystem, containing the
entirety of resources and all living organisms, all interacting with each other in
multiple regulatory cycles. These ideas have been connected to the Darwinian
theory of evolution via natural selection [28, 29], providing a mechanism by which
such a stable state can be assumed to have emerged.

Other examples of natural self-organizing systems can be found in Table 1.

V Examples of artificial self-organizing systems

There are numerous examples of man-made systems or systems which involve
man that exhibit self-organization phenomena. Among them are traffic patterns,
self-organizing neural networks, celular phone networks or the development of
web communities.

The example we shall briefly discuss is that of traffic flow patterns. Macro-
scopic patterns of traffic jams on highways have been observed and experimen-
tally examined [30]. Their appearance is closely related to traffic density, the



model of behaviour for drivers and the traffic flow that this allows [31]. Traffic
flow is an open system, and it develops waves of traffic jams (solitons) excited
by the density of traffic. Transitions between different traffic flow patterns have
been considered as phase transitions, typical products of self-organization in the
non-living world.

A number of examples of self-organizing systems from different fields is given
in Table 1, lower section.

VI Explanatory concepts of self-organization

Despite half a century of inquiry, the theory of self-organizing systems is still
in its infancy. There is no ”standard model” of SOS, only various aspects em-
phasized by different researchers. Here we shall discuss the most important of
these.

VI.1 Non-equilibrium Thermodynamics

Thermodynamics has been concerned with the notion of order and disorder in
physical systems for more than a century. The theory of self-organization has
to address fundamental issues of this field. The most important question in this
regard is, how order can arise through self-organization.

Classical thermodynamics has focussed on closed systems, i.e. systems iso-
lated from external influence in the form of matter and energy flow. This allowed
to understand the processes involved when a system evolves undisturbed. A key
result of this inquiry is the second law of thermodynamics, originally formu-
lated by Carnot and later refined by Clausius in the 19th century. It states that
”any physical or chemical process under way in a system will always degrade
the energy”. Clausius introduced a quantitative measure of this irreversibility
by defining entropy:

S = /dQ/T (1)

with Q the heat energy at a given temperature T. In any process of a closed
system, entropy always rises
ds
—_— >
dt —
According to Eddington, 1928 [32] this universal increase in entropy ”draws the
arrow of time” in nature.
Boltzmann had reformulated entropy ealier in terms of the energy microstates
of matter. In his notion, entropy is a measure of the number of different combi-
nations of microstates in order to form a specific macrostate.

0. 2)

S = kg In(W) (3)
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with kg Boltzmann’s constant and W the thermodynamic probability of a
macrostate. He argued that the macrostate with most microstates (with maxi-
mum entropy) would be most probable and would therefore develop in a closed
system. This is the central tenet of equilibrium thermodynamics.

More interesting phenomena occur if the restrictions for isolation of a system
are removed. Nicolis and Prigogine [11] have examined these systems of non-
equilibrium thermodynamics which allow energy and matter to flow across their
boundary. Under those conditions, total entropy can be split into two terms,
one characterizing internal processes of the system, d;S and one characterizing
entropy flux across the border d.S. In a generalization of the second law of
thermodynamics, Prigogine and Nicolis postulated the validity of the second
law for the internal processes, is

1
7 > 0. (4)
but explicitely emphasized that nothing can be said about the sign of the entropy
flux. Specifically, it could carry a negative sign and it could be larger in size than
the internal entropy production. Since the total entropy is the sum of both parts,
the sign of the total entropy change of an open system could be negative,
ds d;S  d.S

dt — dt dt

a situation impossible in equilibrium thermodynamics. Thus, increasing order
of the system considered would be possible through export of entropy. Self-
organization of a system, i.e. the increase of order, would not contradict the
second law of thermodynamics. Specifically, the non-equilibrium status of the
system could be considered a source of order.

Even in the distance from thermodynamic equilibrium, however, certain sta-
ble states will occur, the stationary states. These states assume the form of
dissipative structures if the system is far enough from thermodynamic equilib-
rium and dominated by non-linear interactions. The preconditions for dissipative
structures can be formulated as follows:

<0 (5)

1. The system is open.

2. The inner dynamics is mainly non-linear.

3. There are cooperative microscopic processes.

4. A sufficient distance from equilibrium is assumed, e.g. through flows exceed-
ing critical parameter values.

5. Appropriate fluctuations appear.

If those conditions are fullfilled, the classical thermodynamic branch of station-
ary solutions becomes unstable and dissipative structures become stable system
solutions.

VI.2 Synergetics

Prigogine’s description of dissipative structures is formally limited to the neigh-
borhood of equilibrium states. As Haken pointed out, this is a severe restriction



on its application and in particular precludes its formal application to living
systems. Instead, Haken proposed order parameters and the slaving principle
as key concepts for systems far from equilibrium. Let the time evolution of a
continuous dynamical system is described by

d
M _N

1 N(a,0) +F(t) (6)

where q(t) = [q1(t), ¢2(t), ...qn(t)] is the system’s state vector and N is the
deterministic part of the system’s interaction whereas F represent fluctuating
forces, and « are the so-called control parameters. Then the stable and unstable
parts of the solution can be separated by linear stability analysis, as can the time
dependent and time independent parts. As a result, the solution can be written
as

alt) = a0+ > _ &ult)va + Y &(t)vs (7)

Vu, Vs are the unstable and stable modes, respectively, and &,(t), &s(t) are their
amplitudes. These amplitudes obey the following equations

dSu

= = N+ Va6, &) + Fult) (8)
d€s
dgt = )‘sfs + Ns(fu,gs) + FS(t) (9)

with A, As characterizing the linear part of the equations and function N sum-
marizing the non-linear deterministic components. The slaving principle for-
mulated by Haken now allows to eliminate the stable mode development by
expressing them as a function of unstable modes

§3(t) = fs[gu(t)vt]' (10)

Thus, the unstable modes (order parameters) enslave the stable modes and de-

termine the development of the system’s dynamics. This result is useful both to

describe phase transitions and pattern formation in systems far from equilibrium.
Synergetic concepts have been applied in a variety of disciplines [33].

VI.3 Chaos and Complexity

The treatment of chaotic systems has been derived from non-linear system
theory. Chaotic systems are usually low-dimensional systems which are unpre-
dictable, despite being deterministic. The phenomenon was originally discovered
by the meteorologist E. Lorenz in 1963 [34], although H. Poincare in 1909 was
aware of the possibility of certain systems to be sensitive to initial conditions
[35]. The reason for the difficulty to predict their behavior stems from the fact
that initially infinitesimal differences in trajectories can be amplified by non-
linear interactions in the system. These instabilities, together with the lack of



methods for solving even one-dimensional non-linear equations analytically, pro-
duce the difficulties for predictions. Modern theory of deterministic chaos came
into being with the publication of a seminal article by May in 1976 [36].

Complex systems, on the other hand, have many degrees of freedom, mostly
interacting in complicated ways, i.e. they are high-dimensional. All the more
astonishing is the fact that our world is not totally chaotic in the sense that
nothing can be predicted with any degree of certainty. It became apparent, that
chaotic behavior is but one of the ways non-linear dynamical systems behave,
with other modes being complex attractors of a different kind.

Complezity itself can be measured, notably there exist a number of complex-
ity measures in computer science, but describing or measuring complexity is not
enough to understand complex systems.

VI.4 Self-organized Criticality

For particular high-dimensional systems, Bak et al. [43] have suggested a dy-
namic system approach toward the formation of fractal structures, which are
found to be wide-spread both in natural and artificial environments. His canon-
ical example was a pile of sand. They examined the size and frequency of
avalanches under certain well-prepared conditions, notably that grains of sand
would fall on the pile one by one. This is an open system with the forces of
gravity and friction acting on the possibly small fluctuations that are caused by
deviations in the hitting position of each grain of sand. He observed how the
grains would increase the slope of the sand pile until more or less catastrophic
avalanches developed.

Bak suggested the notion of self-organized criticality (SOC) as a key concept
which states that large dissipative systems drive themselves to a critical state
with a wide range of length and time scales. This idea provided a unifying frame-
work for the large-scale behavior in systems with many degrees of freedom. It
has been applied to a diverse set of phenomena, e.g. in economic dynamics and
biological evolution. SOC serves as an explanation for many power-law distribu-
tions observed in natural, social and technical systems, like earthquakes, forrest
fires, evolutionary extinction events, and wars. As opposed to the widely studied
low-dimensional chaotic systems, SOC systems have a large number of degrees of
freedom, and still exhibit fractal structures as are found in the extended space-
time systems in nature.

VI.5 The Hypercycle

In a series of contributions since 1971, Eigen and Schuster have discussed partic-
ular chemical reaction systems responsible for the origin, self-organization and
evolution of life [37—40]. By considering autocatalytic sets of reactions they ar-
rived at the most simple form of organisation, the hypercycle, which is able to
explain certain aspects of the origin of life. They have considered a chemical
reaction system composed of a variety of self-reproductive macromolecules and



energy-rich monomers required to synthesize those macromolecules. The sys-
tem is open and maintained in a non-equilibrium state by a continuous flux of
energy-rich momomers. Under further assumptions they succeeded in deriving
Darwinian selection processes at the molecular level. Eigen and Schuster have
proposed rate equations to describe the system.

The simplest system realizing the above mentioned conditions can be de-
scribed by the following rate equations

dl‘i
dt

= (A4;Q; — Dy)x; + Z wip Ty + Pi(x) (11)
ki

where i enumerates the individual self-reproducing units and x; measures their
respective concentrations. Metabolism is quantified by the formation and de-
composition terms A;Q;x; and D;x;. The ability of the self-reproducing entities
to mutate into each other is summarized by the quality factor for reproduction,
Q;, and the term w;;x; which takes into account all catalytic productions of one
sort using the other. A;, D; are rate constants for selfreproduction and decay
respectively. The flow term @; finally balances the production / destruction in
this open system in order to achieve ), x = const.
By introducing a new feature called excess production

E;=A;— D, (12)

and its weighted average
E(t) =Y Epxx/ Y (13)
k k

and symbolizing the ”intrinsic selection value” of a sort i by

Wii = A;Qi — D; (14)
one arrives at reduced rate equations
d%i —
= = (W” — E)(L‘i + gwikmk. (15)
3

These equations can be solved under certain simplifying assumptions and notably
yield the concept of a quasi-species and the following extremum principle: A
quasi-species y; is a transformed self-replicating entity with the feature that it
can be considered as a cloud of sorts x; whose average or consensus sequence it
is. The extremum principle reads: Darwinian selection in the system of quasi-
species will favor that quasi-species which possesses the largest eigen-value of
the rate equation system above.

VI.6 The Origin of Order

In the 1990s Kauffman [41] pointed out one of the weaknesses of Darwinian the-
ory of evolution by natural selection: It cannot explain the ’origin of species’
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Fig. 1. The Hypercycle. Reproduced from Eigen & Schuster [15].



but rather only their subsequent development. Kauffman instead emphasized
the tendency of nature to constrain developments along certain paths, due to
restrictions in the type of interaction and the constraints of limited resources
available to evolution. In particular he held up the view that processes of spon-
taneous order formation conspire with the Darwinian selection process to create
the diversity and richness of life on Earth.

Previously, Kauffman had formulated and extensively studied [42] the NK
fitness landscapes formed by random networks of N Boolean logic elements with
K inputs each. Kauffman observed the existence of cyclic attractor states whose
emergence depended on the relation between N and K, and the absolute value of
K. In the case of large K (K = N), the landscape is very rugged and behavior
of the network appears stochastic. The state sequence is sensitive to minimal
disturbances and to slight changes of the network. The attractor length is very
large, &~ N/2, and there are many attractors. In the other extremal case, K = 2,
the network is not very sensitive to disturbances. Changes of the network do not
have strong and important consequences for the behavior of the system.

Kauffman proposed NK networks as a model of regulatory systems of living
cells. He further developed the notion of a canalizing function that is a Boolean
function in which at least one variable in at least one state can completely
determine the output of the function. He proposed that canalizing functions are
an essential part of regulatory genetic networks.

VI.7 Emergence and Top-down Causation

The notion of emergence has been introduced in complex systems theory in
order to explain the appearance of new qualitative features on the level of an
entire system that could not be observed at the level of its components. Emergent
behavior can be connected to the afore-mentioned complex attractors. It requires
switching the level of description of behavior of a system, from local (component-
centered) to global (system-centered), or at least to a meso-level (sub-system-
centered). Emergent behavior happens when

a) the system shows qualitatively new behavior on a higher level of description
which

b) could not have been easily predicted from the interactions of components at
the lower level (obeys a non-linear relationship)

c) is the result of a self-organization process.

Emergence is strongly related to self-organization. It is often understood
as a pattern formation process. While it essentially has to do with changing
the perspective and looking at the system at a different level, it concerns itself
with a change in behavior (e.g. the system is getting more organized, shows new
coordinated modes of behavior). It has been further conjectured that there is top-
down causation, i.e. the structures forming on the higher level of the system are
able to affect the lower levels (system components) and influence them in a way
that stabilizes the newly emergent behavior. Haken could show in the context
of Synergetics that this phenomenon exists. Top-down causation is believed to



be an important source of complexity, especially in living systems, because it
stabilizes patterns.

Self-organization draws heavily from this source of qualitative innovation in
complex systems.

VII Modeling Methods

A formal model is a simplified mathematical or algorithmic representation of a
system. Often it has been simplified to the point of a carricature, and this has
to be born in mind when making conclusions about the consequences of model
predictions. No model can predict beyond the limits of its approximations.

VII.1 Mean-field Methods

One of the most important methods used to model complex systems is tied to
the notion of dynamical systems. Dynamical systems are systems whose time de-
velopment is accessible to a description by state changes. It entails the existence
of a state space in which these changes can be traced and quantified.

Mean-field methods of description focus on average behavior. They abstract
away from the local correlations between a system’s elements and describe only
long-range changes. For instance, the behavior of a planet could be described as
a point on its trajectory around the star it circles. Detailed interactions of its
atmosphere would not be part of that description.

Mean-field methods are formulated in the form of time-dependent differential
or difference equations which can be solved under certain conditions and predict
the behavior of a system in its state space.

Assuming that the state of a system can be subsumed in a vector of state
variables x whose values are observable and depend on time, we can generally
formulate an equation for continuous time development as:

dx

— =f(x 16

> —t(x) (16)
If time does not develop continuously, a discrete (iterative) equation can be

used to describe system behavior:

X1 = f(xy) (17)

The notion is that the state of the system at time ¢, x(t) or x, is everything
that is of interest and can be known about the system. It turned out that with
this extreme simplification many systems became treatable that would have
otherwise resisted quantitative treatment. The non-linear nature of many of
the state development equations, however, and the high-dimensionality of state
space vectors often constitute prohibitive hurdles to exact or even approximate
mathematical solution of these equations.

As a result, algorithmic approaches for modeling self-organizing systems have
become more prevalent in recent years.



VIL.2 Agent-based Models

A very general class of algorithmic systems is subsumed under the term agent-
based models. In these systems, individual entities are modeled that interact
with each other. Thus, the approximation of average behavior, and the interest
for long-term behavior only is abandoned in favor of a microscopic description
of the elements of a system and their interactions. The abstraction of features of
a system is achieved through the assumption of rules of behavior of the agents,
including their interaction behavior. Agent-based systems must be implemented
as computational systems, and run on a computer to obtain results. Agents are
assigned states, and transition rules between states, depending on interacting
agents, and then these rules are executed in parallel over the set of agents under
consideration.

Cellular Automata A particular subset of agent-based models is the class of
cellular automata introduced by von Neumann [47] going back to lattice networks
of Ulam. The agents of cellular automata are placed on a grid of cells and
allowed to assume a finite number of states. Interactions are determined by
state transition rules and the definition of a neighborhood, which determines
the interactivity of the cellular automaton. Many variants of cellular automata
exist, differing in the number of dimensions of the grid, the number of states,
the sort and distribution of transition rules and the nature of the neighborhood.

A typical cellular automata model might, e.g. consist of digital cells (allowing
only two states, ’ON” and ”"OFF”), homogeneous and deterministic transition
rules between states, a one-dimensional grid, and nearest-neighbor interactions.
Cellular automata of this type have been thoroughly examined in [44,45] and
show a surprising variety and richness in behavior.

In a cellular automaton like LIFE, for instance, one can observe how macro-
scopic and mesocopic structures appear through self-organization, that is, as a
process determined solely by the local interaction of the CA’s elements. some
structures, e.g. spiral waves, are more resilient against perturbation than oth-
ers, e.g. glider canons. A moving structure like a glider can be interpreted as
an emergent phenomenon as it does not seem to be present on the microscopic
scale (single CA cells do not move).

Graphs and Networks A more general class of automata can be formulated
if the notion of cellular neighborhood is abandoned. Instead of a rigidly defined
grid, a graph or network of automata connected through edges to other automata
is introduced. Each node of the graph / network represents an automaton, with
interactions allowed via edges.

The notion of a graph is, however, more general, and allows other agent-based
systems to be simulated. For instance, the nodes of a graph might represent
species of an ecosystem interacting with other species (connected by edges).
Each species might be represented by a state counting the number of individuals
of that species. Nodes might further hold information on particular features of



individuals, and possibly their variants. Explicit simulations of such systems
have been considered in the context of ” Artificial Chemistries” [46].

In recent years, the structure and dynamics of networks has been a major
focus of interest in the scientific community. Network science has become a con-
verging point for different disciplines interested in modelling complex behavior.

VII.3 Observables

Self-organizing phenomena rest on the appearance of particular sets of behaviors.
If ever they are to be understood, a clear notion of observable quantitites needs
to be developed that allows a proper description of the behavior of such systems.
At present, no such canonical set of observables exists, owing to the bewildering
variety of systems that show signs of self-organization. However, one can discern
a number of different measures and observables that might form the core of such
a set [49].

Entropic and Information Theoretic Measures One class of observables
can be considered entropic and information-theoretic measures. These measures
have in common a statistical root, and seek to describe a self-organizing system
in terms of the order (or disorder) that develops over time [48].

Stability Measures Another class of observables can be discussed as stability
measures. In this class, systems are sought to be disturbed from their regular
behavior in order to obtain a clearer idea of their resilience.

Scaling Measures A further class of observables can be attached to features
of scaling. Both theoretical and experimental approaches can be used to vary
the number of dimensions, number of equations/agents, number and complexity
of interactions, etc, in these systems. Scaling behavior can then be observed for
particular quantities and systems classified accordingly.

Patterns and Flows The defining observables of a self-organizing system are
patterns. These refer to the collective behavior of the elements of a system, differ-
entiating them from noise. If individual entities would not show such correlations
in their behavior, self-organization could not be observed. Patterns can be de-
scribed in a variety of ways, e.g. as multidimensional vectors, using spatial and
temporal coordinates. If patterns change dynamically one can speak of flows.
The central tenet of self-organization is that systems exist whose pattern
forming tendencies are determined by themselves, and not by an outside agency.

VIII The Role of Self-organization in Science, the Soclal
Sciences and Engineering

Self-organization as a concept has assumed center stage in Science. With the ad-
vent of nonlinear systems and studies on complex systems in non-equilibrium sit-



uations, the explanatory power of self-organization now permeates every branch
of scientific enquiry.

From structure formation at the level of super-galactic clusters, even start-
ing from the development of the entire universe, down to microscopic particles
and their interaction patterns, self-organizing phenomena have been postulated,
theorized, observed and confirmed.

In particular the origin and evolution of life have been studied under the
aspect of self-organization. Within Biology, the developmental process of organ-
isms as well as their metabolisms, growth and learning have been identified as
self-organizing processes.

In the humanities, the idea of self-organization has taken roots, although the
paradigm is far from being fully recognized yet. Since the 1990s the origin and
development of languages has been an object of study under the premise of self-
organization. In social sience the concept of self-organization has been studied
since a number of years , due to the obvious fact that interaction between social
actors generate a society. Even in psychology, self-organizing principles begin to
appear.

Economy and Management Science have taken notice of the concept, and
a growing number of enterprise concepts promote the idea of a form as a self-
organizing entity.

Finally, Philosophy has embraced the concept of self-organization and con-
nected it to earlier thoughts on the development of the scientific process and
epistemology. Whitehead put forward his process philosophy, and Smuts, al-
ready in the 1920s, promoted the notion of holism which has strong connections
to self-organization. Evolutionary epistemology was formulated as a response to
traditional epistemology and emphasizes the aspect of natural selection affecting
senses and cognitive abilities.

Engineering is beginning to grasp the ubiquity of self-organization in Nature.
Specifically in the area of nanotechnology the concept is used extensively for the
purpose of self-assembly of molecular entities. At nanoscales, it is very difficult to
directly specify the structuring behavior of entities. As a result, self-organizing
properties of matter are used to the advantage of the structural outcome.

Different kinds of infrastructure networks have been recognized as self-
organizing, and Engineering begins to make use of the tendency of networked
systems to self-organize.

In the area of adaptation, there exists a long tradition of making use of self-
organization principles. The self-organizing feature map, introduced by Kohohen,
has been a key step forward in the domain of unsupervised learning of artificial
neural networks.

IX Open Issues and Future Directions

So far, there is no unique theory of self-organization. Over the course of many
years different approaches have been used, but a coherent picture has not yet
emerged.



An important open question in the area of the mathematical basis for self-
organization is the formulation of a theory of constructive (evolutionary) systems,
that is systems which, in the course of their development, generate new elements
that subsqeuently interact with elements already created earlier.

Another question aims at the raison d’etre of hierarchical systems. Why do
they form, how do they structure themselves, and what would be possible to
apply from these principles in Engineering? Notably, how would one build self-
organizing systems such that they do something useful? How could they be
controlled?

In Science, the build-up of complexity remains a controversial issue. Is it
true that evolution of the universe tends to increase complexity, or is there no
tendency of complexity increase at all? What are the mechanisms by which
Nature increases complexity, if any? How could we apply this knowledge in
planning and managing complexity in the human world?

A wealth of questions remains, and it is anticipated that the 21st century
will shed light on at least a few of them.
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