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Abstract. The design of DNA sequences is a key problem for implementing molecular self-assembly with
nucleic acid molecules. These molecules must meet several physical, chemical and logical requirements,
mainly to avoid mishybridization. Since manual selection of proper sequences is too time-consuming for
more than a handful of molecules, the aid of computer programs is advisable. In this paper two software
tools for designing DNA sequences are presented, the DNASequenceGenerator and the DNASequence-
Compiler. Both employ an approach of sequence dissimilarity based on the uniqueness of overlapping
subsequences and a graph based algorithm for sequence generation. Other sequence properties like melting
temperature or forbidden subsequences are also regarded, but not secondary structure errors or equilibrium
chemistry. Fields of application are DNA computing and DNA-based nanotechnology. In the second part of
this paper, sequences generated with the DNASequenceGenerator are compared to those from several
publications of other groups, an example application for the DNASequenceCompiler is presented, and the
advantages and disadvantages of the presented approach are discussed.

1 Introduction
The DNA sequence design problem arises in molecular self-assembly applications

like DNA computing and DNA-based nanotechnology [2, 7, 9-11, 14, 18, 20-23, 28, 31-
34, 38-43], but also in general purpose lab applications such as probe selection for DNA
microarrays or primer design for PCR [3, 5, 17, 19, 24, 35]. Although applications and
protocols used are quite different, most requirements posed for the molecules are rather
similar. Since specific hybridization is the key process in these applications, DNA
molecules are expected to bind to their particular counterpart with good yield, but not to
any other molecules. Further, they should not form any undesired secondary structures,
hybridization should take place in a given temperature range, and sequences must contain
or must not contain certain subsequences.

Meeting just the requirement of specificity of hybridization is already a hard
problem, because the DNA sequences must be as dissimilar as possible to each other and
to their reverse complement sequences, and there is a multitude of possible sequences to
select from. Checking all possible alignments of just two sequences is a time consuming
task. Further, it is not clear which formalization of “similarity” is close enough to the
hybridization behavior of DNA so as to allow correct modeling ofin vitro processes, yet
simple enough to be computed efficiently. Adding the other requirements does not make
sequence design easier, especially when planning to use more than just a handful of
sequences.

Thus, the aid of computer programs when searching for sequences that meet all the
desired criteria is indispensable. In this paper, we introduce two software tools: the
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DNASequenceGenerator for finding a pool of dissimilar sequences, and the
DNASequenceCompiler for finding molecules that self-assemble into linear molecules in
a specific way determined by a regular grammar.

2 Previous Work
Several practical approaches to DNA sequence design have been examined in the

past. Seeman and Kallenbach designed sequences using overlapping subsequences to
enforce uniqueness [31, 32]. They developed a program to interactively design molecules
for 4-way junctions. Deaton et al. used genetic algorithms to generate a set of unique
DNA sequences with uniqueness quantified by Hamming distance [9, 10]. Marathe,
Condon and Corn chose a dynamic programming approach for DNA sequence design,
also employing the Hamming distance [21]. They further described a dynamic
programming based algorithm for selection of sequences with given free energy. Frutos
et al. developed a so-called template-map strategy to get a large number of dissimilar
sequences while having to design only a significantly smaller number of templates and
maps [14]. Again, a Hamming-like dissimilarity was used. Hartemink, Gifford and
Khodor designed sequences for programmed mutagenesis, which demands similar
sequences with only a few mismatches [18]. They use thermodynamic stability
estimations instead of string-based distances. Selection of appropriate sequences is done
by exhaustive search, which is feasible for short oligomers. Faulhammer et al. described
an algorithm for RNA sequence design in the context of solving a chess problem [11].
They did not construct the sequences in one step but repaired them as necessary using a
Hamming distance approach to uniqueness. Baum suggested a method to design unique
sequences avoiding repetition of subsequences by restricting the choice of nucleotides at
the ends of the sequences [2].

Ruben et al. used an evolutionary algorithm (EA) to find sets of dissimilar sequences
[28]. Similarity is measuredvia the Hamming distance between subsequences. Additio-
nally, secondary structure folding energy information from the Vienna RNA Package can
be integrated into their fitness evaluation. Shin et al. use a multi-objective EA to generate
sets of dissimilar sequences (measured by H-measure [15]) that also meet restrictions of
melting temperature, GC-ratio etc. [34]. H-measure as well as other objective functions
were also studied by Tanaka et al., who applied simulated annealing to optimize the set of
sequences [38, 39]. Smith proposed and examined modified De-Bruijn sequences for
DNA code words [36]. Ben-Dor et al. made use of circular De-Bruijn sequences from
which they cut out unique subsequences [3]. Sequences did not contain A, C, G and T,
but only placeholders for strong and weak base pairs, which were instantiated by the
bases in a second step. Brenner applied non-overlapping subsequences to generate unique
“oligonucleotide tags” for sorting polynucleotides on solid phase supports [5]. Sets of
these subsequences were selected so that any subsequence had at least a given number of
mismatches with the reverse complement of any other subsequence of the same set. A
similar method is proposed by Gerry et al. to design their “zip-code” oligonucleotides
[17]. Li and Stormo applied suffix arrays, sequence landscapes and approximate string
searching to find probes for gene expression arrays [19]. Raddatz et al. simply shifted
candidate sequences along an input sequence to find primer pairs for PCR [24].
Shoemaker et al. developed a pruned tree search algorithm to select sequences by several
criteria, e.g. maximal length of common subsequences, melting temperature etc. [35].



3

Thermodynamics and equilibrium chemistry consideration instead of string-based
distance measures is a promising approach to analyze the probability of
mishybridizations and for sequence generation [8, 16, 25-27].

For a good survey of DNA sequence design, see [4]. More topics are discussed in the
literature, from which we here can only name a few examples. Molecular self-assembly
[20, 40] and DNA-based nanotechnology [7, 22, 23, 33, 41-43] are but a small subset.

3 Uniqueness and the basic algorithm
The programs described here use a concept of uniqueness that, within a pool of

sequences, allows any subsequence of a certain (definable) length to occur at most once
in that pool. Also, its reverse complementary sequence must not occur in the same pool.
This concept of uniqueness is related to those described by Seeman et al. [31, 32] and
Smith [36], but a different approach was chosen. In particular the software described here
uses a fully automatic, graph-based algorithm to generate sequences [12, 13].

According to this concept a pool of sequences is said to benb-unique if any
subsequence in the pool of length nb is unique, i.e. a sequence may have a substring of
maximum length nb – 1 in common with any sequence in the pool or with any reverse
complementary sequence. For example, 20-mers that are 10-unique have common
subsequences of at most 9 subsequent nucleotides. Since shorter common subsequences
mean less stable mishybridizations, nb should be chosen as small as possible.
Unfortunately, a smaller nb also means less base strands (the unique strands of minimal
length nb) to build the sequences with, so that a minimum for nb is given by the number
and length of sequences to build (see equation (4) below).

The algorithm for generating sequences is implemented with a directed graph, where
nodes are base strands and successors of a node are those four strands that may appear as
overlapping successors in a longer sequence (see Fig. 1, 2). Thus, a set of nb-unique
sequences of length ns corresponds to a set of paths of length (ns – nb + 1) through this
graph having no node in common.

Nodes with self-complementary base strands as well as nodes with undesired
subsequences are marked as forbidden. Moreover, the user may choose to mark base
strands containing start codons, base strands with more than two consecutive guanine or
cytosine bases, respectively, or base strands with a GC ratio outside a user-defined range
as forbidden nodes.

The basic sequence generation algorithm now draws a start node randomly and tries
to find a path of the desired length by randomly choosing successor nodes. The choice is
limited to those nodes not marked as forbidden or already used in other sequences. If
fraying of the double stranded molecules should be avoided, the choice for the first and
last base of a sequence is further restricted to guanine and cytosine. Chosen nodes as well
as their reverse complements are marked as used. If none of the four successors of a node
is available, backtracking is used to find another path. When a complete path is found, the
corresponding sequence is checked for meeting melting temperature and GC-ratio
restrictions, and, if necessary, discarded by initiating backtracking. In order to soften a
drawback of our approach (see the discussion), the user can also choose a maximum
homology between the sequences, which is an upper bound for the difference between the
H-measure of any two sequences in the pool and the sequence length, divided by the
sequence length. I.e., choosing a maximum homology of 1 means no restriction, while for
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a value of less than 1 any newly found sequence is checked against all others in the pool
and eventually discarded by backtracking. Also the homology between each sequence
and the reverse complements of all other sequences is regarded. Once a satisfying
sequence has been found it is added to the output pool, another start node is drawn and
the path finding routine is restarted, until there are enough sequences in the pool. This
basic algorithm can be expanded to meet further requirements of more complex
applications (see below).

Note that this concept of uniqueness restricts strictly the number of usable sequences.
The number of base strands of length nb is

bn
bbs nN 4)( = . (1)

Since complements of already used base strands cannot be used, self-complementary
base strands are not allowed at all. The number of base strands that can be used in the
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if nb is odd, because there are no self-complementary base strands of odd length.
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This estimate is an upper bound because it does not include the constraint of the base
strands having to overlap. Additional requirements such as GC-ratio, melting tempera-
ture, the exclusion of certain subsequences etc. decrease Nseqsfurther. Experiments have
shown that the algorithm is capable of generating over 80 % of this maximum number of
sequences for typical sequence and base strand lengths [13].

4 DNASequenceGenerator
The program DNASequenceGenerator [13] employs this basic algorithm to iterative-

ly fill a pool with sequences that meet given logical and physical requirements. The main
window of the GUI shows the content of this pool. The user can add, import or export
sequences to and from it. E.g., one might import sequences already available in the lab
and add new sequences that are compatible in terms of uniqueness, melting temperature
and GC ratio.

The process of constructing sequences is controlled by using the "Sequence Wizard".
This short series of dialog windows enables the user to:
a) import or manually add sequences, e.g. when using the program to expand an existing

set of sequences
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b) import or manually add sequence templates that are completed to full sequences if
possible. Sequence templates use a simple notation: The preset nucleotides (e.g. of a
restriction site or other functional subsequence) are specified normally, while ann
stands for a position to fill. E.g., if given the sequence templatennnnaacgttnnnn ,
the generator replaces the leading and rear fourns with nucleotides.

c) generate sequences completelyde novo.
A pool of sequences can be built iteratively invoking the sequence wizard repeatedly

using different parameter sets. The major expansion of the basic algorithm is the
consideration of preset nucleotides that predefine the choice of the successor nodes, thus
guiding the path finding procedure.

The user can also use the DNASequenceGenerator as a melting temperature (Tm)
calculator for whole sequence pools. After importing the sequences to the pool, Tm is
calculated automatically for each sequence. After changing the pool conditions, Tm will
be re-calculated for all sequences in the pool.

Pool conditions that can be parameterized by the user are sample concentration,
monoionic salt concentration and formamide concentration. The methods to estimate the
melting temperature that can be chosen from are the following.

• Wallace rule: 2 °C for each AT-base pair, 4 °C for each GC-base pair.
• GC-% formula: 81.5 + 0.41 * GC ratio – 500 / length.
• nearest-neighbor method [6, 29] with parameter sets from Breslauer [6], Santa-

Lucia [30] and Sugimoto [37].
All temperatures are corrected due to monoionic salt and formamide concentrations

by adding + 16.6*[Salt] – 0.62*[Formamide].

5 DNASequenceCompiler
5.1 The principle

The correspondence of Chomsky-classes of grammars to certain implementations of
self-assembling DNA molecules was noted by Winfree et al. [40]. In particular it was
shown that the self-assembly of linear, branched and double-crossover molecules is
capable of simulating the word generation process for regular, context-free and universal
languages, respectively. The input molecules in such a system represent the rules of a
grammar. Like the application of grammar rules to a given start symbol assembles
terminal symbols to a word of the language defined by the grammar, hybridization
assembles the rule molecules (which inherently also represent the right hand terminal
symbols) to bigger molecules. Thus, defining rules of a grammar can be considered as a
programming step, predetermining the self-assembly process of DNA molecules. The
major problem with the design of rule molecules is to ensure that their hybridization
behavior really resembles the grammar’s word construction.

The program DNASequenceCompiler has been developed for this purpose [12]. It
translates rules of a regular grammar to molecules capable of self-assembling to linear
structures. Since the rule of a regular grammar has the form A→ bC, where A and C are
variables and b is a terminal symbol, the rule molecules consist of a double stranded core
sequence for the terminal symbol and sticky ends for the left and right hand variables. For
terminating rules of the form A→ b or S→ bC, where S is the start symbol, one end of
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the rule molecule can be blunt (no sequence will be generated for the start symbol S) or
contain an additional sticky end for further assembly.

Here again, uniqueness must be secured when concatenating variable and terminal
sequences. By concatenation, base strands that overlap both sequences appear in these
junctions not regarded in the single sequence generation process. In fact, it may be
necessary to tolerate multiple uses of base strands in these junctions (see below).

5.2 The program
This tool consists of a graphic user interface, which is primarily a simple text editor

for writing the source code files, and the command line based core program, which can
be called by the GUI. Such a source code file is the input for the compiler and contains
not only the rules, but also parameters like sequence length, melting temperature and so
forth. Default values can be defined, so that not all properties must be set for each and
every sequence. Parameters for the estimation of melting temperature are also set in this
file. Additionally, sequences that do not appear in the rules but should be dissimilar to the
new sequences can be preset. Restriction sites or other sticky ends can be declared that
are attached to the start and end terminal sequences, e.g. for cloning of the assembled
word molecules.

When being started, the compiler parses this source code file and reports errors it
finds in the rules or parameters. It then tries to find sequences that meet the given
restrictions. If successful, it writes these sequences into several output files: text files
containing the sequences for variables and terminal symbols, a text file showing the
double stranded rule molecules, a pool file that can be loaded into the
DNASequenceGenerator, and a text file containing messages the compiler wrote to the
command shell.

By setting an according parameter in the source code file the user can subsequently
start an analysis of the rule molecules. The program then writes base strands that
occurred more than once into a text file, along with information where to find these base
strands in the sequences.

5.3 Differences to basic algorithm
Here, the sequences are not merely a collection of single sequences, but terminal and

variable sequences become connected, first when building a rule molecule and then again
in the self-assembly of these molecules. At these junctions, base strands overlapping both
connected sequences come into play. For obtaining uniqueness, these emerging base
strands have to be regarded in the sequence generation process, too. This is achieved by
generating all terminal sequences first and then finding variable sequences by letting the
according paths start at the last base strand of the 5’-adjacent terminal sequences and
ending the path search at the first base strand of the 3’-adjacent terminal sequence.

Furthermore, a variable can be adjacent to several different terminals in different
rules, andvice versa. Therefore, the paths starting from different terminal sequences are
prolonged in parallel and converge to one variable path, and after the variable sequence is
complete this path diverges into several terminal paths (Figures 7and8).

Finally, when such a path should diverge into more than four paths, nodes must be
used in several braches because each node has at most four successors available. A
parameter controls for how many steps the algorithm tolerates this inevitable violation of
uniqueness.



7

6 Quality Comparisons with Other Generators
In order to compare our sequence generation algorithm with other approaches, we

analyzed sequences from several publications and generated sequences with comparable
restrictions with DNASequenceGenerator. We computed nb for the published sequences,
and minimum, maximum, average and standard deviation for melting temperature and
homology. Sequences were taken from the publications of Tanaka et al. [39], Shin et al.
[34], Arita et al. [1], Faulhammer et al. [11], and Deaton et al. [10]. Melting temperature
was estimated with the parameter set of SantaLucia et al. [30], sample concentration was
2*10-7 M, salt concentration was 0.05 M, and formamide concentration was 0.0 M.
Complete generator parameter sets can be downloaded from our website.

Tanaka et al. applied simulated annealing to optimize a set of 20 14-mers [39]. The
evaluation function was a weighted sum of different terms evaluating dissimilarity, GC
content, melting temperature, self-complementary sequences, complete hybridization at
the 3’-end, and continuous appearance of the same base. Dissimilarity was estimated with
H-measure.

Table 1:Comparison of the sequences of Tanaka et al. and our competing sequences. Shown are the
sequences, the minimum length of the base strands for which the sequences are nb-unique, homology and
melting temperature. In the Tm and Homology fields the first line contains the minimum and maximum
value, the second line contains the average and the standard deviation.

Tananka et al. DNASequenceGenerator
Sequences cgagacatcgtgcatatcgt

tatagcacgagtgcgcgtat
gatctacgatcatgagagcg
tctgtactgctgactcgagt
cgagtagtcacacgatgaga
agatgatcagcagcgacact
tgtgctcgtctctgcatact
agacgagtcgtacagtacag
atgtacgtgagatgcagcag
atcactactcgctcgtcact
tcagagatactcacgtcacg
gacagagctatcagctactg
gctgacatagagtgcgatac
acatcgacactactacgcac

aaagccgtcgtttaaggagc
tagtcgcgtgatttggaagg
tacgtctcgaactgatagcc
gctgtctttcgtcaataccg
tgatcttgtaaaggccaggc
tgcagaaaaactatgccgcc
ctgaacggaatctagtagcg
tacgatacttggcgagccat
gcgcggacaattcattggtt
aatcgcagtacagatggtgg
gtctacggttctcttacgct
cttaggcaggtgccacatat
ggatgaccagagcacttcaa
ccgcaatccggtgaaattag

nb 9 5

Homology 0.25 to 0.45
0.38 ( ± 0.05)

0.25 to 0.40
0.36 ( ± 0.04)

Tm
58.82 to 62.81
60.62 ( ± 1.18)

59.34 to 61.69
60.33 ( ± 0.73)

The width of the range of melting temperatures is only slightly better for our
sequences, as is homology. The major advantage of our sequences lies in the length of the
base strands. On the other hand, the sequences of Tanaka et al. have no continuous run of
the same base strand, a criterion we neglected when generating our sequences. We only
prohibited runs of more than two consecutive guanine bases.

Shin et al. generated 7 20-mers with an evolutionary algorithm [34], computing
fitness with similar evaluation terms as those from Tanaka et al.

Table 2:Comparison of the sequences of Shin et al. and our competing sequences. The layout is the same
as inTable 1.

Shin et al. DNASequenceGenerator
Sequences aggcgagtatggggtatatc

cctgtcaacattgacgctca
ttatgattccactggcgctc
atcgtactcatggtccctac

aaagccgtcgtttaaggagc
tagtcgcgtgatttggaagg
tacgtctcgaactgatagcg
cttcgtgtcggccatcatat
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cgctccatccttgatcgttt
cttcgctgctgataacctca
gagttagatgtcacgtcacg

tcatgttggcaccgtatgca
ggttcttacgctctactgca
ttacacttgaagctggctcg

nb 7 5

Homology 0.25 to 0.55
0.37 ( ± 0.06)

0.30 to 0.40
0.37 ( ± 0.04)

Tm
56.95 to 62.08

59.76 ( ± 2.00)

60.30 to 61.08

60.79 ( ± 0.24)

The melting temperature range of our sequences is definitely narrower. Also the
uniqueness measures nb and homology are improved. Compared to the sequences from
Tanaka et al. those from Shin et al. have more continuous runs of the same base, in
particular there is one 4 nt long guanine subsequence.

Arita et al. generated a set of 9 15-mers and 3 20-mers with a genetic algorithm [1].
Fitness was evaluated considering Hamming distance, base repetition, GC content
distribution, false position of restriction site and complete hybridization at the 3’-end.

Table 3:Comparison of the sequences of Arita et al. and our competing sequences. The layout is nearly the
same as inTable 1, melting temperature is regarded for the subsets of 15-mers and 20-mers, respectively.

Arita et al. DNASequenceGenerator
Sequences ccgtcttcttctgct

ttccctccctctctt
cgtcctcctcttgtt
ccccttcttgtcctt
tgcccctcttgttct
ctcctcttccttgct
cttctcccttcctct
ccttccttccctctt
tccccttgtgtgtgt
gagagagaggccccctatcc
gaagagaagggcacccctcc
gtggtgttgcgtcccttccc

aaagccgtcgtttcc
ttgtggtactctgcg
tattagatggccgcc
ctagctcctttgtcg
gcattgtagtggctg
ggcatatagcgtgac
gttattgcgacctcg
agtcatggaccaacg
gaacggttaccgatc
aaagacgtgtgaagtgcgct
gacgaaagttcagcagcgaa
tgttaaaatcaggctcgcgc

nb 10 5

Homology 0.00 to 0.73

0.38 ( ± 0.19)

0.27 to 0.47

0.39 ( ± 0.06)

Tm (15-mers) 49.29 to 52.79
50.61 ( ± 1.12)

49.29 to 51.76
50.63 ( ± 0.85)

Tm (20-mers) 62.56 to 62.72
62.61 ( ± 0.13)

62.08 to 62.56
62.34 ( ± 0.24)

Table 4:Comparison of the sequences of Faulhammer et al. and our competing sequences. The layout is the
same as inTable 1.

Faulhammer et al. DNASequenceGenerator
Sequences ctcttactcaattct

catatcaacatctta
atcctccacttcaca
ttaaaatcttccctc
ctatttctccacacc
gcttcaaacaattcc
aactctcaaattcaa
ctaacctttacttca
cattccttatcccac
caccctttctcctct
tcctcacattactta
acttcctttatatcc
ttataacaaacatcc
acataaccctcttca
accttactttccata
gtacattctccctac
cataatcttatattc
ataatcacatacttc
tccaccaactaccta
ttttaaatttcacaa

aaagccgtcaaatac
tacctttttgtctcg
taagtatatcgtgcc
agtgacactagcatt
aagctattgattggc
cttctctcacctata
ttacagcgttttacc
ggcaagaggaataat
tggtaggccatttaa
cacttgagtacaaca
ggatgtccttgttta
gcgaaaattaactcc
gtctgagctgataaa
acaggcgtatctaat
gatccggttactaaa
atgaggcagtcttta
tgcgactatgttatg
acctgactcgtaata
accaaaccatgatga
gtaccgttgaattgt

nb 8 5
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Homology 0.13 to 0.67
0.39 ( ± 0.10)

0.20 to 0.47
0.39 ( ± 0.06)

Tm
33.44 to 40.00
42.00 ( ± 4.12)

44.01 to 51.76
45.25 ( ± 0.59)

While the melting temperature ranges are comparable (which is remarkable since the
GA did not consider melting temperature but only GC content), our sequences are
significantly more dissimilar. This probably lies in the difficulty of finding appropriate
weights for the different fitness evaluation terms, which Arita et al. mention in their
publication.

Faulhammer et al. generated a library of 20 15-mers with their program PERMUTE
that repaired sequences until they met the criteria [11]. Similarity was measured with
Hamming distance, additionally hybridization of any two sequences by more than seven
consecutive bases was prohibited. Further, melting temperature should have an average
of 45 °C.

Our sequences are more dissimilar with respect to both measures. The range of
melting temperature is significantly narrower for our sequences. The deviation of the Tm

average from 45 °C for the sequences of Faulhammer et al. is probably based on the use
of a different estimation method or parameter set.

Deaton et al. used a genetic algorithm to generate 7 20-mers, prohibiting several
types of mishybridization through Hamming distance restrictions [10].

Table 5:Comparison of the sequences of Deaton et al. and our competing sequences. The layout is the
same as inTable 1.

Deaton et al. DNASequenceGenerator
Sequences cttgtgaccgcttctgggga

cattggcggcgcgtaggctt
atagagtggatagttctggg
gatggtgcttagagaagtgg
tgtatctcgttttaacatcc
gaaaaaggaccaaaagagag
ttgtaagcctactgcgtgac

aaagccgtcgtttaaggacc
accattttggaggtggaacg
tatatcgtagagccacacgc
tccgcgtactgataatcctc
atatgcttaggcacggttgg
tctcgtgaattggtctggac
ttactcatctctgtgacgcc

nb 9 5

Homology 0.25 to 0.50
0.35 ( ± 0.07)

0.25 to 0.35
0.34 ( ± 0.03)

Tm
52.67 to 68.91
59.21 ( ± 5.57)

58.34 to 59.86
59.18 ( ± 0.61)

Both dissimilarity measures deliver better values for our sequences, in particular the
minimum base strand length. The melting temperatures of our sequences are distributed
conspicuously closer.

7 Compiler example: 32-bit molecules
Using the DNASequenceCompiler, we designed a molecular 32-bit data structure,

using four byte-molecules. The byte-molecules consist of eight rule molecules, whose
terminal sequences represent a 0 or 1 each, while the variable sequences determine the
position of this bit in the byte. Further, a byte-molecule is delimited by an end rule
molecule and one out of four different start rule molecules, which serves as the “address”
of the byte in the four-byte data structure. Terminal sequences are longer than variable
sequences and, consequently, have a higher melting temperature so that the rule
molecules are stable while self-assembling. The melting temperatures lie in a 3 °C wide
range for each group of sequences, avoiding bias in the self-assembly process.
Subsequences with three or more consecutive guanines are prohibited because of the
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danger of quadruplex formation. Because each terminal sequence is flanked by eight
different variable sequences, some uniqueness violation at the junctions has to be
allowed. The start and end rules are terminated by restriction sites.

In one of 25 trials with different random number generator seeds the program
managed to generate sequences with the given restrictions. On a computer with an AMD
Athlon CPU with 900 MHz and 256 MB RAM the compiler needed 7 seconds to find the
sequences. The output files can be seen inFigures 9and10.

8 Discussion
8.1 n-uniqueness

The concept of uniqueness presented in this paper is designed to avoid
mishybridizations, not only between different DNA molecules, but also between different
regions of one and the same molecule. By allowing subsequences to appear only once
and prohibiting the appearance of their reverse complements we achieved this goal. But
some secondary structures must be regarded carefully. E.g.,5’-accgt aagc-3’ and
5’-gcttg cggt-3’ have a single-base mismatch at the underlined base and thus are 5-
unique, but they will probably form a duplex that would be only slightly less stable than
the perfectly matching ones. This problem can be handled by setting the maximum
homology parameter (the H-measure based measure) to a value less than 1, but only at
the cost of additional running time, because the pairwise comparison of the sequences is
computationally expensive. Single-base bulges in one strand only (e.g. for5’-
accgt aagc-3’ and 5’-gcttcggt-3’ ) pose a similar problem which cannot be
handled by restricting the H-distance. Furthermore,gcgc aaagcgc is 5-unique, but may
form a hairpin loop with the underlined parts building the stem.

Obviously, it is important to choose the base strand length as small as possible. In
particular, it should be significantly smaller than the sequence length, so that the intended
hybridizations occur at a significantly higher temperature than these mishybridizations.

8.2 The algorithm
According to equation (1), the size of the graph grows exponentially in the base

strand length. Thus, the worst case running time also grows exponentially. The actual
running time strongly depends on the quality of the case. Obviously, restrictions leading
to the prohibition of certain base strands (e.g. avoidance of start codons) affect the
running time less negative than those triggering backtracking, especially at the end of
sequences (e.g. melting temperature restrictions). For most of the examples we have
examined, the generation of the sequences (or the notification of failing to generate the
sequences) only took minutes or even seconds.

With an EA, for example, the maximum running time would be easier to control.
However, it is uncertain how the evolved sequences would meet the different criteria
after a predetermined time, whereas the algorithm presented in this paper enforces strict
compliance with the given restrictions. A particularly hard problem when using an EA
would be to optimize multiple criteria at the same time, e.g. dissimilarity and melting
temperature.

Other graph-based approaches besides greedy algorithms may be promising and
deserve examination.
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8.3 Comparison to similar approaches
The definition of base strands is similar to that of “critons” in the DNA design

program of Seeman et al. [31, 32], named SEQUIN. But our algorithmic approach is
different, especially it is fully automatic unlike the semi-automatic, interactive SEQUIN.
Furthermore, particularly the DNASequenceCompiler aims at a different field of appli-
cation.

The concept of overlapping subsequences and the prohibition of them or their reverse
complements is also related to modified DeBruijn-sequences [3, 36]. With that approach,
one gets a long sequence from which a set of shorter n-unique sequences can be cut out.
If one wants the sequences to meet additional restrictions, e.g. have a certain melting
temperature, and appropriate subsequences to cut out are not found, a completely new
DeBruijn-sequence has to be generated, discarding the good subsequences found so far.
Our graph-based algorithm searches one desired sequence at a time, so when searching
for one sequence one does not have to discard the ones already found. Backtracking gives
more flexibility in the order of the base strands, because it can search new paths as
opposed to being restricted to one given long path.

As the comparison with several published sets of sequences have shown, the
DNASequenceGenerator is capable of generating comparable sequence libraries. In most
cases the sequences generated with our program were better in respect to dissimilarity
measures and to melting temperature range. No more than three runs of the generator
were executed for each comparison case, often even the first run generated the sequences
presented. Most runs took three seconds or less on a computer with an AMD Athlon CPU
with 900 MHz and 256 MB RAM, only one run needed 1 minute and 10 seconds. Hence,
the computational cost and the effort for the user was quite low.

The compiler example demanded more efforts since 25 runs were needed to
generate the desired sequences. But here, the restrictions were very strong. Also the
problem the compiler has to resolve is a lot harder than the one posed for the generator
because of the additional requirement for concatenations.

9 Future work
Considering the problems mentioned in the discussion section, the measure of dis-

similarity (the n-uniqueness) should be improved, e.g. including thermodynamic
information. More comparisons with published algorithms and sequences will give
further insight on the strengths and weaknesses of our approach.

Currently, we are expanding the compiler to generate sequences for molecules
capable to build more complex structures, including e.g. junctions, hairpin loops and
crossover molecules. Therefore, an input language more powerful than regular grammar
rule sets is needed. Simply using rules of more general grammars does not seem
appropriate, because one had to choose one fixed form of molecules representing certain
rules. In order to be more flexible with respect to the molecule structure, a molecule
description language is currently being developed.
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acgcgctca
acgcgc

cgcgct
gcgctc

cgctca
} base strands

complete sequence

Figure 1: A sequence of length ns = 9 consisting of (ns – nb + 1) = 4 overlapping base strands of length nb = 6.



16

acgcgc

cgcgca

cgcgcc

cgcgcg

cgcgct

gcgcta

gcgctc

gcgctg

gcgctt
= acgcgctc

Figure 2: Graph of base strands. A sequence of length ns is represented by a path of ns – nb + 1 nodes. The
nodecgcgcg is self-complementary and therefore not used.
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All base
sequences

Sequence
candidates

Sequences
"Good" base
sequences

Palindromes

Filter

etc

Filter
Generate

Uniqueness
Fraying

Backtracking

Tm
GC%

Restriction sites
Homology

etc

GC%
GGG
start codons

Length

Figure 3: The basic sequence generation algorithm. While uniqueness (and the avoidance of fraying) is
enforced inherently by the path searching process, the other requirements are met by filtering base strands
and complete sequences.
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Figure 4: Screenshot of the generator’s main window, containing a pool of sequences. The melting
temperatures were estimated with the nearest-neighbor method, using the parameter set of Sugimoto [37],
with a sample concentration of 2*10-7 M, a salt concentration of 0.05 M and a formamide concentration of
0.0 M.
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Figure 5: Screenshot of the sequence wizard. In this window the user can set the parameters for the
sequences to be generated. Selection of NoGGG prohibits the use of more than two consecutive guanine or
cytosine bases. Activation of NoFraying forces the first and the last base of each sequence to be guanine or
cytosine. The options NoAUG, NoGUG and NoUUG prohibit the use of base strands with the according
start codons as subsequences. The U stands for uracil, a base found in RNA. The program substitutes the
uracil bases with thymine bases. The shown parameters were used to generate the sequences in Figure 4.
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5' agctt ctgatctacgtgttcgggcg 3'

3' a gactagatgcacaagcccgcg gcctttgtag 5'

_
A 0 A

5' cataggaatg cttgctaactaaagggcatc 3'

3' gaacgattgatttcccgtag gtatccttac 5'

_
A 1 A

5' cataggaatg cagagtttacgaggatatac 3'

3' gtctcaaatgctcctatatg gtatccttac 5'
_____

I e BamHI
5' cataggaatg gctttgtttccgtcgagcag g 3'

3' cgaaacaaaggcagctcgtc cctag 5'

compile

Figure 6: Programmed self-assembly. The rules of a grammar are translated into molecules that self-
assemble in vitro as predetermined by the rules. The grammar shown here defines a simple random
bitstring generator.



21

ccgc

attg

vA will be
caaatccgtc

cgcc gcca ccaa

caaa

ttgc tgca gcaa

start

t0 = ggtattaggaagtcagccgc

t1 = cggcaggtcgcttctaattg

...

...

aaat ...

ccgc

attg

vA will be
caaatccgtc

cgcc gcca ccaa

caaa

ttgc tgca gcaa

start

t0 = ggtattaggaagtcagccgc

t1 = cggcaggtcgcttctaattg

...

...

aaat ...

Figure 7: Two terminal paths joining to one variable path, for nb = 4. The last base strands of the terminal
sequences serve as start nodes. Then both paths are generated in parallel until they join at the first node of
the variable sequence (caaa ). Then the variable path is searched normally.
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Figure 8: Terminal sequences can be adjacent to several variable sequences, andvice versa. Therefore, all
variable sequences are generated in parallel.
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Terminals.txt

Start terminator sequences
ts0 tactgcacacagttcggaga 20 0.500000 60.189817
ts1 ggaggtaacaagccgtcata 20 0.500000 59.107435
ts2 acgaacgtatcaagtgtccg 20 0.500000 59.611946
ts3 cgattcggcgctctataaac 20 0.500000 61.607196
Elongator sequences
t0 ggtattaggaaatcagccgc 20 0.500000 59.241532
t1 cggcaggtcgcttttaattc 20 0.500000 61.203583
End terminator sequences
te0 agatgttgtaggctcatcgc 20 0.500000 60.220574

Variables.txt

vA caaatccgtc 10 0.500000 29.602949
vB tcctccttgt 10 0.500000 29.042898
vC atggactcca 10 0.500000 28.501029
vD gctgctagta 10 0.500000 29.370492
vE attgaggcac 10 0.500000 28.268384
vF tggcactact 10 0.500000 29.507577
vG gcagacctaa 10 0.500000 29.300213
vH cagtgatcct 10 0.500000 28.131647
vI tgaatggtcg 10 0.500000 29.953786

Figure 9: Output files with terminal and variable sequences. Each line contains the terminal/variable
symbol, the sequence, its length, GC ratio and melting temperature in °C.
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vD -> t0 vE
gctgctagtaggtattaggaaatcagccgc

ccataatcctttagtcggcgtaactccgtg

vD -> t1 vE
gctgctagtacggcaggtcgcttttaattc

gccgtccagcgaaaattaagtaactccgtg

vE -> t0 vF
attgaggcacggtattaggaaatcagccgc

ccataatcctttagtcggcgaccgtgatga

vE -> t1 vF
attgaggcaccggcaggtcgcttttaattc

gccgtccagcgaaaattaagaccgtgatga

vF -> t0 vG
tggcactactggtattaggaaatcagccgc

ccataatcctttagtcggcgcgtctggatt

vF -> t1 vG
tggcactactcggcaggtcgcttttaattc

gccgtccagcgaaaattaagcgtctggatt

vG -> t0 vH
gcagacctaaggtattaggaaatcagccgc

ccataatcctttagtcggcggtcactagga

vG -> t1 vH
gcagacctaacggcaggtcgcttttaattc

gccgtccagcgaaaattaaggtcactagga

vH -> t0 vI
cagtgatcctggtattaggaaatcagccgc

ccataatcctttagtcggcgacttaccagc

vH -> t1 vI
cagtgatcctcggcaggtcgcttttaattc

gccgtccagcgaaaattaagacttaccagc

vI -> te0
tgaatggtcgagatgttgtaggctcatcgcg

tctacaacatccgagtagcgcctag

vS -> ts0 vA
agctttactgcacacagttcggaga

aatgacgtgtgtcaagcctctgtttaggcag

vS -> ts1 vA
agcttggaggtaacaagccgtcata

acctccattgttcggcagtatgtttaggcag

vS -> ts2 vA
agcttacgaacgtatcaagtgtccg

atgcttgcatagttcacaggcgtttaggcag

vS -> ts3 vA
agcttcgattcggcgctctataaac

agctaagccgcgagatatttggtttaggcag

vA -> t0 vB
caaatccgtcggtattaggaaatcagccgc

ccataatcctttagtcggcgaggaggaaca

vA -> t1 vB
caaatccgtccggcaggtcgcttttaattc

gccgtccagcgaaaattaagaggaggaaca

vB -> t0 vC
tcctccttgtggtattaggaaatcagccgc

ccataatcctttagtcggcgtacctgaggt

vB -> t1 vC
tcctccttgtcggcaggtcgcttttaattc

gccgtccagcgaaaattaagtacctgaggt

vC -> t0 vD
atggactccaggtattaggaaatcagccgc

ccataatcctttagtcggcgcgacgatcat

vC -> t1 vD
atggactccacggcaggtcgcttttaattc

gccgtccagcgaaaattaagcgacgatcat

Figure 10: Generated rule molecules, consisting of the sequences fromFigure 9. Note that there is no
sequence for the start variable vS. Attached to the start and end rule molecules are restriction sites for
further processing steps, e.g. cloning.


