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Abstract. In this study we measure the compression of information in
a simulated evolutionary system. We do the investigation taking introns
in the genome into account. We mainly investigate evolution of linear
computer code but also present results from evolution of tree structures
as well as messy genetic algorithms. The size of solutions is an impor-
tant property of any system trying to learn or adapt to its environment.
The results show significant compression or constant size of exons during
evolution—in contrast to the rapid growth of overall size. Our conclusion
is that an built-in pressure towards low-complexity solutions is measur-
able in several simulated evolutionary systems which may account for
the robust adaptation showed by these systems.

1 Introduction

DNA works principally by coding for the production of proteins, polypeptides or
RNA. One of the many curiosities of biology is that over 70 % of the DNA base
pairs in eucaryotic life forms do not produce proteins, polypeptides or RNA,
[11]. While some of these DNA base pairs are undoubtedly control sequences
that turn other genes on and off, most of them appear to do nothing at all.
Biologists refer to much of this code as ‘ntrons’or ‘Junk DNA’. Excess like this
rarely appears in evolved creatures. Is this code merely excess — useless DNA
that is somehow left over from other times — or has it evolved as a direct result
of the process of evolution?

Biologists are not in agreement on why or how introns have evolved. We
know that the normal DNA repair mechanisms are apparently not applied to
intron segments because the mutation rate in these segments is far higher than
in functioning genes. This suggests that the particular base pair sequence in
introns is not especially important.

Nevertheless, introns appear to serve some purpose (or at least to be a delib-
erately included part of the genome) because of the precision with which they
are handled in the process of protein production. The beginning and ending of
introns are precisely marked by specific base pair sequences. Much protein syn-
thesis begins when a gene produces a strand of mRNA (messenger RNA), which
then produces the protein or protein segment (a polypeptide). What happens
when there are one or more intron segments in the sequence of a gene? The



answer 1s fascinating. The genetic machinery is able to prohibit this genetic ma-
terial from producing polypeptide by curving out and clipping off this genetic
information (Figure 1). Thus, intron sequences are never converted into amino
acids or proteins. Such a purposeful mechanism hardly appears likely to have oc-
curred over and over in the genome (i.e. for every intron) by accident. Somehow,
natural evolution appears to select for the existence of introns.

The facinating fact is that introns emerge in simulated evolution as well.
Genetic Programming (GP) is a form of simulated structure evolution where
computer programs are evolved through simulated natural selection [6]. In GP
the analog to biological introns would be evolved code fragments that do not
affect the quality of an individual. For example: y = y + 0.

The evolution of such code fragments has been repeatedly observed by GP
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Fig. 1.: Introns in Nature and GP. The leftmost image shows how
the introns are curved and cut before transcription.

researchers in tree-based GP-some refer to the phenomenon as bloat , [10], [2].
Some researchers argue that introns appear in GP populations because they
have an important function in evolution. As a result, the algorithm selects for the
existence of GP introns in a wide variety of conditions. Introns can be interpreted
as punctuation characters in the genome, directing the crossover point to feasible
sites. Introns are, however, a decidedly mixed blessing in GP.

Introns have also been applied to Evolutionary Algorithms. For instance,
when GA researchers had previously worked with introns, such studies had been
conducted by explicitly inserting introns into the fixed length GA structure [7].
In GP, by way of contrast, introns emerge spontaneously from the process of
evolution as a result of the variable length of GP structures. This emergent
property may be important to successful evolution [2].

Evolution in nature as well as in computer simulation is a form of learning.
Compression of information is an important concept in the theory of learning. We
argue for the hypothesis that there is an inherent compression pressure towards
short, elegant and general solutions in variable length evolutionary algorithms



and potentially in natural evolution. This pressure becomes visible if the size or
complexity of solutions is measured without introns. The built in ”parsimony”
selection pressure influences generality and adaptiveness of the phenotype. Some
of these effects are positive and some are negative. In this work we provide a
basis for an analysis of these effects and suggestions to overcome the negative
implications in order to obtain the balance needed for successful evolution.

The positive effect of compact information representation is often referred to
as Occam’s Razor. The principle of Occam’s Razor, formulated 700 years ago,
states that from two possible solutions to a problem we should choose the shorter
one. Bertrand Russell claims that the actual phrase used by William of Ockham
was: “It 1s vain to do with more what can be done with fewer”. A famous example
of Occam’s Razor is when the Polish astronomer Copernicus argued in favor of
the fact that the earth moves around the sun and not vice versa, because it would
make his equations simpler. Many great scientists have formulated their own
versions of Occam’s Razor. Newton, in his preface to Principia, preferred to put
it as; “Natura enim simplex est, et rerum causis superfluis non luxuriat”. (Nature
is pleased with simplicity and affects not the pomp of superfluous causes.) The
essence of Occam’s Razor is that a shorter solution is a more generic solution.
The process of inferring a general law from a set of data can be viewed as an
attempt to compress the observed data. In a similar way could the adaptation
of a phenotype be seen as a learning process for shape, behavior and strategy
from a set of selection events.

We would like to argue that one of the foundations of evolution in general
and Genetic Programming in particular is that they have the built in property of
favoring short solutions and sub-solutions. This property may be one of the rea-
sons that evolution works so efficiently and robustly in a diverse set of domains.
The compression property could also be responsible for the ability of a solution
to be generic and applicable to a larger set of data than the set of seen training
data (selection events). The other side of the coin is that the built in compression
pressure in certain cases is too strong and results in premature convergence or
failure to adapt to complex fitness functions. The Evolutionary Algorithm could
choose a short but incomplete solution instead of a long but complete solution.
The strength of the pressure is dependent on the different attributes of a par-
ticular Evolutionary Algorithm such as, representation, genetic operators and
probability parameters.

The bottom line 1s that it is helpful to be aware of this compression pressure
and to try to keep it on a balanced optimum level during evolution. Here we
also try to measure the compression of the active part of the genome. However,
first, we will give a short introduction to evolutionary algorithms and genetic
programming,.

2 Evolutionary Algorithms and Genetic Programming

Genetic programming uses an evolutionary technique to breed programs [6]. First,
a goal in the form of a quality criterion is defined. This so-called fitness function



could, for instance, be the error in a symbolic regression function. The popu-
lation — a set of solution candidates — is initialized with random content, i.e.,
as random programs. In each “generation” the fittest individual programs are
selected for reproduction. These highly fit individuals have offspring through
recombination, often called crossover, and mutation. Various methods exist for
selection and reproduction but the idea is always that better individuals and
their offspring gradually replace the worse performing individuals

The individual solution candidate is represented as a tree which constitutes its
genome. This tree can be seen as the parse tree of the program in a programming
language. Recombination is normally performed by two parents exchanging sub-
trees, see Figure 2.

A typical application of GP is symbolic regression. Symbolic regression is the
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Fig. 2.: hierarchical crossover in genetic programming.

procedure of inducing a symbolic equation, function or program which fits given
numerical data. Genetic programming is ideal for symbolic regression and most
GP applications could be reformulated as variants of symbolic regression. A
GP system performing symbolic regression takes a number of numerical in-
put/output relations, called fitness cases, and produces a function or program
that is consistent with these fitness cases. Consider, for example, the following
fitness cases:

f(2) =6, f(4) =20, f(5) = 30, f(T7) = 56, (1)
One of the infinite number of perfect solutions would be f(z) = z? + z. The
fitness function would, for instance, be the sum of difference between an indi-
vidual’s (function’s) actual output and the output specified by the fitness cases.
The function set, or the function primitives, could in this case be the arithmetic
primitives +, —, -, /, as shown in Figure 2.



We have used a variant of a variable length Genetic Algorithm operating on
a string of bits to evolve an algorithm or program for a register machine [8].
Using a register machine makes the analysis of introns more straight forward,
and using a bit string representation will simplify the complexity reasoning. The
argumentation, however, is analogous for other Evolutionary Systems. Section
5.1 presents results from other paradigms of simulated evolution.

The structures that undergo evolution are variable length strings of 32 bit

instructions for a register machine (CPU). The register machine performs arith-
metic operations on a small set of registers. The 32 bits in the instruction rep-
resent simple arithmetic operations such as "a=b-+c” or ”c=b*5”. The actual
format of the 32 bits corresponds to the machine code format of a SUN-4, which
enables the genetic operators to manipulate binary code directly.
Most other genetic programming approaches use a technique where a problem—
specific language is executed by an interpreter. The individuals in the population
are decoded at run time by a virtual machine. The data structures in those pro-
grams often have the form of a tree.

We have implemented the idea of using the lowest level binary machine code
as the ”programs” in the population. Every individual is a piece of machine code
that is called and manipulated by the genetic operators. There is no intermediate
language or interpreting part of the program. The structure of an individual can
be seen in Figure 3.
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Fig. 3.: Structure of a program individual.

The genetic operators The evolutionary algorithm has the following two
operators:

— A mutation operator changes the content of an instruction by mutating con-
stants and register references.

— The crossover method operates on variable length individuals (Figure 4).
Crossover 1s only allowed between instructions at 32-bit intervals in the
binary string.

All operators ensure syntactic closure during evolution.

The DNA genome in nature has a linear structure. It is a string of letters in
a four letter alphabet. It is furthermore subdivided into genes. Each gene codes
for a specific protein. A gene could thus be seen as a segment of the genome
which can be interpreted — and has a meaning — in itself. In our case a gene is
a line of code representing an instruction or command. Such a command is also
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Fig.4.: Crossover of a machine code program with a linear
genome.

syntactically closed in the sense that it is possible to execute it independently
of the other “genes”. This method thus has some analogy to the gene concept
in nature — it consists of a syntactically closed independent structure which has
a defined starting and ending point. It is in both cases treated as a separate
structure from the whole genome structure.

This variant of genetic programming that uses crossover for manipulations of
whole genes/instructions and mutation for manipulation of the inside of the
gene/instructions can be used with other computer languages than machine code
see for instance.

2.1 Crossover and Fitness

A crossover acting on one block or segment of the code in an individual, might
have different results. In one extreme case the two blocks that are exchanged in
crossover are identical, therefore, the performance of the program is not affected
at all. Normally, however, there is a high probability that the function of the
program is severely damaged, resulting in a fitness decrease for the individual.
In Figure 5 we can see a typical distribution of the effect of crossover on fitness
in an early generation of a symbolic regression problem. The x-axis gives the
change in fitness A fpercent after crossover foreer.( foest =0, fworst = 00 ).

Afpercent = —fbefo}: f_ fafter - 100 (2)

Individuals with a fitness decrease of more than 100 percent are accumulated at
the left side of the diagram. This diagram shows that the most common effect



of crossover is a much worsened fitness (the spike at the left). The second most
common effect is that nothing happens (the spike of zero). Below we use the
term “probability of destructive crossover” for the probability that a crossover
in the program or block will lead to a deteriorated fitness value, comprising the
area left of zero in Figure 1 pg = P(Afpercent < 0).
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Fig. 5.: Effects of Crossover in one generation

3 Introns in GP

Genetic programs do not seem to favor parsimony in the sense that the evolved
program structures become short and elegant measured with the absolute size
of an individual. Instead, evolved programs seem to contain a lot of garbage and
the solutions do not give an elegant impression when first examined.

On the contrary, solutions look unnecessarily long and complex.

Examples of introns can be found in most unedited individuals from a genetic
programming run. The system can be very creative in finding such blocks. Some
typical examples are:

(NOT (NOT X)), (AND ... (OR X X)), (+ ... (- X X)), (* ... (DIV X
X)), (MOVE-LEFT MOVE-RIGHT), (IF (2=1) ... X), (SET A A)

In this paper we give an explanation for why a program has a tendency to
increase its length during the course of evolution (by adding introns) and at the
same time favor Parsimony, and we try to measure the effect empirically. The
crucial point is to measure the size of the code that are exons (not introns) called
effective length instead of absolute length. Observing the effective length will
clearly show that the evolutionary system not only favors parsimonious solutions
for the final result, but constantly, for sub-solutions during the evolution of the
population.



Let us say that we have a simple evolutionary system with fitness proportional
selection and crossover as genetic operators. If we have an individual program
with a high relative fitness in the population, it will be reproduced according
to its fitness by the selection operator. Some of these new copies will undergo
crossover and will loose one block and gain another. If the crossover interferes
with a block that is doing something useful in the program, then there is a
probability that this new segment will damage the function of the block, see
figure 5. In most cases, the probability of damaging the program is much greater
than the probability of improving the function of the block. If, on the other hand,
the crossover takes place at a position within an intron block, then by definition
there will be no harm done to this block or to the program.

A program with a low ratio of effective complexity to absolute complexity
has a small “target area” for destructive crossover and a higher probability to
constitute a greater proportion of the next population.

The additions of introns could be viewed as a way for the program to self-
regulate the crossover probability parameter or as a ” Defense against crossover”
[?].

We can formulate an equation with resemblance to the Schema Theorem [5]
for the relationship between the entities described above.

— Let CF be the effective complexity of program j, and C7 its absolute com-
plexity.

— Let p. be the standard GP parameter for the probability of crossover at the
individual level.

— The probability that a crossover in an active block of program j will lead to
a worse fitness for the individual is the probability of destructive crossover,
p}i. By definition p}»i of an absolute intron is zero.

— Let f; be the fitness of the individual and ft be the average fitness of the
population in the current generation.

Using fitness proportionate selection® and block exchange crossover, for any pro-
gram j, the average proportion Pjt‘"1 of this program in the next generation is:

P;+1NP;-%~(1—Pc'—j'P?) (3)

In short, Equation (3) states that the proportion of copies of a program in
the next generation is the proportion produced by the selection operator less the
proportion of programs destroyed by crossover. Some of the individuals counted
in Pjt"'1 might be modified by a crossover in the absolute intron part, but they
are included because they still show the same behavior at the phenotype level.
The proportion Pjt"'1 is a conservative measure because the individual j might
be recreated by crossover with other individuals.

Equation (3) could be rewritten as:

3 The reasoning is analogous for many other selection methods.
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We can interpret the crossover related term as a direct subtraction from
the fitness in an expression for reproduction through selection. In other words,

P]?+1N(fj_pc'fj'p?'cf/of)?} (4)

reproduction by selection and crossover acts as reproduction by selection only,
if the fitness i1s adjusted by the term:

€

C
pe-fi- g P (5)
J

This could thus be interpreted as if there where a term (5) in our fitness which
is proportional to program complexity.
We now define “effective fitness” f7 as:

€

fe=fi— .f..&.d (6)
5 =Jj = PcJj Ca P;
J

The effective fitness of a parent individual, therefore, measures how many
children of that parent are likely to be chosen for reproduction in the next
generation.* A parent can increase its effective fitness by lowering its effective
complexity (that is, having its functional code become more parsimonious) or
by increasing its absolute complexity or both. Either reduces the relative target
area of functioning code that may be damaged by crossover. Either has the
effect of increasing the probability that the children of that parent will inherit
the good genes of the parent intact. In other words, the difference between
effective fitness and actual fitness measures the extent to which the destructive
effect of genetic operators is warping the real fitness function away from the
fitness function desired by the researcher. In the next part of this text we will
try the compression hypthesis on a large number of simulations in three different
domains.

4 Problem set-up

We decided to study the compression hypothesis on three standard problems.
The problem domains are collected from the machine learning literature [3]. Two
of these are real world problems while one is a difficult artificial data set. The
classification problems were cast into symbolic regression problems. Each class
was given a range. We performed an extensive batch of test runs consisting of 420
complete CGPS runs with a population of 3000 each, evaluating several hundred
billion test cases.

. —t =i+l
* This assumes f ~ f = .



Phoneme Recognition Data Set The phone recognition problem is the same
problem used for comparison between a register machine and a tree-based GP
system mentioned in the previous chapter. The Phoneme recognition database
contains two classes of vowels from isolated syllables spoken by different speakers.
Each input training vector is five dimensional and describes different frequency
properties of a vowel.

The Gaussian 3D Data Set Gaussian 3D is an artificially generated Classifi-
cation problem. It has a three dimensional input and two different output classes.
Class 0 is a set of points with a normal distribution across the three input axes
with zero mean and standard deviation of 1. Class 1 is a similar series of points
except that the standard deviation is 2 [3].

The Iris Data Set The IRIS data set is a well know classification benchmark
from the machine learning community. The data set contains 150 examples of
properties of iris plants which shall be classified into three different plant types.

5 Empirical Results

The average fitness (godness) during evolution of the function during a typical
run is plotted in Figures 6 while 7, shows the evolution of absolute length and
effective length in the same experiment.

Average Fitness
160000 T

“Average Fitness” —

140000
120000
100000 -

80000 [

Average Stand. Fitness

60000 -

40000 -

20000 |-

o

Fig. 6.: Average fitness

To support the hypothesis that compression achieves its goal of protecting
the individual, we have plotted the effect of crossover in different generations.
Figure 8 shows the change of effects of crossover during evolution. This diagram
consists of many diagrams of the same type as Figure 5 placed in sequence after
each other. We can see that the absolutely dominating effects of crossover are
that either nothing happens to the fitness, or the fitness is worsened by more than



Absolute Complexity and Effective Complexity
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Fig. 7.: Average fitness

100 percent. The peak over the zero line increases which indicates a growingly
unaffected fitness. The accumulated destructive effect of crossover to the left
decreases after generation 15 as the ratio between absolute and effective length
increases and the individual becomes more and more protected.

Effects of Crossover during Evolution

Fig. 8.: Distribution of crossover effect during evolution

All runs observed end with exponential intron growth, if given enough time(30-
800 generation) to proceed.

We tried the compression hypothesis on the 480 runs and 3 problems. Com-
pression was measured from the point in evolution where the fitness value sta-
bilised and the evolution of the effective size from this point was taken as the
compression measure. 64 runs ended with increased effective size (most of them a
few percent), 100 runs decreased, 316 runs remained constant. Most runs where
effective size increased show some problem with early termination or bad fitness.
A majority of runs showed stable effective length or compression. Runs which
increased terminated 9 generations earlier on average than the other runs. The
constant or decreasing runs usually displayed this behaviour for several tens of



generations before the run was terminated by an exponential growth in absolute
size (bloat).
The average compression was 4%.

5.1 Other Evolutionary Techniques

The results may be extended to a more canonical GP system with hierarchi-
cal crossover and tree representation. We have so far done initial experiments
with a tree-based GP system doing symbolic regression. The results indicate a
distribution of destructive crossover similar to that in the linear representation
GP system distribution. Figure 10 shows the distribution of crossover effect of
tree based GP system doing symbolic regression over 60 generations. Figure 9
shows the evolution of absolute and effective length in the same experiments.
Few issues in our assumption are specific to linear representation GP system
which together with results such as those in Figure 10 suggests that our results
may apply to a wider domain of systems, see also [9]. Another evolutionary al-
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Fig.9.: tree-based GP

gorithm with varying length binary genome is the messy genetic algorithms [4].
Initial experiments with this representation method for optimisation problems
show similar results and a rapid growth of introns, see Figure 11.

6 Conclusions

In this paper we have measured compression in simulated evolution of struc-
tures. We have investigated the compression factor over a very large number
of simulations (480) and three different domains. We have also showed simi-
lar compression behavior for other types of simulated evolution—messy-genetic
algorithms and tree-structures. All results show a similar pattern where the ab-
solute length of an individual grows rapidely while the used part of the genome



Eifects of Crossover during Evolution

Fig. 10.: Crossover Effects In S-Expression Style GP
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stays constant (after some time), decreases or grows only very slowly. A possi-
ble explanation of this phenomenon is the need to protect the genome from the
destructive effects of the genetic operators. The advantage of this compression
phenomenon is that shorter solutions in often generalize better this could be
one explanation of the power of evolutionary search, possibly extendable beyond
stmulated evolution—to natural evolution.
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