
E L S E V I E R Robotics and Autonomous Systems 25 (1998) 105-116

Robotics and

Autonomous
Systems

Evolution of a world model for a miniature robot
using genetic programming

Peter Nord i n 1, Wol fgang B a n z h a f * , M a r k u s B r a m e i e r 2
Fachbereich Informatik, Universitiit Dortmund, 44221 Dortmund, Germany

Received 6 December 1995; revised 18 November 1997; accepted 27 February 1998

Abstract

We have used an automatic programming method called genetic programming (GP) for control of a miniature robot. Our
earlier work on real-time learning suffered from the drawback of the learning time being limited by the response dynamics of
the robot's environment. In order to overcome this problem we have devised a new technique which allows learning from past
experiences that are stored in memory. The new method shows its advantage when perfect behavior emerges in experiments
quickly and reliably. It is tested on two control tasks, obstacle avoiding and wall following behavior, both in simulation and
on the real robot platform Khepera. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Evolutionary robotics; Genetic programming; World model; On-line learning; Planning

1. Introduction

A very general way of representing and specifying
an autonomous agent's behavior is by employing
a computer language. If one uses a suitable com-
puter programming language every behavior of an
autonomous agent might be specified. The question,
then, arises how to (antomatically) program in that
computer language.

Genetic programming (GP) is a method that recruits
an evolutionary algorithm to evolve computer pro-
grams. It is thus a probabilistic method of automated
programming. If a goal has been defined in form of
a fitness function and a set of instructions has been

* Corresponding author. E-mail: banzhaf@icd.de
1 Present address: Dacapo SA, G6teborg, Sweden. E-mail:

nordin@decapo.se
2 E-mail: brameier@lsl 1.informatik.uni-dortmund.de

determined for use, the genetic programming system
will try to evolve programs that solve the task speci-
fied by the fitness function.

To use a selective process derived from evolution
as a guiding principle for the design of a controller
architecture behaving intelligently could, at first, be
considered an awkward approach. As far as we know
today genetics is only indirectly involved in infor-
marion processing of the brain, although the idea
of genetics as a model of mental processing is not
new. Indeed, it has recently gained more prominence
through work by Dawkins [7], Hofstadter [13] and
Calvin [3,4].

From the time of James [15] who argued that men-
tal processes could operate in a Darwinian manner
scientists have continued to discover the strength of
selective principles in adaptive systems. A case in
point is the following statement by immunologist
Jeme [16]:

0921-8890/98/$ - see front matter © 1998 Elsevier Science B.V. All rights reserved.
PII: S0921-8890(98)00004-9

106 P. Nordin et al./Robotics and Autonomous Systems 25 (1998) 105-116

"Looking back into the history of biology, it appears
that wherever a phenomenon resembles learning, an
instructive theory was first proposed to account for the
underlying mechanisms. In every case, this was later
replaced by a selective theory. Thus the species were
thought to have developed by learning or by adapta-
tion of individuals to the environment, until Darwin
showed this to have been a selective process. Resis-
tance of bacteria to antibacterial agents was thought
to be acquired by adaptation, until Luria and Delbriick
showed the mechanism to be a selective one. Adap-
tive enzymes were shown by Monod and his school
to be inducible enzymes arising through the selection
of preexisting genes. Finally, antibody formation that
was thought to be based on instruction by the antigen
is now found to result from the selection of already
existing patterns. It thus remains to be asked if learn-
ing by the central nervous system might not also be a
selective process; i.e., perhaps learning is not learning
either". [16]

More recently, selectionist approaches to learn-
ing have been studied in detail by Edelman and his
collaborators (see [8] and references therein). Why
would it be impossible to consider machine learning
and man-made adaptive systems from much the same
perspective?

In the wake of the spread of Darwinian thinking in
computer science the use of evolutionary methods has
been reported in robotic control in a number of pub-
lications. Robot controllers have, for instance, been
evolved using dynamic recurrent neural nets [5,12].
Genetic algorithms have been used in [9] for generat-
ing wall-following behavior. Several experiments have
also been performed where a controller program has
been evolved directly through genetic programming
[11,17,28].

We, too, have reported earlier on our first exper-
iments using GP to control a real robot that has
been trained in real-time with actual sensor values
[23,25]. In a real environment our system had to
evolve robust controllers because noise was present
everywhere and the number of real-life training sit-
uations was virtually infinite. Consequently we were
forced to devise an online learning method which en-
sured learning of behavior while each individual was
tested against different real-time (and noisy) fitness
cases which were sampled probabilistically from the

environment. This procedure might have resulted in
"unfair" fitness comparisons where individuals were
confronted with very different situations. However,
our experiments showed that - over time - the fluc-
tuations of the environment cancelled out and the
system approached a robust state. The advantage
of our method, which we call stochastic sampling,
was a considerable acceleration of the evolutionary
process.

Using this technique the evolution of a successful
control program was driven by continuous interaction
with and feedback from the environment (reinforce-
ment learning). There was, however, no memory
of past experience other than the information im-
plicitly stored in the genetic material. Hence the
main disadvantage of the approach was the learning
speed being limited by the response dynamics of
the environment, i.e. most of the learning time was
spent waiting for the reinforcement signal from the
environment.

In order to overcome this problem we have proposed
an extension of this approach in [2,24] that might be
called online learning from past experiences. It will be
the subject of this contribution. It is built on past ex-
periences held in a memory buffer and associated with
a positive or negative evaluation with respect to the
control task. The learning task here is not to evolve a
controller as a function - directly mapping sensor in-
puts to actions that corresponds to a certain behavior.
Rather a generalising world model should be derived
from the experiences in memory to serve as a basis for
planning future actions while remembering past expe-
riences. We show that, besides speeding up learning
and allowing for a much more systematic exploration
in the first place, this memory-based approach reaches
perfect behavior in a very high percentage of the ex-
periments.

The rest of this paper is organized as follows: In
Section 2 we start by briefly introducing the genetic
programming paradigm in general. We present the real
miniature robot Khepera and the simulator used in the
experiments in Section 3. The memory-based control
architecture is presented in Section 4. The objectives
of training in the experiments, obstacle avoiding and
wall following behavior, are described in Section 5. We
present our results in Section 6. Finally we summarize
the results, discuss conclusions and present ideas for
future work.

P. Nordin et al. /Robotics and Autonomous Systems 25 (1998) 105-116 107

(* (* 2 x) (+ y 1))
"'...

Parents

........ (+ 4 (* x x))

....' ' .

Children

(* (* 2 x) x)

(+ 4 (* (+ y l) x))

Fig. 1. Crossover in hierarchical GP.

2. Genetic progranuning

Evolutionary algorithms mimic aspects of natural
evolution to optimize a solution towards a defined
goal. Darwin's principle of natural selection plays
a key role when differential fitness advantages are
exploited to lead to better solutions.

A general evolutionary algorithm may be summa-
rized as follows:
1. A population of solutions is initialized to random

content.
2. In an iteration loop: Individuals are selected from

the population randomly and are compared, based
on their fitness. The fitness measure defines the
problem which should be solved by the algorithm.
Only the fitter individuals are modified by the fol-
lowing genetic operations while the population size
is kept constant.
• Identical reproduction.
• Exchange of a (small) substructure in an indi-

vidual at a random position (mutation).
• Exchange of substructures between two individ-

uals (crossover).

3. The currently best individual in the population rep-
resents the best solution found so far.
Different research subfields of evolutionary algo-

rithms have emerged, such as genetic algorithms [14],
evolution strategies [26] and evolutionary program-
ming [10]. In recent years these methods have been
applied successfully to a wide spectrum of problem
domains, especially in optimization.

A comparatively young and growing research area
in this context is genetic programming (GP) [17].
Genetic programming uses the mechanisms behind
variation and selection for the evolution of computer
programs. The approach has been formulated origi-
nally using tree structures that were represented by
variable length LISP S-expressions as individuals. The
inner nodes of these trees are functions while the leafs
are terminals that represent input variables or con-
stants. The operators applied to generate variants, i.e.
crossover and mutation, must guarantee syntactic clo-
sure during evolution. In other words, no syntacti-
cally incorrect programs are allowed to be generated.
Fig. 1 illustrates the crossover operation in tree-based
genetic programming.

108 P. Nordin et al./Robotics and Autonomous Systems 25 (1998) 105-116

In recent years, the scope of genetic programming
has expanded considerably and now includes evolution
of linear and graph-like representations of programs
as well, in addition to tree respresentations [1].

2.1. Machine code genetic programming

In the experiments described below we use a genetic
programming system with a linear program represen-
tation. In our Automatic Induction of Machine Code
by Genetic Programming (AIMGP) system (formerly
known as CGPS [20,21]) an individual is composed
of a variable number of 32-bit machine code instruc-
tions for a register machine. Individuals are directly
manipulated as binary machine code in memory and
directly executed without passing an interpreter dur-
ing the fitness calculation. This results in a significant
speed-up compared to interpreting GP systems in, e.g.,
tree representation. Another advantage is the memory
efficiency of this system.

The function set consists of the arithmetic opera-
tions ADD, SUB and MUL, the shift operations SLL
and SLR and the logic operations AND, OR and XOR.
All these instructions operate on registers or integer
constants (terminal set) and correspond to simple C-
expressions such as i 0 = i 1 + i 2 or i 0 = i 1 * 2 7. In ad-
dition to the configuration of the system in [21] we
use the branch instructions BG (branch on greater)
and BLE (branch on less or equal) here. The condi-
tions of these branches are composed of specific bits
in the processor status register (PSR) that can be mod-
ified by certain operations (here SUB). If a condition
is false, the instruction directly following the branch
instruction is skipped. Using branches has proved to
be very important specifically for the wall following
behavior (see Section 5.3).

The following is an individual program as it looks
if disassembled into a C-program.

unsigned int ind(i0, il, i2, i3, i4, i5)

unsigned int i0,il,i2 i3,i4,i5;
{

il=i0 * i2

{ i5=il - 3; greater = ((int)i5) > 0); }

i4=i0 & 12;

i2=i4 + 53;

if (!greater) i4=il ~ 2;

i2=il * 77;

[Paroot,]

i...o,2
[1001'00011010...110] Instruction

Fig. 2. Crossover in linear GE

i3=i2 + i4;

i5=i4 + 0;

i0=i5 << 4;

if (greater) i0=i3 << 8;

return (i0) ;
}

Similar to tree-based GP, AIMGP uses a crossover
(and mutation) operator to generate variants. Fig. 2
illustrates the two-point string crossover employed in
the linear genetic programming system. Crossover can
occur between instructions (atomic units) only but not
within. The mutation operation flips bits inside the
32-bit instructions. It is ensured that only instructions
from the function set can be created with valid ranges
of registers and constants.

The evolutionary algorithm of the system realizes a
simple steady state tournament selection:
1. Select four arbitrary individuals from the popula-

tion.
2. Compare the fitness of the individuals in pairs.
3. Copy the two winners and let the copies undergo

modifications by crossover and mutation.
4. Replace the two losers with the two new offspring.

3. The Khepera robot

Our experiments were performed with a standard
autonomous miniature robot, the Swiss mobile robot
platform Khepera [19]. It is equipped with eight in-
flared proximity sensors. The mobile robot has a cir-
cular shape, a diameter of 5.5 cm and a height of 3
cm. It possesses two motors and on-board power sup-
ply. The motors can be independently controlled by
a PID controller. The eight infrared sensors are dis-
tributed around the robot in a circular pattern. They

P. Nordin et al./Robotics and Autonomous Systems 25 (1998) 105-116 109

Fig. 3. The Khepera robot.

i

'\
l \\'

/ i \\~

IR proximity sensor's Siemens SFH900

\
~ m E / / "

/ j J

/
/ '

Fig. 4. Positions of the IR proximity sensors.

emit infrared light, receive the reflected light and mea-
sure distances in a short range of 5 cm. Figs. 3 and 4
show the robot and its sensor positions.

The robot is equipped with a Motorola 68331
micro-controller which can be connected to a work-

Fig. 5. The training environment.

station. It is possible to control the robot in two ways.
The controlling system may be run on a workstation
with data and commands communicated through the
serial line. Alternatively the controlling system is
cross-compiled on the workstation and down-loaded
to the robot which then runs the complete system
in a stand-alone fashion. The version of the control-
ling GP-system described in these papers runs on
the workstation due to high memory requirements
involved. The micro-controller has only 256 KB of
RAM and a ROM containing a small operating sys-
tem. The operating system has simple multi-tasking
capabilities and manages the communication with the
host computer.

The robot also has several extension ports where
peripherals such as grippers and TV cameras might be
attached.

3.1. The training environment

The training environment for the robot is about
70 cm x 90 cm in size. It has an irregular boarder
with different angles and four deceptive dead-ends
in each corner (see Fig. 5). In the large open area
movable obstacles may be placed. Friction between
wheels and surface is low enabling the robot to slip
with its wheels during a collision with an obsta-
cle. The wails and obstacles are chosen white here
to give a perfect reflection to the infrared sensor
light.

110 P. Nordin et al. /Robotics and Autonomous Systems 25 (1998) 105-116

Fig. 6. The Khepera simulator.

3.2. The Khepera simulator

In addition to the experiments done with the real
Khepera robot we tested our approach in a software
simulation using the Khepera simulator [18]. The
simulation allows test runs without looking at the
robot all the time. In this way much more and longer
tests have been performed than had been possible
with the real robot (see Section 6).

Fig. 6 gives an impression of the simulator interface.
The user is allowed to build an enviroment for the sim-
ulated robot from little "bricks" that can be arranged in
arbitrary positions. While the robot is moving, the cur-
rent sensor and motor values may be observed on the
screen. The interprocess communication between the
GP system and the simulator works with two UNIX
pipes - one for each direction.

For two reasons the simulation is quite realis-
tic. First, the proportions of robot size and sen-
sor range correspond to reality. Second, noise has
been artificially added to the simulated sensor
and motor values. The deviations from exact val-
ues range up to 4-5%. Noise is extremely impor-
tant in simulations for the diversity of occurring
events and for the degree of generalization reach-
able by the learning system. Reynolds showed that

a noisy fitness enviroment allows for the develop-
ment of more robust controllers in genetic program-
ming [27].

4. The memory-based GP control architecture

The memory-based control architecture consists of
two separate processes. One process communicates
with the robot and stores past events into memory.
The other process is constantly trying to learn and to
induce a model of the world consistent with the data
in memory. We call the former process the planning
process because its main objective is deciding what
next action to perform given the current best model
of the world supplied by the learning process. The
latter process is called learning process and denotes
the evolutionary process of the GP system here. Fig. 7
gives a schematic illustration of the architecture of the
control system.

4.1. The planning process

The main execution cycle of the planning process
may be divided into the following five steps:

I! Nordin et al/Robotics and Autonomous Systems 25 (1998) 105-116 111

1.
2.

3.

4.

5.

6.

Event : Evait

131 82 s3 94 ml m2 p

3”

Events

(II

Robot

0

Current sensor values

I I

Best motor action
sl,s2,s3,54 ml, m2

Find motor action
wfih best evaluation p

CGPB L-l
Learning

f(sl,s2,a3,s4,ml .m2) = p

c
Planning

Fig. 7. Schematic view of the memory based control architecture.

Read the current sensor values from the robot.
Calculate the desired evaluation of the lust event
from the current sensor values (reinforcement
signal).
Store the last event and its evaluation in memory
as an event vector.
Use the current sensor values and search through
all motor actions faa the best predicted evaluation
in the currently beat world model.
Send the best motor speed actions to the robot.
Sensor values and rnotor speed form a new event.
Sleep 300 ms.

The planning process starts with reading the robot
sensors. The current sensor values are used to evaluate
the last event, i.e. the sensor situation and the resulting
action of the last planning phase. The evaluation is
stored, together with the last event as an event vector
(fitness case). An event vector consists of eight sensor
values, two motor speeds and the measured evaluation

for this event. Thus, the vector represents what the
agent experienced, what it did and what the results
were of its action.

The current sensor values instantiate the corre-
sponding variables in the currently best world model
(best program). The objective is to find a favor-
able action to this current sensor situation. With the
Khepera, the possible actions are 16 different motor
speeds for each of the two motors. Each motor has
8 speeds forward and 7 backwards and a zero speed.
Combining all alternatives of the two motors there are
256 different actions altogether to choose from. This
comparatively small figure means that we can easily
afford to search through all possible actions while the
world model provides us with a predicted evaluation
for each of them. The induced model in the form of a
computer program from the learning process can thus
be seen as a simulation of the enviromnent consistent
with past experiences, where the robot can simulate

112 P. Nordin et al./Robotics and Autonomous Systems 25 (1998) 105-116

different possible actions. The action which gives
the best evaluation is remembered and sent as motor
speed actions to the robot.

In order to get feedback from the environment the
planning process has to sleep and wait for results, i.e.
the new sensor situation, of the chosen action. The
planning process sleeps 300 ms while the robot per-
forms the movement determined by the motors speed
signals. This delay time is nearly a minimum in order
to get usable feedback from changes in sensor values.

It is then the responsibility of the learning process
to evolve a program that simulates the environment
as good and as consistent as possible with respect to
the events in memory. As we will see below, this can
be done by a straightforward application of symbolic
regression through genetic programming.

4.2. The learning process

, " '•

Obstacle avoiding

The objective of the learning process is to find a
program (function) p which will predict the mea-
sured evaluation v of an action (m l, m2) given
the initial conditions in form of sensor values
(Sl, S2, S3, S4, S5, S6, S7, S8):

p (s l , S2, S3, S4, S5, S6, S7, S8, m l , m2) = v.

This is a problem of symbolic regression, i.e. inducing
a symbolic equation fitting the given numerical data.
Genetic programming is ideal for symbolic regression
and most GP applications can be reformulated as vari-
ants of symbolic regression.

The central idea we discuss in this paper is the evo-
lution of a world model resulting in a relation between
an event and an evaluation with reference to a specific
control task. The approach is memory-based in that
past events or experiences are "associated" with val-
ues that might be termed "feelings" (feedback of the
fitness function).

4.3. Giving the system a "Childhood"

Our first approach to managing the memory buffer
when all locations (here about 60) had been filled was
to simply shift out the oldest memory entries as the
new ones came in. However, we soon realized that the
system would then forget important early experiences.
Hence we gave the robot a "childhood" - an initial
period whose entries are not forgotten.

Fig. 8. Perfect obstacle avoiding behavior•

Another important factor for successfully inducing
an efficient world model was to have a "stimulating"
childhood. It is important to have a wide set of expe-
riences to draw conclusions from. Noise is therefore
added to the behavior in the childhood phase in order
to avoid stereotypic behavior very early, in the first
seconds of the system's execution. As long as expe-
riences are too few to allow for a meaningful model
of the world, this noise is needed to assure enough
diversity in early experiences.

5. Training objectives

5.1. Obstacle avoidance

A perfect obstacle avoiding behavior may be defined
as follows: the robot turns away from an obstacle in
the range of its sensors without touching it and runs
straight and fast otherwise (see Fig. 8).

5.2. Fitnesscalculation

Throughout this paper, the fitness of an individual
(world model) p is calculated as the square error be-
tween the event evaluations 1)pred ~ p(e) predicted by

P. Nordin et aL /Robotics and Autonomous Systems 25 (1998) 105-116 113

the individual and the desired event evaluations Odes ~---

f (e) summed over all n events in memory:

F(I) = E (f (e i) -- p(ei)) 2.
i=1

The fitness function f defining the obstacle avoiding
task has a "pain" and a "pleasure" part. The negative
contribution to fitness, "pain", is simply the sum of all
proximity sensor values. The closer the robot's sensors
are to an object the more pain it experiences. In order to
keep the robot from s~lding still or spinning a positive
contribution to fitness, called "pleasure", is necessary.
The robot receives "pleasure" from going straight and
fast. Both motor speed values minus the absolute value
of their difference is thus added to the fitness.

As mentioned abow~ an event e is composed of a
sensor situation and a reaction of the robot. Let si
denote the sensor values ranging from 0 to 1023 where
a higher value means closer to an object. Also let ml
and mr be the resulting left and right motor speeds in
the range of 0-15. Then the fitness function can be
expressed formally as:

f (e) = o r , (Iml - m r l + Imll--F Imrl - (ml + m r))
4

+ Z s i .
i=1

5.3. Wall following

In this task the robot has to follow a continuous,
arbitrary formed wall without touching it, allowing
navigation around corners as well as navigation in
simple mazes.

The difficulty of this control task is to keep a mini-
mum and maximum distance to the wall while moving
the robot forward. Accordingly there are three sec-
tions in the sensor range to be distinguished in the fit-
ness function (see Section 5.4). As shown in Fig. 9 the
robot normally moves on a zigzag course along the
wail. This behavior is due to course corrections that
keep the robot within the "corridor".

By comparison, in the definition of the obstacle
avoiding behavior stated above there is only a distinc-
tion between two basic sensor states necessary, i.e.
between perceiving and non-perceiving sensors.

"Corridor"

Wall Following

Fig. 9. Wall following behavior.

5.4. Fitness calculation

The wall following behavior is defined by a con-
ditionalfitness function that punishes negative events
and rewards positive events with regard to the con-
trol task in a more differentiated way. This is neces-
sary because of the high complexity of this behavior.
Here each of the four possible atomic actions - turn-
ing left, turning right, moving forward, moving back-
wards - is given either a constant positive or a constant
negative evaluation depending on the section that the
corresponding sensor situation of the event belongs to.
Fig. 10 illustrates positive event classes for the wall
following behavior when considering the sensors on
the right side of the robot. Note again that the closer
the distance to the wail the higher the sensor values are.

The complexity of the problem requires that the
composition of the memory content is tightly con-
trolled, in order to sufficiently represent all positive
and negative event classes.

6. Results

During test runs the occurring events are classified
as positive events or as negative events (errors) with

114 P. Nordin et al./Robotics and Autonomous Systems 25 (1998) 105-116

Sensor range ~

0 Min Max

t t
Turn right Move forward

t
Tum left

Wall

Sensors (right)

Robot

Fig. 10. Positive events (wail following).

Table 1
Koza tableau of parameter settings for the AIMGP system

Objective

Terminal set
Function set (obstacle avoiding)
Function set (wall following)
Population size
Crossover probability
Mutation probability
Selection
Random seed
Maximum program size

Symbolic regression of
controllers
Integers in the range 0--4096
ADD, SUB, MUL, BG
ADD, SUB, MUL, BG, BLE
10 000
90%
50%
Tournament selection
System time
256 Instructions

reference to the control task. At the end of a successful
run, i.e. a run showing perfect behavior of the robot,
only positive events happen and no collisions are
registered anymore.

Table 1 gives an overview of the parameter settings
of the A I M G P system. Apart from the function set
these settings are identical for both control tasks. The
branch instructions BG and BLE have proven to be
absolutely necessary for the wall following problem.
Obstacle avoidance also works by substituting instruc-
tion BG with non-linear functions, e.g. SHL and AND,
in the function set, but with a lower success rate.

Most behaviors evolved with the memory-based ap-
proach show a perfect solution with respect to the fit-
ness function (see Table 2). The obstacle avoiding task
is learned with a success rate of about 80%, count-
ing the number of runs that show a perfect behavior
after 250 generations. The average number of genera-

Table 2
Results with the memory-based control architecture

Behavior Obstacle avoiding Wall following

Number of generations 250 500
Generations until success 50 150

Number of runs 100 100
Successful 82 64
With errors 4 10
Failed 14 26

tions until a behavior definitely becomes perfect, has
been calcuated to about 50 generations for the obstacle
following behavior.

The more complex wall following behavior shows
a lower success rate of about 60% as well as a lower
learning speed of about 150 generations on average.

7. Summary and conclusions

We have demonstrated that a GP system can be used
to perfectly control a robot in a noisy environment. The
evolved programs show robust performance even if the
robot is placed in a completely different environment
or i f obstacles are moved around. We believe that the
robust behavior of the robot partly can be attributed to
the built-in generalization capabilit ies of the genetic
programming system [21,22].

We have further demonstrated that the memory-
based GP control system can evolve much smoother

P. Nordin et al. /Robotics and Autonomous Systems 25 (1998) 105-116 115

and less chaotic behavior than the non-memory GP
control system described in [23].

We would like to ewduate the usefulness of our ap-
proach with agent syslLems that have a wider set of
possible actions. In such systems it would be infeasi-
ble to use exhaustive search for finding the best action
according to a world model. Handley [11] has previ-
ously demonstrated the feasibility of GP for evolution
of plans for simulated robots. Equipped with a real
robot and the memory-based system, the planning pro-
cess could incorporate its own GP system to evolve a
suitable plan which optimizes the outcome given the
currently best world model.

Finally exploration of different strategies of "active
learning" (for a recent report, see, e.g. [6]) is war-
ranted. The decision which memory entries to keep
and which ones to discard will have a profound influ-
ence on the resulting world model.

Acknowledgements

Support has been provided by the DFG (Deutsche
Forschungsgemeinschaft), under grants Ba 1042/5-1
and Ba 1042/5-2.

References

[1]W. Banzhaf, P. Nordin, R. Keller, E Francone,
Genetic Programming - An Introduction, Dpunkt Verlag,
Heidelberg, Germany and Morgan Kaufmann, San
Francisco, CA, 1998.

[2] W. Banzbaf, P. Nordin, M. Olmer, Generating adaptive
behavior using function regression within genetic
programming and a real robot, in: J. Koza, K. Deb,
M. Dorigo, D. Fogel, M. Garzon, H. Iba, R. Riolo
(Eds.), Genetic Programming 1997: Proceedings of the
Second Annual Confizrence, Stanford University, Morgan
Kaufmann, San Francisco, CA, 1997, pp. 35--43.

[3] W.H. Calvin, How l:|rains Think: Evolving Intelligence,
Then and Now, Basic: Books, New York, 1996.

[4] W.H. Calvin, The Cerebral Code: Thinking a Thought in
the Mosaics of the Mind, MIT Press, Cambridge, MA,
1996.

[5] D. Cliff, Computational neuroethology: A provisional
manifesto, in: J.A. Meyer, S. Wilson (Eds.), From
Animals to Animats: Proceedings of the First International
Conference on Simulation of Adaptive Behavior, MIT
Press, Cambridge, MA, 1991.

[6] D. Colin, D. Lewis, Working Notes from the AAAI-95
Symposium on Active Learning, MIT, Cambridge, MA,
1995.

[7] R. Dawkins, The Extended Phenotype, Oxford University
Press, Oxford, 1982.

[8] G. Edelman, Neural Darwinism, Basic Books, New York,
1987.

[9] D. Floreano, E Mondada, Evolution of Homing Navigation
in a Real Mobile Robot, IEEE Transactions on Systems,
Man and Cybernetics - Part B, Special Issue on Learning
Autonomous Robots 26 (1996) 396--407.

[10] L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence
through Simulated Evolution, Wiley, New York, 1966.

[11] S. Handley, The automatic generation of plans for a mobile
robot via genetic programming with automatically defined
functions, in: K. Kinnear (Ed.), Advances in Genetic
Programming, MIT Press, Cambridge, MA, 1994.

[12] I. Harvey, P. Husbands, D. Cliff, Issues in evolutionary
robotics, in: J.A. Meyer, S. Wilson (Eds.), From Animals
to Animats 2: Proceedings of the Second International
Conference on Simulation of Adaptive Behavior, MIT
Press, Cambridge, MA, 1993.

[13] D.R. Hofstadter, Metamagical Themas, Basic Books, New
York, 1985.

[14] J. Holland, Adaption in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor, MI, 1975.

[15] W. James, The Principles of Psychology, vol. 1; Originally
published by Henry Holt, New York, 1890.

[16] N.K. Jerne, Antibodies and learning: Selection versus
instruction, in: G.C. Quarton, T. Melnechuk, EO. Schmitt
(Eds.), The Neurosciences: A Study Program, Rockefeller
University Press, New York, 1967, pp. 200-205.

[17] J. Koza, Genetic Programming, MIT Press, Cambridge,
MA, 1992.

[18] O. Michel, Kliepera Simulator v2.0, User Manual, 1995.
[19]E Mondada, E. Franzi, P. Ierme, Mobile robot

miniaturization, in: Proceedings of the Third International
Symposium on Experimental Robotics, Kyoto, Japan,
1993.

[20] P. Nordin, A compiling genetic programming system that
directly manipulates the machine-code, in: K. Kinnear
(Ed.), Advances in Genetic Programming, MIT Press,
Cambridge, MA, 1994.

[21] P. Nordin, W. Banzhaf, Evolving turing complete programs
for a register machine with serf-modifying code, in:
L. Esheiman (Ed.), Proceedings of Sixth International
Conference of Genetic Algorithms, Pittsburgh, PA, 1995,
Morgan Kaufrnann, San Mateo, CA, 1995.

[22] P. Nordin, W. Banzhaf, Complexity compression and
evolution, in: L. Eshelman (Ed.), Proceedings of
Sixth International Conference of Genetic Algorithms,
Pittsburgh, 1995, Morgan Kaufmann, San Mateo, CA,
1995.

[23] P. Nordin, W. Banzhaf, An on-line method to evolve
behavior and to control a miniature robot in real time with
genetic programming, Adaptive Behavior 5 (1997) 107-
140.

[24] P. Nordin, W. Banzhaf, Real time control of a Khepera
robot using genetic programming, Control and Cybernetics
26 (3) (1997) 533-561.

116 P. Nordin et al./Robotics and Autonomous Systems 25 (1998) 105-116

[25] M. Olmer, P. Nordin, W. Banzhaf, Evolving real-time
behavioral modules for a robot with GP, in: M. Jamshidi,
F. Pin, P. Dauchez (Eds.), Robotics and Manufacturing,
ASME Press, New York, 1996, pp. 675-680.

[26] I. Rechenberg, Evolutionstrategien, Fromann-Holtzboog,
Stuttgart, 1975.

[27] C.W. Reynolds, Evolution of corridor following behavior
in a noisy world, in: D. Cliff, P. Husbands, J.-A. Meyer,

S. Wilson (Eds.), From Animals to Animats 3: Proceedings
of the Third International Conference on Simulation of
Adaptive Behavior (SAB94), MIT Press, Cambridge, MA,
1994.

[28] C.W. Reynolds, Evolution of obstacle avoidance behavior,
in: K. Kinnear (Ed.), Advances in Genetic Programming,
MIT Press, Cambridge, MA, 1994.

