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Abstract 

We have used an automatic programming method called genetic programming (GP) for control of a miniature robot. Our 
earlier work on real-time learning suffered from the drawback of the learning time being limited by the response dynamics of 
the robot's environment. In order to overcome this problem we have devised a new technique which allows learning from past 
experiences that are stored in memory. The new method shows its advantage when perfect behavior emerges in experiments 
quickly and reliably. It is tested on two control tasks, obstacle avoiding and wall following behavior, both in simulation and 
on the real robot platform Khepera. © 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

A very general way of representing and specifying 
an autonomous agent's behavior is by employing 
a computer language. If  one uses a suitable com- 
puter programming language every behavior of an 
autonomous agent might be specified. The question, 
then, arises how to (antomatically) program in that 
computer language. 

Genetic programming (GP) is a method that recruits 
an evolutionary algorithm to evolve computer pro- 
grams. It is thus a probabilistic method of automated 
programming. If  a goal has been defined in form of 
a fitness function and a set of instructions has been 
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determined for use, the genetic programming system 
will try to evolve programs that solve the task speci- 
fied by the fitness function. 

To use a selective process derived from evolution 
as a guiding principle for the design of a controller 
architecture behaving intelligently could, at first, be 
considered an awkward approach. As far as we know 
today genetics is only indirectly involved in infor- 
marion processing of the brain, although the idea 
of genetics as a model of mental processing is not 
new. Indeed, it has recently gained more prominence 
through work by Dawkins [7], Hofstadter [13] and 
Calvin [3,4]. 

From the time of James [15] who argued that men- 
tal processes could operate in a Darwinian manner 
scientists have continued to discover the strength of 
selective principles in adaptive systems. A case in 
point is the following statement by immunologist 
Jeme [16]: 
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"Looking back into the history of biology, it appears 
that wherever a phenomenon resembles learning, an 
instructive theory was first proposed to account for the 
underlying mechanisms. In every case, this was later 
replaced by a selective theory. Thus the species were 
thought to have developed by learning or by adapta- 
tion of individuals to the environment, until Darwin 
showed this to have been a selective process. Resis- 
tance of bacteria to antibacterial agents was thought 
to be acquired by adaptation, until Luria and Delbriick 
showed the mechanism to be a selective one. Adap- 
tive enzymes were shown by Monod and his school 
to be inducible enzymes arising through the selection 
of preexisting genes. Finally, antibody formation that 
was thought to be based on instruction by the antigen 
is now found to result from the selection of already 
existing patterns. It thus remains to be asked if learn- 
ing by the central nervous system might not also be a 
selective process; i.e., perhaps learning is not learning 
either". [16] 

More recently, selectionist approaches to learn- 
ing have been studied in detail by Edelman and his 
collaborators (see [8] and references therein). Why 
would it be impossible to consider machine learning 
and man-made adaptive systems from much the same 
perspective? 

In the wake of the spread of Darwinian thinking in 
computer science the use of evolutionary methods has 
been reported in robotic control in a number of pub- 
lications. Robot controllers have, for instance, been 
evolved using dynamic recurrent neural nets [5,12]. 
Genetic algorithms have been used in [9] for generat- 
ing wall-following behavior. Several experiments have 
also been performed where a controller program has 
been evolved directly through genetic programming 
[11,17,28]. 

We, too, have reported earlier on our first exper- 
iments using GP to control a real robot that has 
been trained in real-time with actual sensor values 
[23,25]. In a real environment our system had to 
evolve robust controllers because noise was present 
everywhere and the number of real-life training sit- 
uations was virtually infinite. Consequently we were 
forced to devise an online learning method which en- 
sured learning of behavior while each individual was 
tested against different real-time (and noisy) fitness 
cases which were sampled probabilistically from the 

environment. This procedure might have resulted in 
"unfair" fitness comparisons where individuals were 
confronted with very different situations. However, 
our experiments showed that - over time - the fluc- 
tuations of the environment cancelled out and the 
system approached a robust state. The advantage 
of our method, which we call stochastic sampling, 
was a considerable acceleration of the evolutionary 
process. 

Using this technique the evolution of a successful 
control program was driven by continuous interaction 
with and feedback from the environment (reinforce- 
ment learning). There was, however, no memory 
of past experience other than the information im- 
plicitly stored in the genetic material. Hence the 
main disadvantage of the approach was the learning 
speed being limited by the response dynamics of 
the environment, i.e. most of the learning time was 
spent waiting for the reinforcement signal from the 
environment. 

In order to overcome this problem we have proposed 
an extension of this approach in [2,24] that might be 
called online learning from past  experiences. It will be 
the subject of this contribution. It is built on past ex- 
periences held in a memory buffer and associated with 
a positive or negative evaluation with respect to the 
control task. The learning task here is not to evolve a 
controller as a function - directly mapping sensor in- 
puts to actions that corresponds to a certain behavior. 
Rather a generalising world model should be derived 
from the experiences in memory to serve as a basis for 
planning future actions while remembering past expe- 
riences. We show that, besides speeding up learning 
and allowing for a much more systematic exploration 
in the first place, this memory-based approach reaches 
perfect behavior in a very high percentage of the ex- 
periments. 

The rest of this paper is organized as follows: In 
Section 2 we start by briefly introducing the genetic 
programming paradigm in general. We present the real 
miniature robot Khepera and the simulator used in the 
experiments in Section 3. The memory-based control 
architecture is presented in Section 4. The objectives 
of training in the experiments, obstacle avoiding and 
wall following behavior, are described in Section 5. We 
present our results in Section 6. Finally we summarize 
the results, discuss conclusions and present ideas for 
future work. 
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Fig. 1. Crossover in hierarchical GP. 

2. Genetic progranuning 

Evolutionary algorithms mimic aspects of natural 
evolution to optimize a solution towards a defined 
goal. Darwin's principle of natural selection plays 
a key role when differential fitness advantages are 
exploited to lead to better solutions. 

A general evolutionary algorithm may be summa- 
rized as follows: 
1. A population of solutions is initialized to random 

content. 
2. In an iteration loop: Individuals are selected from 

the population randomly and are compared, based 
on their fitness. The fitness measure defines the 
problem which should be solved by the algorithm. 
Only the fitter individuals are modified by the fol- 
lowing genetic operations while the population size 
is kept constant. 
• Identical reproduction. 
• Exchange of a (small) substructure in an indi- 

vidual at a random position (mutation). 
• Exchange of substructures between two individ- 

uals (crossover). 

3. The currently best individual in the population rep- 
resents the best solution found so far. 
Different research subfields of evolutionary algo- 

rithms have emerged, such as genetic algorithms [14], 
evolution strategies [26] and evolutionary program- 
ming [10]. In recent years these methods have been 
applied successfully to a wide spectrum of problem 
domains, especially in optimization. 

A comparatively young and growing research area 
in this context is genetic programming (GP) [17]. 
Genetic programming uses the mechanisms behind 
variation and selection for the evolution of computer 
programs. The approach has been formulated origi- 
nally using tree structures that were represented by 
variable length LISP S-expressions as individuals. The 
inner nodes of these trees are functions while the leafs 
are terminals that represent input variables or con- 
stants. The operators applied to generate variants, i.e. 
crossover and mutation, must guarantee syntactic clo- 
sure during evolution. In other words, no syntacti- 
cally incorrect programs are allowed to be generated. 
Fig. 1 illustrates the crossover operation in tree-based 
genetic programming. 
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In recent years, the scope of genetic programming 
has expanded considerably and now includes evolution 
of linear and graph-like representations of programs 
as well, in addition to tree respresentations [1]. 

2.1. Machine code genetic programming 

In the experiments described below we use a genetic 
programming system with a linear program represen- 
tation. In our Automatic Induction of Machine Code 
by Genetic Programming (AIMGP) system (formerly 
known as CGPS [20,21]) an individual is composed 
of a variable number of 32-bit machine code instruc- 
tions for a register machine. Individuals are directly 
manipulated as binary machine code in memory and 
directly executed without passing an interpreter dur- 
ing the fitness calculation. This results in a significant 
speed-up compared to interpreting GP systems in, e.g., 
tree representation. Another advantage is the memory 
efficiency of this system. 

The function set consists of the arithmetic opera- 
tions ADD, SUB and MUL, the shift operations SLL 
and SLR and the logic operations AND, OR and XOR. 
All these instructions operate on registers or integer 
constants (terminal set) and correspond to simple C- 
expressions such as i 0 = i 1 + i 2 or i 0 = i 1 * 2 7. In ad- 
dition to the configuration of the system in [21] we 
use the branch instructions BG (branch on greater) 
and BLE (branch on less or equal) here. The condi- 
tions of these branches are composed of specific bits 
in the processor status register (PSR) that can be mod- 
ified by certain operations (here SUB). If a condition 
is false, the instruction directly following the branch 
instruction is skipped. Using branches has proved to 
be very important specifically for the wall following 
behavior (see Section 5.3). 

The following is an individual program as it looks 
if disassembled into a C-program. 

unsigned int ind(i0, il, i2, i3, i4, i5) 

unsigned int i0,il,i2 i3,i4,i5; 
{ 

il=i0 * i2 

{ i5=il - 3; greater = ((int)i5) > 0); } 

i4=i0 & 12; 

i2=i4 + 53; 

if (!greater) i4=il ~ 2; 

i2=il * 77; 

[ Paroot, ] 

i...o,2 
[ 1001'00011010...110 ] Instruction 

Fig. 2. Crossover in linear GE 

i3=i2 + i4; 

i5=i4 + 0; 

i0=i5 << 4; 

if (greater) i0=i3 << 8; 

return (i0) ; 
} 

Similar to tree-based GP, AIMGP uses a crossover 
(and mutation) operator to generate variants. Fig. 2 
illustrates the two-point string crossover employed in 
the linear genetic programming system. Crossover can 
occur between instructions (atomic units) only but not 
within. The mutation operation flips bits inside the 
32-bit instructions. It is ensured that only instructions 
from the function set can be created with valid ranges 
of registers and constants. 

The evolutionary algorithm of the system realizes a 
simple steady state tournament selection: 
1. Select four arbitrary individuals from the popula- 

tion. 
2. Compare the fitness of the individuals in pairs. 
3. Copy the two winners and let the copies undergo 

modifications by crossover and mutation. 
4. Replace the two losers with the two new offspring. 

3. The Khepera robot 

Our experiments were performed with a standard 
autonomous miniature robot, the Swiss mobile robot 
platform Khepera [19]. It is equipped with eight in- 
flared proximity sensors. The mobile robot has a cir- 
cular shape, a diameter of 5.5 cm and a height of 3 
cm. It possesses two motors and on-board power sup- 
ply. The motors can be independently controlled by 
a PID controller. The eight infrared sensors are dis- 
tributed around the robot in a circular pattern. They 
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Fig. 3. The Khepera robot. 
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Fig. 4. Positions of the IR proximity sensors. 

emit infrared light, receive the reflected light and mea- 
sure distances in a short range of 5 cm. Figs. 3 and 4 
show the robot and its sensor positions. 

The robot is equipped with a Motorola 68331 
micro-controller which can be connected to a work- 

Fig. 5. The training environment. 

station. It is possible to control the robot in two ways. 
The controlling system may be run on a workstation 
with data and commands communicated through the 
serial line. Alternatively the controlling system is 
cross-compiled on the workstation and down-loaded 
to the robot which then runs the complete system 
in a stand-alone fashion. The version of the control- 
ling GP-system described in these papers runs on 
the workstation due to high memory requirements 
involved. The micro-controller has only 256 KB of 
RAM and a ROM containing a small operating sys- 
tem. The operating system has simple multi-tasking 
capabilities and manages the communication with the 
host computer. 

The robot also has several extension ports where 
peripherals such as grippers and TV cameras might be 
attached. 

3.1. The training environment 

The training environment for the robot is about 
70 cm x 90 cm in size. It has an irregular boarder 
with different angles and four deceptive dead-ends 
in each corner (see Fig. 5). In the large open area 
movable obstacles may be placed. Friction between 
wheels and surface is low enabling the robot to slip 
with its wheels during a collision with an obsta- 
cle. The wails and obstacles are chosen white here 
to give a perfect reflection to the infrared sensor 
light. 
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Fig. 6. The Khepera simulator. 

3.2. The Khepera simulator 

In addition to the experiments done with the real 
Khepera robot we tested our approach in a software 
simulation using the Khepera simulator [18]. The 
simulation allows test runs without looking at the 
robot all the time. In this way much more and longer 
tests have been performed than had been possible 
with the real robot (see Section 6). 

Fig. 6 gives an impression of the simulator interface. 
The user is allowed to build an enviroment for the sim- 
ulated robot from little "bricks" that can be arranged in 
arbitrary positions. While the robot is moving, the cur- 
rent sensor and motor values may be observed on the 
screen. The interprocess communication between the 
GP system and the simulator works with two UNIX 
pipes - one for each direction. 

For two reasons the simulation is quite realis- 
tic. First, the proportions of robot size and sen- 
sor range correspond to reality. Second, noise has 
been artificially added to the simulated sensor 
and motor values. The deviations from exact val- 
ues range up to 4-5%. Noise is extremely impor- 
tant in simulations for the diversity of occurring 
events and for the degree of generalization reach- 
able by the learning system. Reynolds showed that 

a noisy fitness enviroment allows for the develop- 
ment of more robust controllers in genetic program- 
ming [27]. 

4. The memory-based GP control architecture 

The memory-based control architecture consists of 
two separate processes. One process communicates 
with the robot and stores past events into memory. 
The other process is constantly trying to learn and to 
induce a model of the world consistent with the data 
in memory. We call the former process the planning 
process because its main objective is deciding what 
next action to perform given the current best model 
of the world supplied by the learning process. The 
latter process is called learning process and denotes 
the evolutionary process of the GP system here. Fig. 7 
gives a schematic illustration of the architecture of the 
control system. 

4.1. The planning process 

The main execution cycle of the planning process 
may be divided into the following five steps: 
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Fig. 7. Schematic view of the memory based control architecture. 

Read the current sensor values from the robot. 
Calculate the desired evaluation of the lust event 
from the current sensor values (reinforcement 
signal). 
Store the last event and its evaluation in memory 
as an event vector. 
Use the current sensor values and search through 
all motor actions faa the best predicted evaluation 
in the currently beat world model. 
Send the best motor speed actions to the robot. 
Sensor values and rnotor speed form a new event. 
Sleep 300 ms. 

The planning process starts with reading the robot 
sensors. The current sensor values are used to evaluate 
the last event, i.e. the sensor situation and the resulting 
action of the last planning phase. The evaluation is 
stored, together with the last event as an event vector 
(fitness case). An event vector consists of eight sensor 
values, two motor speeds and the measured evaluation 

for this event. Thus, the vector represents what the 
agent experienced, what it did and what the results 
were of its action. 

The current sensor values instantiate the corre- 
sponding variables in the currently best world model 
(best program). The objective is to find a favor- 
able action to this current sensor situation. With the 
Khepera, the possible actions are 16 different motor 
speeds for each of the two motors. Each motor has 
8 speeds forward and 7 backwards and a zero speed. 
Combining all alternatives of the two motors there are 
256 different actions altogether to choose from. This 
comparatively small figure means that we can easily 
afford to search through all possible actions while the 
world model provides us with a predicted evaluation 
for each of them. The induced model in the form of a 
computer program from the learning process can thus 
be seen as a simulation of the enviromnent consistent 
with past experiences, where the robot can simulate 
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different possible actions. The action which gives 
the best evaluation is remembered and sent as motor 
speed actions to the robot. 

In order to get feedback from the environment the 
planning process has to sleep and wait for results, i.e. 
the new sensor situation, of the chosen action. The 
planning process sleeps 300 ms while the robot per- 
forms the movement determined by the motors speed 
signals. This delay time is nearly a minimum in order 
to get usable feedback from changes in sensor values. 

It is then the responsibility of the learning process 
to evolve a program that simulates the environment 
as good and as consistent as possible with respect to 
the events in memory. As we will see below, this can 
be done by a straightforward application of symbolic 
regression through genetic programming. 

4.2. The learning process 

, "  '• 

Obstacle avoiding 

The objective of the learning process is to find a 
program (function) p which will predict the mea- 
sured evaluation v of an action (m l, m2) given 
the initial conditions in form of sensor values 
(Sl, S2, S3, S4, S5, S6, S7, S8): 

p ( s l ,  S2, S3, S4, S5, S6, S7, S8, m l ,  m2) = v. 

This is a problem of symbolic regression, i.e. inducing 
a symbolic equation fitting the given numerical data. 
Genetic programming is ideal for symbolic regression 
and most GP applications can be reformulated as vari- 
ants of symbolic regression. 

The central idea we discuss in this paper is the evo- 
lution of a world model resulting in a relation between 
an event and an evaluation with reference to a specific 
control task. The approach is memory-based in that 
past events or experiences are "associated" with val- 
ues that might be termed "feelings" (feedback of the 
fitness function). 

4.3. Giving the system a "Childhood" 

Our first approach to managing the memory buffer 
when all locations (here about 60) had been filled was 
to simply shift out the oldest memory entries as the 
new ones came in. However, we soon realized that the 
system would then forget important early experiences. 
Hence we gave the robot a "childhood" - an initial 
period whose entries are not forgotten. 

Fig. 8. Perfect obstacle avoiding behavior• 

Another important factor for successfully inducing 
an efficient world model was to have a "stimulating" 
childhood. It is important to have a wide set of expe- 
riences to draw conclusions from. Noise is therefore 
added to the behavior in the childhood phase in order 
to avoid stereotypic behavior very early, in the first 
seconds of the system's execution. As long as expe- 
riences are too few to allow for a meaningful model 
of the world, this noise is needed to assure enough 
diversity in early experiences. 

5. Training objectives 

5.1. Obstacle avoidance 

A perfect obstacle avoiding behavior may be defined 
as follows: the robot turns away from an obstacle in 
the range of its sensors without touching it and runs 
straight and fast otherwise (see Fig. 8). 

5.2. Fitnesscalculation 

Throughout this paper, the fitness of an individual 
(world model) p is calculated as the square error be- 
tween the event evaluations 1)pred ~ p(e) predicted by 
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the individual and the desired event evaluations Odes ~--- 

f (e )  summed over all n events in memory: 

F(I)  = E ( f ( e i  ) -- p(ei)) 2. 
i=1 

The fitness function f defining the obstacle avoiding 
task has a "pain" and a "pleasure" part. The negative 
contribution to fitness, "pain", is simply the sum of all 
proximity sensor values. The closer the robot's sensors 
are to an object the more pain it experiences. In order to 
keep the robot from s~lding still or spinning a positive 
contribution to fitness, called "pleasure", is necessary. 
The robot receives "pleasure" from going straight and 
fast. Both motor speed values minus the absolute value 
of their difference is thus added to the fitness. 

As mentioned abow~ an event e is composed of a 
sensor situation and a reaction of the robot. Let si 
denote the sensor values ranging from 0 to 1023 where 
a higher value means closer to an object. Also let ml 
and mr be the resulting left and right motor speeds in 
the range of 0-15. Then the fitness function can be 
expressed formally as: 

f (e )  = o r ,  (Iml - m r l  + Imll--F Imrl - (ml + m r ) )  
4 

+ Z s i .  
i=1 

5.3. Wall following 

In this task the robot has to follow a continuous, 
arbitrary formed wall without touching it, allowing 
navigation around corners as well as navigation in 
simple mazes. 

The difficulty of this control task is to keep a mini- 
mum and maximum distance to the wall while moving 
the robot forward. Accordingly there are three sec- 
tions in the sensor range to be distinguished in the fit- 
ness function (see Section 5.4). As shown in Fig. 9 the 
robot normally moves on a zigzag course along the 
wail. This behavior is due to course corrections that 
keep the robot within the "corridor". 

By comparison, in the definition of the obstacle 
avoiding behavior stated above there is only a distinc- 
tion between two basic sensor states necessary, i.e. 
between perceiving and non-perceiving sensors. 

"Corridor" 

Wall Following 

Fig. 9. Wall following behavior. 

5.4. Fitness calculation 

The wall following behavior is defined by a con- 
ditionalfitness function that punishes negative events 
and rewards positive events with regard to the con- 
trol task in a more differentiated way. This is neces- 
sary because of the high complexity of this behavior. 
Here each of the four possible atomic actions - turn- 
ing left, turning right, moving forward, moving back- 
wards - is given either a constant positive or a constant 
negative evaluation depending on the section that the 
corresponding sensor situation of the event belongs to. 
Fig. 10 illustrates positive event classes for the wall 
following behavior when considering the sensors on 
the right side of the robot. Note again that the closer 
the distance to the wail the higher the sensor values are. 

The complexity of the problem requires that the 
composition of the memory content is tightly con- 
trolled, in order to sufficiently represent all positive 
and negative event classes. 

6. Results 

During test runs the occurring events are classified 
as positive events or as negative events (errors) with 



114 P. Nordin et al./Robotics and Autonomous Systems 25 (1998) 105-116 

Sensor range ~ 

0 Min Max 

t t 
Turn right Move forward 

t 
Tum left 

Wall 

Sensors (right) 

Robot 

Fig. 10. Positive events (wail following). 

Table 1 
Koza tableau of parameter settings for the AIMGP system 

Objective 

Terminal set 
Function set (obstacle avoiding) 
Function set (wall following) 
Population size 
Crossover probability 
Mutation probability 
Selection 
Random seed 
Maximum program size 

Symbolic regression of 
controllers 
Integers in the range 0--4096 
ADD, SUB, MUL, BG 
ADD, SUB, MUL, BG, BLE 
10 000 
90% 
50% 
Tournament selection 
System time 
256 Instructions 

reference to the control task. At  the end of  a successful 
run, i.e. a run showing perfect behavior of  the robot, 
only positive events happen and no collisions are 
registered anymore. 

Table 1 gives an overview of  the parameter settings 
of  the A I M G P  system. Apart  from the function set 
these settings are identical for both control tasks. The 
branch instructions BG and BLE have proven to be 
absolutely necessary for the wall following problem. 
Obstacle avoidance also works by substituting instruc- 
tion BG with non-linear functions, e.g. SHL and AND, 
in the function set, but with a lower success rate. 

Most  behaviors evolved with the memory-based ap- 
proach show a perfect solution with respect to the fit- 
ness function (see Table 2). The obstacle avoiding task 
is learned with a success rate of  about 80%, count- 
ing the number of  runs that show a perfect behavior 
after 250 generations. The average number of  genera- 

Table 2 
Results with the memory-based control architecture 

Behavior Obstacle avoiding Wall following 

Number of generations 250 500 
Generations until success 50 150 

Number of runs 100 100 
Successful 82 64 
With errors 4 10 
Failed 14 26 

tions until a behavior definitely becomes perfect, has 
been calcuated to about 50 generations for the obstacle 
following behavior. 

The more complex wall following behavior shows 
a lower success rate of  about 60% as well as a lower 
learning speed of  about 150 generations on average. 

7. Summary and conclusions 

We have demonstrated that a GP system can be used 
to perfectly control a robot in a noisy environment. The 
evolved programs show robust performance even if  the 
robot is placed in a completely different environment 
or i f  obstacles are moved around. We believe that the 
robust behavior of  the robot partly can be attributed to 
the built-in generalization capabilit ies of  the genetic 
programming system [21,22]. 

We have further demonstrated that the memory- 
based GP control system can evolve much smoother 
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and less chaotic behavior than the non-memory GP 
control system described in [23]. 

We would like to ewduate the usefulness of  our ap- 
proach with agent syslLems that have a wider set of  
possible actions. In such systems it would be infeasi- 
ble to use exhaustive search for finding the best action 
according to a world model. Handley [11] has previ- 
ously demonstrated the feasibility of  GP for evolution 
of  plans for simulated robots. Equipped with a real 
robot and the memory-based system, the planning pro- 
cess could incorporate its own GP system to evolve a 
suitable plan which optimizes the outcome given the 
currently best  world model. 

Finally exploration of  different strategies of  "active 
learning" (for a recent report, see, e.g. [6]) is war- 
ranted. The decision which memory entries to keep 
and which ones to discard will have a profound influ- 
ence on the resulting world model. 
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