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Abstract

We discuss the generation of adaptive behavior for an autonomous robot within the framework
of a special kind of function regression used in compiling Genetic Programming (GP). The control
strategy for the robot is derived, using an evolutionary algorithm, from a continuous improvement of
machine language programs which are varied and selected against each other. We give an overview
of our recent work on several fundamental behaviors like obstacle avoidance and object following
adapted from programs that were originally random sequences of commands. It is argued that the
method is generally applicable where there is a need for quick adaptation within real-time problem

domains.
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1 Introduction

The study of adaptive behavior has two main thrusts. One is the description and analysis of animal
behavior, the other is the generation of behavior for artificially created autonomous agents. One prom-
inent class of autonomous agents are robots acting in the real world. The aim of generating behavior
for robots is to make them more and more useful companions of human beings. In this contribution we
shall report on recent work we have done in the realm of robotics for generating behavior. We shall be
concentrating here on very fundamental behavior for a mobile robot, like obstacle avoidance or moving
around, for providing clearer insights into the central ideas of the approach.

Robots do have to act in the real world. That means they have to execute actions, based on the internal
representation of the world that they have acquired or have been equipped with, and based on the sensory
information which they perceive by various sensors about the status of the environment. In other words,
robots need means to process incoming information and to control actuators for generating effects in the
environment. Although earlier on this has been achieved with impressive capabilities with simple analog
electronic devices [2, 15], nowadays most robots are equipped with at least one central processing unit,
be it an off-the-shelf processor including its setting, or be it one or more special embedded processor(s),
like a DSP, for fast reaction.

In this way, the need for wiring and connecting analog electronic devices has now been substituted
by the need for programming the processor devices in robots. From a behavioral point of view, programs
are abstract descriptions of behavior, in most cases behavior for a processor shifting and processing
data within memory. In certain special cases, namely when memory values are read out into physical
observables, causing e.g. electric motors to turn, they code for behavior in the real world. We are
interested here in this special case that underlies modern robotics.

Our approach is to look, at a very fundamental level, into the adaptivity of computer programs. If
computer programs can, under the condition of being executed, be interpreted as behavior, adaptive
behavior could be generated simply by allowing computer programs to adapt. One method to do this is
called Genetic Programming (GP) [17]. It has roots back into the fifties [9, 6] but has recently become an
object of intense study in Computer Science [18]. GP tries to apply insights from natural evolution which
had been gleaned already earlier for the purpose of optimization in technical systems [28, 31, 14, 10, 8].
By using a population of programs which all behave slightly different, plus differential selection according
to a behavioral fitness criterion, programs can be bread that are better adapted to certain conditions
than others. Note that this adaptivity happens in the very heart of computing: in programs. We do
not employ neural nets [5, 12, 7] or optimize parameters specifying the strength of presence of certain
behavior [1, 13]; we try to evolve those behaviors from scratch.

Similar experiments have been done earlier [17, 30, 11] or proposed [3] but have so far been restricted
to simulated environments. We tried to port these concepts into the harsh environment of true reality
which has a lot of difficulties never encountered in simulations [4, 16, 19]. In previous work we have
reported on different series of experiments with our approach [24, 25, 26, 27]. The present contribution
tries to summarize the status of our work and the progress we made so far.

2 Implementation

2.1 The robot

For our studies we used a standard autonomous miniature robot, the Swiss mobile robot platform Khepera
[20]. Tt is equipped with eight infrared proximity sensors. The mobile robot has a circular shape, a
diameter of 6 cm and a height of 5 cm. It possesses two motors and on-board power supply. The motors
can be independently controlled by a PID controller. The eight infrared sensors are distributed around
the robot in a circular pattern. They emit infrared light, receive the reflected light and measure distances
in a short range of 2 to 5 cm. The robot is also equipped with a Motorola 68331 micro-controller which
can be connected to a SUN workstation via serial cable. A schematic figure of the robot is shown in
Figure 1.

The robot moves around in the environment of Figure 2.
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Figure 1: Schematic view of the Khepera robot.

Figure 2: The Training Environment. Movable objects and the Khepera in
inside the boundaries.



2.2 The GP system

There are some reasons to argue in general for use of Genetic Programming for the purpose of generating
adaptive behavior in processor-controlled systems like the Khepera robot:

e With a general purpose programming language, any sort of behavior can be produced.

o GP generates purely symbolic output. This is to be seen in contrast to what neural nets produce:
a list of parameter values.

e The definition of goals is easily achieved by deciding one fitness function only.

e GP has a built-in tendency to generalize from presented situations. That has to do with the fact
that GP evolves algorithms or, in other words, recipes for behavior that must, by definition, be
applicable to more than one situation.

Our specific implementation is a GP system which manipulates machine code directly [21]. The
system uses linear genomes composed of variable length strings of 32 bit instructions for a register
machine. Each node in the genome is an instruction for the processor. It performs arithmetic or logic
operations on a small set of registers. Each instruction might also include a small integer constant of
maximal 13 bits. The actual format of the 32 bits corresponds to the machine code format of a RISC
processor. The genetic operators act on binary code directly. Crossover, for instance, occurs between 32
bit instructions, thus changing the order and number of instructions used in offspring programs. Mutation
is allowed to flip bits within an instruction. The mutation operator, however, has to ensure that only
those instructions are called which are in the function set and that the defined ranges of registers and
constants are obeyed by a variant genome. For a more thorough description of this system the reader is
referred to [22, 23].

The function set used in our experiments is comprised of the following machine code instructions:
Arithmetic operations ADD, SUB and MUL, register shift operations SLL and SLR and logic operations
AND, OR and XOR. All of these instructions operate on 32-bit registers.

In addition to the general advantages of GP mentioned above we see some advantages in applying a
low-level implementation of the paradigm such as the one used by us:

e This approach is efficient: It is up to 2000 times faster than an interpreting GP system and has
constant memory requirements with a very small kernel of 32 kB.

e A minimum of a priori knowledge is necessary because the only task specific knowledge that has to
be added is the fitness equation, which is without procedural or representational knowledge. The
representation also shows a minimum of prejudice because behavior is coded at the lowest level of
the processor, its binary code.

3 Three Approaches to Adaptive Behavior of Real Robots

Before we discuss in more detail the behavioral results of our experiments we present the three steps
taken so far in increasing complexity. Because the general set-up will always be the same, we shall report
it here for all of the tasks discussed below.

3.1 Function regression and behavior

A particular method for achieving behavior is to consider it as the values returned from a function! that
get executed physically. The input to this function would usually be composed of sensory values and
internal state variables of the behaving system. The function would try to match in the best way possible
the reaction of the environment to the previous behavioral commands, thus for instance, building a world
model and trying to behave appropriately.

As it turns out, Genetic programming is ideal for symbolic function regression, and most GP applic-
ations could be reformulated as variants of function regression. That is because GP handles algorithms,

1Function and program are in this approach basically identical



Degree of difficulty

single task

single task

multiple task

Memory ?

without memory

with memory

without memory

Description

Avoiding obstacles

Avoiding obstacles

Avoiding obstacles

seeking objects
following objects
following walls

hiding in the dark

selecting an action

Table 1: Different tasks studied.

and tries to optimally approximate numerical data with symbolic or mathematical functions. In the ro-
bot control application a function could approximate the reaction of the robot to sensor values returning
values that are interpreted as motor commands thus leading to behavior of the robot.

A very general form of this control function could be:

{by, ...

with b; behavioral variables, s; sensor values and z; internal state variables.

,bi, ...,b[} = f(Sl, ey Sy ey 8T 20y ey By ey ZK) (1)

In our case, the low-level commands of the binary machine code can be disassembled into a symbolic
form and would read, for instance:

a=s3 + 4;
d=s2 >> s1;
b=s1 - d;
d=s2 + 2;
c=d >> 1;
b=d - d;

e=c >> b;
motor2=a | e;
c=d | 7;

motorl=c * 9;
c=e & e;

This code is part of an actual program evolved by the system where sy — s7 are the input sensor
values, a — e are registers for temporary storage of values and motorl, motor2 are the resulting speed
values that are sent to the motors?
computation.

. We can identify input processing, internal processing and output

A population of programs trying to control the robot are run within the evolutionary algorithm in
tournament selection mode. We use small population sizes, typically less than 50 individual programs.
Each individual program does its manipulation independent of the others and thus stands for an individual
behavior of the robot if invoked to control the motors.

Table 1 reports the different tasks we have been studying so far with the Khepera robot.

3.2 Memory-less GP system for single task

The goal of the controlling GP system which has no memory except its population of programs is to
evolve obstacle avoiding behavior. As all the systems reported here, it operates real-time and aims at
obstacle avoiding behavior based on data from noisy sensor devices. The sensorial data come from six of
its eight infrared proximity sensors. The problem domain is already well known, and different methods
have been discussed in the literature for achieving this behavior [2, 29, 19, 32]. Figure 3 shows a diagram
of the system.

?Besides arithmetic operators we recognize << and >>, the logical shift operations.
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Figure 4: Schematic view of the memory based control architecture. Specific
are: (a) The memory buffer storing event vectors representing events
in the past, (b) a memory buffer storing event vectors, (¢) a search
module that tries to find the best action given the currently best
world model, (d) the currently best induced individual model

3.3 Memory-based GP system single task

So far, all reactions belong to the rather simple stimulus-response type. Although it was possible to
achieve obstacle avoiding behavior the robot gave the impression of reacting like an insect, wandering
around, then suddenly changing direction due to an obstacle detected. Clearly, a system with memory
should behave much more sophisticated, so we decided to do a second series of experiments allowing the
system to make use of memory. A more serious limitation of the non-memory system it that its learning
speed is, to a large extent, determined by the dynamic response time of the environment not by the speed
of the computer hardware or the learning algorithm. This limitation is removed when using historical
events: The system can run at full speed contemplating history, not only the present event.

The memory-based control architecture now consists of two separate processes. One process is com-
municating with sensors and motors as well as storing events into the memory buffer. The other process
is constantly trying to learn and induce a model of the world consistent with the entries in the memory

buffer.

We call the former process the planning process, because it is involved in deciding what action to
perform given a certain model of the world. The latter process is called the learning process, because it
consists of trying to derive a model (in the form of a function) from memory data.

Figure 4 system gives a schematic illustration of the architecture of the control system.

The result of this method shows that the GP learning algorithm is accelerated by a factor of 1500 and
the learning of behavior is consequently speeded up by 40 times allowing it to learn obstacle avoiding



bahaviour in a few minutes [25].

3.4 Memory-less GP system for multiple tasks

Given our earlier experiments with a memory-less system for a single task, we asked ourselves; whether it
would be possible to extend the approach by requiring more than one behavior to be learned independ-
ently.

The motivation for this question was that not all behavioral problems are as easy as obstacle avoidance.
Solutions to more complex problems would be hard to evolve directly. Hence, a division of the task into
smaller sub-tasks was seen as a possible way out. In this setting, the GP system first learns the sub-tasks
and then evolves a higher-level action selection strategy for deciding which of the evolved lower-level
algorithms should be in control.

Thus, the goal of the GP system is to evolve several primitive behaviors plus an action selection
behavior within the same run. The individuals are separated into different isolated populations which
use various parts of the full sensorial data from the robot’s sensors (8 ambient light, 8 reflected light,
two measured motor speed, two distance traveled) as input and produce two motor speeds as output.
The action selection population also uses the fitness values of the action primitives computed over the
last trials.

The five populations for the action primitives and the action selection module are:

GO AHEAD : the robot learns to move straight ahead at maximum speed.
AVOID OBSTACLE : the robot avoids obstacles at a learned maximum speed.

SEEK OBJECT : in a way the inverse of AVOID OBSTACLE, useful to create wall following behavior.
Wall following would be an oscillating task switching between obstacle avoidance and object seeking.

HIDE IN THE DARK : the robot searches for a dark corner to hide in.

SELECT ACTION : this population contains functions which select one of the above action primitives.

When the robot starts learning, the system feeds the required data and sensor readings into the input
register space of the action selection mechanism population. Four individuals are selected for the action
selection tournament. Every chosen individual selects one of the four action primitives. Repeatedly
required values are copied into the GP register space and the tournament for an action primitive starts.
The winners replace the losers and the genetic operators are used. This is done for all selected individuals
from the action selection population. Afterwards the GP system updates the selection population.

4 Behavior

Here we shall discuss various aspects of the evolved behavior. The general results show fast learning of
behavior and good generalization properties but as it turned out, in the early stages of the experiments,
the system was very inventive in finding short-cuts and unexpected, often amusing, ways to fulfill the
fitness criteria without actually doing what we intended it to do.

4.1 Learning to avoid obstacles

The system had to associate high sensory values with closeness to an object or obstacle or, with a high
probability to suffer a collision. We therefore used the sum of sensory values as its fitness function. In
doing so, however, a simple stand-still of motors wherever the robot is located (except near to objects)
would fare perfect. Hence we had to add a second term to the fitness that rewarded movement in a
straight direction. Thus, the fitness for the first task was:

F=Ysi—(mi+my—|m —m|) (2)

We can already see here, that the system had to use positive as well as negative measures. We called
them, due to their unspecificity, pleasure and pain, alluding to elementary feelings of real organisms.



Note that, with this fitness function, the system has no clue where the obstacle is located. Approaching
an obstacle with right sensors might cause the same negative fitness contribution as approaching it with
left sensors. This fitness function could be compressed into the more general formula:

fIZSi—ZmJ (3)

i=1 ji=1

The difference is here that the robot gets no award for moving straight.

4.2 Learning to seek objects

Learning to seek objects cannot be just the opposite of the above, since that would mean movement
would cause pain and the system would try to stop at the next wall.

Instead, the fitness function for seeking objects is using the front sensors only and encouraging move-
ment towards an object?:

fitness = 4000 — (s1 + s2 + 83 + s4) (4)

4.3 Learning to follow objects

Learning to follow objects was even more challenging, because it required moving objects with presumably
unpredictable velocities and thus obstacle avoiding and object seeking behavior at the same time.

The fitness calculation for the object following task is based on the four sensors facing forward. In
order to define the desired behavior we needed to give a function which attracted the robot to objects far
away but repelled them if they are too close. The fitness function thus had an U-shape where the lowest
pain is at a predefined distance from an object:

fitness = (s1+ s2 + s3 + 54 — 1000)2 (5)

The value of 1000 represents an ideal distance from an object. When the sum of the front facing sensor
are 1000 then the agent perceives its “ideal feeling” and the fitness is zero.

4.4 Learning to follow walls

The next task for the robot was to follow the walls of the experimental environment. It also comprised
a combination of obstacle avoiding and object seeking behavior. This time, we measured the number of
times when the robot exits a narrow space (4 cm) between the robot and the wall. Here the important
sensors were the side sensors:

fitness = (so — 1000)% + (51 — 500)% + 53 — (my + ma)? (6)

The robots tries to keep the side sensors (at one side) at certain distances while moving forward and

avoiding stimuli on the corresponding front sensor*.

4.5 Learning to hide

The sensors of the robot do not only provide data on distance from obstacles (in distance mode) but also
brightness data in the light condition mode. This information can be used for the robot to turn towards
areas with slower brightness, such as shadowy or even dark places where it could then try to hide. The
same fitness function as in equation 2 was used, just s; now meant ambient light, not distance from an
obstacle.

F=Ysi—(mi+ma—|m—my|) (7)

3The constants used in the fitness functions reflect the fact that each of the sensors has a range of integers 0...1023
4In reality all fitness equations are tried out with different weights on the different equation components.



4.6 Action selection

A level higher in the hierarchy was the action selection module that also received the lower level (beha-
vioral primitives’) fitness as an input. As it turned out it was not as easy to evolve realizable selection
strategies. The system was not able to discern the hierarchical levels until we introduced a separation
of time-scales by allowing the higher level module to take into account an average fitness of lower level
modules. Which other way could the system have to discern the hierarchical levels?

4.7 Robustness of the population approach

An interesting aspect of the approach used is its robustness against perturbations of the environment.
At unpredictable moments we had to take the robot out of its environment and turn the cable which
threatened to remove the robot from ground due to a one-directional spin. The robot was subsequently
never put down at the same place, with no obvious effects on its performance. Even if we put it into a
completely new environment it performed quite well.

5 Interpretation

In this section we want to interpret the behavior seen during numerous experiments over the last year.
However, several questions about the underlying mechanisms of the behavior are unanswered. We do
not know yet, for instance, how the individual programs behave during evolution. They are set in a
competitive algorithm, but do they compete or cooperate?

5.1 Cooperation and competition between programs

The population of programs is in a delicate balance, since any one of the programs does get a small time-
slice when it is allowed to control the robot. A successful program does not receive a larger time-slice,
rather it will get exactly the same time to steer as any other, and maybe worse, program. Due to the
nature of the environment, a time-delay of 500 ms is allowed before the evaluation of the action of a
program takes place that ultimately leads to a fitness score for that particular program.

There are, in principle, two strategies for programs to survive in the population: (i) either it manages
to fulfill the fitness criterion very well, even under bad initial conditions, providing e.g. for backing-up
commands in case of a probable obstacle collision, (ii) or it tries to minimize the fitness of its competitors
by steering the robot into a situation which will be very difficult to handle for any successor in the
subsequent time-slices. We call the former a cooperative strategy in that it might usually leave the robot
in a better situation than it encountered itself. Conversely, the latter strategy is a competitive strategy,
as it tries to maximize penalty for successors and in this way achieves a differential fitness advantage.

5.2 Memory, emotion and childhood

It is interesting to note that within the memory-based approach, a sort of” childhood” has to be introduced
which allows the system to gain good and bad experiences without forgetting them. Our first approach
to managing the memory buffer when all 50 places had been filled was to simply shift out the oldest
memories as the new entries came in. However, we soon realized that the system then forgot important
early experiences. We found out that early mistakes made before a good strategy was found are crucial
to remember in order to not evolve world models that permit the same mistakes to be done again. Hence
we gave the robot a childhood — an initial period of quick learning whose memories were not so easily
forgotten. The robot performs better if it has a harder time memorizing events later on when it it grows
older — a mechanism all too familiar to humans as well. The childhood period also reduced the likelihood
that the system displays a very special strategy: Only to perform those actions which effectively confirm
its current (limited) world model.

Another important factor for successfully inducing an efficient world model is to have a stimulating
childhood. It is important to have a wide set of experiences to draw conclusions from. Noise is therefore
added to the behavior in the childhood to avoid stereotypic behavior very early in the first seconds of
the system’s execution. As long as experiences are too few to allow for a meaningful model of the world,



this the noise is needed to assure early experiences of sufficient diversity. This noise causes the robot to
behave similar to a newborn, with uncontrolled arbitrary movements.

Later on, as basic knowledge in the form of a working world model has been gained, it is not so important
to store every sort of experience, and the system should become more choosy about what to add to its
memory. We speculate that a good measure to use for discrimination between important and unimportant
events, thus paving the way for either storage or discard of the corresponding data, would be the intensity
of feelings or, if you want, the degree of emotion, which is attached to a certain situation. If a situation
is accompanied with much pain, for instance, this might well be worth remembering, as it opens up
the possibility of the system to do function regression over a much wider range of parameters. If all
experiences stored would be similar in terms of the accompanying feelings (encoded as the value of the
fitness function), this would cause the robot to be unprepared for extreme situations which might suddenly
realize, thus rendering him incapable of handling those situations appropriately.

5.3 Exploration and curiosity

One other interesting aspect of the existence of more than one program allowed to steer behavior is
— mainly in the beginning — the strong impression of explorative behavior the system evokes within
an observer. Although there is no such elementary behavior as exploration built into the system, this
behavior emerges from the interaction of initially random programs which all get to steer the robot for
some time-slices.

5.4 Character

The behavior of the robot is very different when memory is added to the system. Then the system
displays a set of very “reasonable” behaviors. The robot regularly displays a clear strategy and travels
in straight lines or smooth curves. Some of the behaviors evolved show an almost perfect solution to the
current task and fitness function, see Figure 5. Because the robot performs an optimization based on its
world model which is reaffirmed any time it is gaining experiences modelled within it, we have termed
the different behaviors ” characters”.

In this contribution we tried to classify the behavior during evolution in our experiments. Some of
the emerging intelligent strategies are illustrated and explained in Figure 5.

6 Conclusions

We tried to give a comprehensive overview of what has been achieved in our laboratory so far with using
a machine language implementation of GP and a real robot platform. Though more quantitative data on
the experiments can be found elsewhere, we hope that the potential of the method has become evident.
For each of the behaviors we simpy had to change the fitness function.

In the future, we would like to further investigate the memory approach to behavior, the hierarchy
of behavioral mechanisms, including action selection, as well as more low-level behavior like fleeing and
hiding, which are also very fundamental in organisms.
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