4L . JJ(,I/VLUUL’ Al . 4 . Judl VYl vl A ue dvadbadaitod kLJle.}
Springer, Berlin, 1994
pp- 322 — 332

Genotype-Phenotype-Mapping and Neutral
Variation — A case study in Genetic
Programming

Wolfgang Banzhaf
Department of Computer Science, Dortmund University
Baroper Str. 301, 44221 Dortmund, GERMANY

banzhaf@tarantoga.informatik.uni-dortmund.de

Abstract. We propose the application of a genotype-phenotype map-
ping to the solution of constrained optimization problems. The method
consists of strictly separating the search space of genotypes from the so-
lution space of phenotypes. A mapping from genotypes into phenotypes
provides for the appropriate expression of information represented by
the genotypes. The mapping is constructed as to guarantee feasibility
of phenotypic solutions for the problem under study. This enforcing of
constraints causes multiple genotypes to result in one and the same phe-
notype. Neutral variants are therefore frequent and play an important
role in maintaining genetic diversity. As a specific example, we discuss
Binary Genetic Programming (BGP), a variant of Genetic Programming
that uses binary strings as genotypes and program trees as phenotypes.

1 Introduction

Historically, there is a long dispute among evolutionary biologists as to the main
engine for evolutionary change. Is selection the force that overwhelmingly forms
the outcome of evolution? Or is the more influential force that of variation, i.e.
events of mutation or recombination of genetic material that provide for the
continued progress in evolving generations? Starting with Darwin [1], who al-
ready acknowledged the existence of variations selection is not working against,
the dispute raged back and forth, with Kimura’s neutrality theory of evolution
[2, 3] being the most prominent expression of the idea of a variation engine of
evolution. Paraphrased, Kimura’s theory states that evolution at the molecular
level is mainly due to mutations that are nearly neutral with respect to natural
selection. Mutation and a resulting random drift of genomes are thus considered
main forces behind evolution. Kimura notes that this continuous variation of ge-
netic material, with most of it being neither advantageous nor disadvantageous,
is key in understanding natural genetic diversity.

It has become possible in recent years to look in detail at the molecular
level of evolution, i.e. the genotypic level where the effects of this neutrality
assumption are to be expected. And, indeed, a high variety of genotypes have
been shown to exist [4]. In some way, it seems that the mapping from geno-
types to phenotypes allows many different genotypes to result in phenotypes of
comparable functionality.

The central idea of the present paper is to take this kind of genotype-
phenotype-mapping (GPM) into the area of artificial evolution, as it is applied
in Evolutionary Computation paradigms like genetic algorithms (GAs), evolu-
tionary strategies or evolutionary programming. We shall be providing ample
possibilities for the evolution of neutral variants, since our GPM will by con-
struction be such that many genotypes will map into one phenotype. This is due
to the fact that the optimization problem considered is of the class of constrained
optimization problems [5]. What we shall not do here, however, and this must
be a subject for further study later on, is to consider the important problem
of transformation of function. We suspect that in order to include this aspect,
an extension of the GPM has to be made that is able to model developmental
processes.

The treatment of constrained optimization problems is different from that of
unconstrained problems, since a candidate solution is not only judged according
to its fitness or quality but also has to obey certain restrictions which exclude
entire regions of solution space as unfeasible. Therefore, in constrained optimiza-
tion two sometimes antagonistic criteria have to be satisfied, (i) quality and (ii)
feasibility of a solution. Very often, constraining the solution space leads to lo-
cal hills or valleys which are difficult to overcome with traditional methods of
optimization.

There are several ways to treat constraints in GAs [6] — [8]: One is to include
a penalty term in the fitness function. This is called a soft constraint and it is
equivalent to allowing the solution to break a constraint by trading solution
quality against penalty. In the long run, trading gets more and more difficult
until, finally the optimization can only progress by implementing the constraint
completely. The other method in order to find good and feasible solutions is a
hard constraint. This means to start out with feasible solutions and to restrict
search operations in such a way that only feasible solutions are generated during
the evolutionary search. Thus, only specially adapted operators may be used
that are shown to guarantee feasibility of a transformed solution.

Though in the latter case all solutions are guaranteed to be feasible, the
restriction of search operations might lead to solutions that are not optimized.
Vice versa, in the former case it might happen that quality improvement by
not obeying constraints is so large that it is not possible to return to a feasible
solution once the algorithms has entered the region of good (but unfeasible)
solutions.

A third method based on constraint programming has been proposed to treat

constrained optimization problems [9] which makes use of state space search that
is enhanced by knowledge of the problem domain.

Another way to optimize problems under constraints is the GPM method
proposed here. Search space and solution space are separated, and a mapping
between search space (genotypes), where unrestricted search operators can be
applied and solution space (phenotypes), where feasibility of solutions is guar-
anteed, is introduced. Whereas any genotype is allowed in search space, an ap-
propriate GPM provides for feasible solutions in solution space only. It is imme-
diately clear that this requires a mapping of search regions that would lead to
otherwise unfeasible solutions, into feasible solutions.

Genotype -Phenotype
(Gerotype) ——= | Gmmpe renupe |

Search Space Constraint implementation Solution space
(unconstrained) (constrained)

Fig. 1. Functionality of different parts of the algorithm. Unrestricted genotypes scan
the search space, GPM provides for an implementation of constraints, solutions are
represented by phenotypes in the restricted solution space.

The method used for enforcing feasibility is a two-step process, the first
step of which is a raw mapping, with the second being a correction in case
the feasibility test is negative. If we now consider a genotype that leads to a
feasible solution without being corrected in the second step, we can think of
variations that do not change its quality but only remove feasibility. It is those
genotypes that will be corrected back by the second step into the nearest feasible
phenotype. In other words, some of the information this genotype is carrying is
ignored due to the GPM. Needless to say that precisely these are the set of
neutral variants that do not influence in any visible way the performance of a
phenotypic solution.

The point we are going to make is that the high variability of neutral variants
allowed due to GPM permits the algorithms to escape local optima on saddle
surfaces. In high dimensional spaces this is the way out of local trapps, and
neutral variants are the only way out — apart from appropriate recombination
or a lucky but improbable event of just jumping over the barrier. As Eigen
[10] has emphasized, a random drift due to the generation of neutral variants
broadens the population distribution sufficiently as to secure an escape route
with manyfold probability (compared to the fast-decaying spherical distribution
around the consensus sequence).

We are going to study one specific example of this phenomenon in Genetic

Programming [11], a variant of GAs.

2 Genetic Programming

Genetic Programming (GP) is a variation on the theme of applying artificial
selection to structures that are to be optimized [11]. In the context of algorithms,
programming languages are the material from which structures are build. Since
any kind of language obeys certain grammatical rules, constraints have to be
followed by expressions in the respective language.

The GP approach established by Koza starts out from the tree representa-
tion of a program. As is well known each expression in a context-free formal
language can be stated as a hierarchical tree of nodes of different arity. Arity 0
nodes (leaves) are symbols from a predetermined terminal set. Nodes with arity
> 1 are symbols from another set, called functions, which carry a number of
arguments. The semantics of these symbols has to be provided by an outside
user of the GP system. GP manipulates these symbols by operating on trees and
subtrees in order to generate variations or recombinations of already existing
trees. The continuous selection of improved trees may lead to algorithms which
treat given input/output pairs (fitness cases) correctly. At the outset, the system
is seeded with a collection of randomly generated trees, that are guaranteed to
obey certain parameter settings (e.g. depth of the tree). The trees are interpreted
and evaluated according to the respective choice in functions and terminals, and
generate, depending on input data, a certain behaviour in form of algorithmic
output.

Because of the presence of grammatical constraints in a programming lan-
guage, GP is a natural test bed for the ideas developed in Section 1. Figure 2
compares the genotype-phenotype mapping found in Nature with a generic model
and an adaption to the needs of evolving algorithms which we call Binary Genetic
Programming (BGP). As in Koza’s approach, fitness evalution in algorithms is
done by comparison of the required output with the actual output of the algo-
rithms.

Whereas Koza evolves phenotypes (program trees) that behave as programs
when interpreted with the appropriate system, we evolve genotypes (bit strings).
In the spirit of the first method to treat constrained problems mentioned above,
in Koza’s work only those search operators are used that allow to produce valid
program trees. In contrast, we can use any kind of search operator working on
bit-strings, since it is the subsequent mapping into program trees, that guar-
antees fulfillment of the constraints. In order to arrive at correct programs we
follow the GPM method of Figure 2c. The main ingredients to this mapping are,
first, a coding of pieces of the bit-string into the nodes of a program tree, i.e.
into members of the set of functions and terminals, and, second, a correction
mechanism that is able to check statements and to transform them into the
nearest correct statement if an error was detected. Thirdly, constant pieces of

Nucleotide Sequence

¢

mRNA copy

¢

Processed mRNA

¢

Genotype

J/ Transcription

Intermediate carrier
J/ Edition

Edited intermediate carrier

Binary number sequence

¢

Binary copy

¢

Corrected copy

Raw translation

; Trandlation
¢ Correct expression
Amino acid sequence Translation product Full program source code
Formation Compilation \b
2dim, 3dim Structure Phenotype Executable

¢ ¢ ¢

Activity in reactions Behavior Activity for I/O pairs

(@) (b) ()

Fig. 2. Sketch of genotype — phenotype mapping; (a) in Nature, (b) generic model,
(c) in Binary Genetic Programming (BGP).

code are added in order to arrive at a working program which can be compiled.
The role of the intermediate carrier is to be able to cut out bits encoding pa-
rameters without being forced to permanently remove this information from the
bit string. A comparable role exists for messenger RNA (mRNA) in the natural
process of expressing genotypes [12], though these mechanisms ar emuch more
complex in the natural system than those used here.

One additional twist that GPM gives to a Genetic Programming system is
that it allows for varying random numbers. This is due to the freedom that an
expression of information gives during the mapping process. We do not intend to
compare this new functionality with the more inflexible approach Koza is taking
but rather introduce it here as a sideline.

3 Some details of the BGP implementation

GPM expresses genetic information carried by a bit-string in two phases. Phase
I takes a bit-string and generates a high-level language construct that is used
in Phase II by a regular compiler to generate relocated machine instructions.
Whereas Phase II is standard, some details have to be given for Phase I in order
to understand the approach.

After drawing a copy from the original bit-string, this copy is processed by
scanning it from left to right in 5-bit sections. Each 5-bit section is considered
to be a code for a symbol from Table 1 giving either a non-terminal symbol (left
side) or a terminal symbol (right side). As we can see, there is a certain amount
of redundancy in the coding, with the selection of particular codes for particular
nodes rather arbitrary. As in Koza’s approach, a decision has to be made as
to what sort of functions and terminals are to be used in the application at
hand. For the regression application we discuss here, we have chosen numerical
functions as the set of non-terminals. On the terminal side we use X, the input
to our regression, and R1...R4, random numbers generated in different intervals.

Code || Symboll|| Code ||Symbol|||| Code ||Symbol|| Code ||Symbol
00j0j0[0]| PLUS ||[0j1j0j0j0 PLUS ||Ljoj0jo[0] X ||{Lj1j0j0j0] X
0[0j0[0[1||MINUS|((0]1{0[0|1|MINUSIY|||1j00j0[Lf R1 ||j1|1{00]1] R1
0/0[0(1]0[| TIMES]||0]1j0/1j0]| TIMES|||l1j0j0[Lj0]] X ||[L{Ljo[Lj0)] X
0[0[01|1|| THRU [||0[1{0j1|1|| THRU ||||1j0j0[1|1]] R2 {||1{10/1|1]] R2
0/0|L{0[0]| POW |([0|1]1|0j0] POW Ji||LjojLjo[o) X ||[LjLjLj0j0] X
oLt ST fjjojLLjo)L| EX fj||itjojLoi) R3 {|IL11j011)] R3
0[0[L{Lj0]| CO ||0j1{1|1j0]| RLOG ||||lLjojLLj0) X ||lL{L2f1jo] X
O[] EX J[0[1{1|1]1]| RLOG ||||Ljo[1j1|1)] R4 |||L11{11) R4

Table 1. Transcription table of binary strings into functions and terminals. 5-bit
coding shown. First bit (category bit) indicates whether a function or a terminal is

coded.

The generation of random numbers deserves more discussion: If we would
generate a different random number every time, e.g. R1 is used in a program, no
reliable function could be developed around this random number. Koza solves
this problem by defining ”random ephemeral constants”. These are constants
that are generated once and for all at the creation of a program tree. Later they
are only combined into different trees, with their value kept fixed. Our approach
is different, since we have decided to represent random numbers directly on
the bit-string. We use two procedures, one applying intron coding of random
numbers, the other applying category bit coding. The former procedure is as
follows: Once the scanning process discovers one of the R string-codes, it cuts
out the following 2 5-bit sections, i.e. the next 10 bits, for use as a random
number. These bits are interpreted as a natural number between 0 and 29 — 1
and mapped into an interval according to Table 2. The latter method makes
use of the fact, that we can look at all the category bits of a string as another

(though shorter) bit-string, which might be interpreted differently. Thus, when
the code calling for a random number is discovered, the next ten category bits
are used to generate the natural number mentioned above. Further treatment is
equal in both cases.

The advantage of an explicit representation of random numbers on strings
is that their value now becomes susceptible to random mutations and other
variations due to genetic operators that are impossible in Koza’s scheme. In
effect, they have become parameters coded on the string. This additional feature
comes at a cost, though. A further processing step of interpreting parameter bits
has to be introduced.

Symbol Interval| Sort
R1 | [-1,41] | Real
R2 [0,1] | Real
R3 |[-10,410]Integer
R4 [0,10] |Integer

Table 2. Treatment of numbers cut out from the string.

After a string has been scanned and optionally processed, a raw translation
of its information is generated which is analyzed for grammatical correctness.
If there are not enough terminals supplied on the string, for instance, category
bits are changed from right to left until enough terminals are present. The re-
sulting translation is parsed and supplied with parentheses and other necessary
characters as well as with unchanging program headers and tails in order to
arrive at valid source code of a target language like C or FORTRAN. Finally, a
commercial compiler takes over and produces an executable that is run for the
predetermined (preferably large number of) test cases of input/output pairs. Due
to the fact that we can use compiled code, execution is by orders of magnitude
faster than interpreted LISP-code.

4 Numerical simulation for selected regression problems

For this contribution we examined the following two regression problems:

08

06

04

02

We used 500 fitness cases in the range z € [0,4]. Fitness was defined as the
degree to which the above function is approached by an individual from the
population. We use the inverse measure of the quadratic deviation

e = Z e = E (f(z:) —y12)° (3)
i=1,500 i=1,500

and try to minimize it. An individual is considered successful if it is able to
approach y; » within a small interval for all the fitness cases:

e; < 0.01 Vi. (4)

If the first such individual appears, the population as a whole is considered
successful and the simulation is stopped.

Figure 3a-b is the cumulative success probability for 50 runs each. Compared
are the two different approaches to implementing random numbers as parameters
on the string. From the figures we can see that the category-bit approach is
generally better than the intron approach. Also, eq. (1) was not so easily solvable
within 50 generations.

As an example, we give solutions for eq. (2) that were achieved by continuing
a run that would have stopped for the statistical measurements:

f(z) =0.05" (5)
Note that e=3 = 0.0498. Another solution was

flz) =€ (6)

T T
category-bit —

oo
00000000
000000

0
00000000000

00400

T T
category-bit —
introns o introns o

N e " L L L L L L L L L L L L
5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45

Fig. 3. Success probability for 50 runs of problem (a) eq. (1) and (b) eq. (2).

Frequency

Frequency

20

=)

5 Analysis and conclusion

We shall now take one typical run and analyse it with respect to the question of
neutral variations. As a natural distance metric in our search space we take the
Hamming distance. Figure 4 - 6 show histograms of Hamming distances from
all genotypes to the best genotype. In Figure 4, left, we see that distances are
distributed initially around 120 bits, which reflects the fact that the zero-th
generation does not yet have any preference in search space (strings have 225

20

Frequency
s

bits).
I \ M

L

‘ Ll :

o

25

20

o

=)

2
o

il
50 100 150 0 50 100
Hamming Distance Hamming Distance
Fig. 4. Histogram of Hamming distances. Left: Generation 0; Right: Generation 7.
C] 400]
i 1 °F E
L 1]
L 15 |- 4
S 20f -
[18 L]
L Je ok k!
[1 of -
N . frhon — 7 oh H ‘ . o | E
50 100 150 0 50 100
Hamming Distance Hamming Distance

Fig. 5. Histogram of Hamming distances. Left: Generation 15; Right: Generation 19.

The average Hamming distance is smaller in generation 7, since a movement

2
o

Frequency

25

20

o

=)

o
T

o
L

o
T

Frequency

o L 1Y, I

o

50 100 100
Hamming Distance Hamming Distance

2
o
o
o
S

Fig. 6. Histogram of Hamming distances. Left: Generation 22; Right: Generation 25.

towards better solutions has begun. In generation 15 (Figure 5 left), shortly be-
fore a correct solution is discovered, the population has an average Hamming
distance of appr. 65, concentrating genotypes in more promising regions of the
search space. Then a big jump occurs for the best individual, effectively restoring
the original distribution of distances.

Figure 6 showns a broadening of the distribution as more and more individ-
uals move into the correct region. Though the deviation e of all individuals is
now within 2 x 1073 of the optimal value, ¢ = 0, diversity of genotypes is still
remarkable. The reason for this behavior lies in the fact, that part of the geno-
typic information is not expressed in the phenotype. The unexpressed part may
vary arbitrarily, without any consequences for the fitness of the individual.

It is interesting to note further, that program trees that are derived from
fixed length binary strings have varying length. Like other bits, the category-bit
of random strings is 1 with probability % For a translation into binary trees as
we use them in our BGP, a function will be at place 1 with certainty. At place
2, a terminal will follow with probability ps = %. For the tree to be complete, a

2
terminal should follow on place 3. This happens with probability ps = %. Thus,
one quarter of all randomly generated trees will be very short. It follows that one
eighth will contain 2 functions, and so on. A natural tendency toward shorter

program trees is therefore built into the algorithm.

The GPM method introduced here is useful in other constraint optimization
problems as well. It is hypothesized that the strict separation of search operations
(in genotype space) and constraint implementation (in GPM) allows systems of
this sort to work more flexible than systems that work with phenotypes only.

References

10.

11.
12.

. C. Darwin: On the Origin of Species by Means of Natural Selection. London:
Murray 1972, 6th Edition

M. Kimura: Nature 217, 624 - 626 (1968)

M. Kimura: The Neutral Theory of Molecular Evolution. Cambridge: Cam-
bridge University Press 1983

T. Mukai: Experimental Verification of the Neutral Theory. In: T. Ohta, K.
Aoki (Eds.): Population Genetics and Molecular Evolution. Berlin: Springer
1985

. G. Reklaitis, A. Ravindran, K. Ragsdell: Engineering Optimization Meth-
ods and Applications. New York: Wiley 1983

D. Orvosh, L. Davis: Shall we repair? Genetic Algorithms, combinatorial
optimization, and feasibility constraints. In: S. Forrest (Ed.): Proc. 5th Int.
Conference on Genetic Algorithms, ICGA-93. San Mateo: Morgan Kauf-
mann 1993

H. Fang, P. Ross, D. Corne: A promising GA approach to Job-Shop schedul-
ing, rescheduling, and Open-Shop scheduling problems. In: S. Forrest (Ed.):
Proc. 5th Int. Conference on Genetic Algorithms, ICGA-93. San Mateo:
Morgan Kaufmann 1993

R. Nakano: Conventional GA for job shop scheduling. In: R. Belew, L.
Booker (Eds.): Proc. 4th Int. Conference on Genetic Algorithms, ICGA-91.
San Mateo: Morgan Kaufmann 1991

. J. Paredis: Exploiting Constraints as Background Knowledge for Genetic
Algorithms: a Case-study for Scheduling. In: R. Manner, B. Manderick
(Eds.): Parallel Problem Solving from Nature, 2. Amsterdam: Elsevier Sci-
ence Publishers 1992

M. Eigen: Steps toward Life: a perspective on evolution. Oxford: Oxford
University Press 1992

J.R. Koza: Genetic Programming. Cambridge (USA): MIT Press 1992
M.W. Gray, P.S. Covello: RNA editing in plant mitochondria and chloro-
plasts. FASEB J. 7 (1993) 64

This article was processed using the INTpX macro package with LLNCS style

