
BioSystems, 22 (1989) 163-172 163 
Elsevier Scientific Publishers Ireland Ltd. 
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We present a model for optimization of cost functions by a population of parallel processors and argue that especially 
diploid recombination of gene strings is a promising recipe for optimization which nature proliferates. Based on a simu- 
lated evolutionary search strategy diploidy is introduced as a means for maintaining variability in computational problems 
with large numbers of local extrema. A differentiation into genotypes and phenotypes is performed. The applied strategy 
is compared to some traditional algorithms simulating evolution on the basis of two sample cost functions. 
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1. Introduction 

Interesting problems which are very diffi- 
cult for conventional electronic computers can 
be cast into the form of optimization of some 
kind of quality or cost function. The problems 
we consider range from pattern classification 
tasks such as, for example, face recognition, 
over optimization in a literal sense, such as 
the travelling salesman problem, up to gen- 
eral adaptive or intelligent behaviour as used, 
for instance, to play a game like chess 
adequately. 

The above-mentioned quality function is 
more or less well-defined, depending on the 
special nature of the problem under consider- 
ation and the granularity of the underlying 
phase space. In most of the cases, this func- 
tion possesses many local minima (maxima) 
which are highly favourable with respect  to 
its neighbourhood, but will complicate search 
for the global optimum considerably. Depend- 
ing on the search strategy,  it is often possible 
to devote more computational time to 

improve the global quality of the solution 
proliferated by the algorithm. 

By looking at nature, we can learn a lot 
about search strategies in high-dimensional 
spaces with almost infinitely many local 
optima. The evolution of life and processes of 
adaption applied by different species during 
evolutionary time scales could serve as 
guidelines for developing reasonable com- 
puter algorithms (Darwin, 1859; Dobzhansky 
et al., 1977). In recent times this point of view 
has been adopted by many scientists 
(Bremermann et al., 1965; Cohen, 1973; 
Rechenberg, 1973; Holland, 1975; DeJong, 
1980; Schwefel, 1981; Brady, 1985). From a 
biological point of view the problem of mini- 
mization of a cost function may be seen as 
that of maximization of a given fitness func- 
tion. 

As Rechenberg (1973) has pointed out, the 
supposition that evolution has selected the 
fastest and most secure search s trategy (thus 
giving rise to a meta-evolution of methods 
during the last 109 years) is very reasonable. 
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Concerning the quality of solutions nature has 
found in her feature space, there is no doubt 
of its sub-global optimality. We term it sub- 
globally optimal since, by definition, there 
may exist only one global optimum to a 
problem. We consider, however, a situation 
where the quality function is very sensible to 
changes in the environment. For one species, 
this environment will contain all other species 
as well as more slowly varying non-living 
environmental conditions. Thus we have many 
subspaces of different dimensions - some- 
times partially overlapping - the different 
optima of which will be called sub-global. 
Note that this view differs considerably from 
some opinions stated during the last two dec- 
ades (Bremermann, 1965; Cohen, 1973), since 
we assume a very high "adaption velocity" of 
species and of the evolution process in gen- 
eral. 

There exist numerous examples that dem- 
onstrate the optimality of solutions nature 
has found in different areas (Rosen, 1967). The 
optimal branching structure of vascular trees 
in the blood system is one prominent example 
(Cohen, 1954; Kamiya and Togawa, 1972). 

The purpose of this contribution is, firstly, 
to outline some general ideas about missing 
pieces in the great puzzle of copying nature 
with respect to her evolutionary plasticity 
and, secondly, to present primary simulation 
results concerning at least one critical point 
in the game: diploid recombination and the 
differentiation in genotype and phenotype. 
The emphasis always lies on principles and 
their application to computing problems. 

We begin by outlining the general ideas 
and then give a brief sketch of the strategies 
picked up from nature and used in simula- 
tions. In the main part we present simulation 
results with application of different algo- 
rithms. Finally we comment on these findings. 

2. Some general ideas 

We present our ideas as statements which 
name well-known facts. Simultaneously we 
want to establish parallels with possible com- 
puter applications. 

Statement 1: Nature works with populations 
of individuals. The phenotypic individuals of a 
given species are the entity nature uses to 
search in parallel the space of possible fea- 
ture combinations. Improvements  are accep- 
ted and deteriorations are rejected eventually 
after time delay. 

Transcribed to a parallel processing sys- 
tem: The parallel processors are part of a 
population of processors which work on the 
same data each with its given program. Tasks 
should be partitioned in sufficiently extensive 
portions so that every processor can work 
autonomously during a considerable amount 
of time. 

Statement 2: Nature adapts populations by 
separating the time scales for the develop- 
ment  of individual phenotypes and genotypes. 
In a f irst  approximation there is only a uni- 
directional interaction between genotype and 
phenotype, whereas the reverse interaction is 
mediated by the gene pooL 

Translated, every processor has its pheno- 
typic part, but as well an underlying struc- 
ture - the genotype - which evolves rather 
slowly. The genotypic part determines more 
or less what is really going on when a 
processor works with incoming data. 

Statement 3: Recombination is the source of 
variability in a population as well as a 
medium to transport important messages, e.g. 
enormous improvements  which should be 
radiated to all individuals. 

The genotypic part of a processor consists 
of two portions one of which is dominant, the 
other recessive (diploid recombination). Every 
two portions descend from their own "parent 
processors". These are the processors which 
send their own genotype to them. 

Statement 4: Randomness is present in the 
mutations which an individual genotype 
experiences. Thus noise is used to slightly 
vary results of recombination. 

In a technical system as well there is an 
amount of noise which is, however, not sup- 
pressed, but sometimes used to accelerate 



evolutionary changes. If it is not present nat- 
urally it is added as white noise of a given 
variance. 

Statement 5: Selection between individuals 
assures continuous progress of a population 
with respect to its adaption to the 
environment. 

The power of every processor is evaluated 
and compared to the processor power of the 
others. On this basis a global decision is made 
in which one processor's program has to be 
replaced by a recombination. Note that  this 
process could as well be asynchronous. 

Statement 6: Sub-global optimization is per- 
formed by nature on the total population, not 
on the individual. 

We introduce only one population of pro- 
cessors which means every individual can 
recombine with everyone else. The variance 
does not influence fertility rates. Note that  
this is only a technical agreement. It gives us, 
however, the result of a single global opti- 
mum, since no other species is present. For 
the sake of clarity, we have only one half 
female and one half male individuals in our 
population. 

Statement 7: Improvements are radiated to 
all individuals in a relatively short time (in 
number of generations). Thus a fast reaction 
to changing environmental conditions is pos- 
sible. 

In principle, almost every processor has a 
solution which is equal to others in its quality. 
Distinctions are washed out in a few genera- 
tions due to a nearly exponential growth in 
the superior portion. 

3. Description of applied strategies 

We shall begin our description by distin- 
guishing between simple and advanced 
evolutionary strategies. In the following, 
genes are numbers parameterizing the algo- 
rithms to be performed by the processors. 
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The simple strategies consist of string-like 
genotypes 

x~a(t), i = 1 . . . . .  Z, fJ = 1 . . . . .  N 

where Z is the number of gene loci and N the 
number of individuals which could be written 
as Z components of a high-dimensional vector 
x. We have N individual processors equipped 
with N different x ~. The numbers in x, ~ which 
could obey some constraints, such as 

A ~<x1~<B or x,~E ~o (1) 

directly specify features of individual ~ in 
component i. At the beginning these numbers 
are chosen randomly from the given set. 
Based on a quality function Q(x), every pro- 
cessor gets its judgement 

Q" = Q(x') 

where an ordered set 

= { q , , ,  q ~ ,  Q~3... } (2a) 

with 

Q~ >I Q~ >/... >i Q~N (2b) 

of the qualities can be formed. A fixed num- 
ber D of offsprings emerges from M (M ~< N) 
parent processors. Thus a recombination 
takes place in a bi- or multisexual process. 
Adding mutations will result in D offsprings 

y~, ) , =  1 ..... D 

each of which will have its quality Q(y~). 
For M = 1 we have no recombination, only 

mutations to vary descendants. Now, depend- 
ing on the particular strategy, the ordered set 

Od = { q'~, Q'2, Q'3...} 

(3a) 



166 

or 

Q#~ >i Q~I >I >/Q~2... {3b) 

can be taken as a basis to form a new genera- 
tion of genotypes 

x0 (t + 1), /~ = 1 . . . . .  N 

This is done by selecting the N best individu- 
als, as given by the quality function, either 
out of D or D + N. In the first case, however 
one needs D >/ N whereas the second case 
does not have any constraint on D. In a real 
parallel processing system it may well be 
most efficient to choose D = N. Asynchrony 
can be realized by judging and selecting after 
some descendants have been generated. In 
general, selection should then take place 
under all parents and descendants present at 
that time. 

The advanced evolutionary strategies, on 
the other hand, differentiate between geno- 
type and phenotype of an individual. The 
genotype contains M strings, each coming 
from one of its parents. To avoid com- 
munication overhead, diploidy would be an 
effective choice. Despite the fact that nature 
uses particular operations such as cross-over 
and inversion to recombine genetic material, 
we use a simple random strategy to decide 
which of the M genetic information at each 
gene locus is transferred to the descendent as 
well as to select the dominant one. This 
simplification does not seem to make a major 
difference. Thus we have 

p~(t) = f (x~(t)), a = 1 . . . . .  M (4) 

with the convention of a = 1 being domi- 
nantly expressed in the phenotype. The corre- 
sponding phenotype consequently has 
features where f is the mapping from gen~ 
type to phenotype. Our aim here does not 
need any complicated mapping f, so we choose 
the identity 1 . We only mention that  algo- 

rithms with highly non-linear mapping-func- 
tions greatly expand the power of population 
processing (unpublished data). This is, 
however, beyond the scope of this work. 

Recombination was introduced into algo- 
rithms simulating evolution more than two 
decades ago and used by Holland (1975), 
Brady (1985) and Holland et al. (1986) with 
considerable success. To our knowledge, how- 
ever, the present results are the first using 
diploid recombination by applying the 
principles of dominance and recessivity of 
genes found in nature. To distinguish the dif- 
ferent strategies using recombination, we 
term the former intermediate strategies, 
since its character is haploid. We do not con- 
sider them in greater detail here. Note that 
recombination of recessive genes gives 
enormous variability in features of pheno- 
types and is therefore the most important 
source of variations in a population. A strict 
selection, on the other hand, will allow only 
those features to succeed which are superior. 

We now describe the other parts of the 
algorithm. Concerning mutagenicity, we 
simply apply a constant log-normal partition 
of mutations (in the diploid case). No rate 
adaption is used here due to the fact that  real 
progress stems from diploidy rather than 
from random mutations. In haploid cases, 
however, we use a mutation rate adaption 
according to Rechenberg (1973) and Schwefel 
(1981). The quality function we use does con- 
stitute the problem we want to solve using 
the algorithm. It will be described later. 

4. Simulation 

We present simulation results concerning 
two different static cost functions. (They are 
static with respect to an eventual time depen- 
dence which can be considered, too.) We thus 
look for minima and try to minimize the cost 
function with simple and advanced evolution- 
ary strategies. Both cost functions are 
formulated in a 10-dimensional space, the first 
of which is very harmless and has only one 



minimum but serves as a demonstration for 
the following two hypotheses: 

(i) In simple evolution strategies where no 
recombination takes place, mutations are the 
only source of progress. The velocity in which 
a system approaches some predefined quality 
will thus crucially depend on the mutation 
rate of the system. 

(if) A finite lifetime of individuals which 
means a selection among descendants exclud- 
ing parents will for a long time result in a 
nearly constant average variance of the popu- 
lation. Consequently, such strategies will be 
candidates for implementation in changing 
environmental conditions. 

Note that the natural time scale we have at 
hand is the number of generations succeeding 
one after the other. A generation is defined 
as an ensemble of individuals, subject to an 
evaluation of its quality. This definition will 
include asynchronous updating as well. 

Cost function I is defined by 

lO 

Q(p) = 5" a,p~ (5) 
i = l  

where a~ are arbitrarily fixed positive values. 
Here, and in the following, we use p, for 
phenotypes and x i for genotypes. In simple 
strategies Eqn. (4) is valid as well with M = 
1. Minimizing Q analytically results in p = O. 
We use simple strategies to solve the problem 
numerically. The mutation rate follows a log- 
normal distribution (Rechenberg, 1973; 
Schwefel, 1981) i.e. the change Axe is 

~ii (t) " "  ONi O ~ ( t )  e x p  [O N o/(10) lrz] (6) 

where F~v} = N(1,0) is normally distributed. 

The updating of the characteristic individ- 
ual mutation rate o~ is done by 
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o~ (t + 1) : o~ (t) exp I0 N o/(lO)*~J (7) 

starting with a fixed o~ (0). Only the para- 
meter o will be subject to variations. Accord- 
ing to Eqns. (3a,b) we can distinguish between 
finite life-time (strategy a) of individuals and 
infinite life-time (strategy b). 

Figure 1 gives the course of the cost func- 
tion for strategies (a) and (b), respectively, for 
a fixed parameter  o. Qualitatively, strategies 
(a) differ from (b) in that  the average variance 
over many generations remains nearly con- 
stant, whereas in (b) it decays rather  rapidly. 
Figure 2 shows the development of a popula- 
tion of processors in s t rategy (at. Persisting 
fluctuations can be realized clearly. Of course, 
there is no theoretical reason why these fluc- 
tuations should persist forever, but a long 
transient time will proliferate enough varia- 
bility to cope with changing environmental 
conditions. 

Table I compares convergence velocity 
defined as number of generations necessary 
to reach a definite limit in the cost function. 
It can be seen that the influence of different o 
chosen is at least one order of magnitude 
greater than that of different configurations 
of the population. This may be one of the rea- 
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Fig. 1. Cos t  funct ion I ove r  s t e p s  ( =  n u m b e r  of 
generat ions}.  A v e r a g e  of all e x e m p l a r s  r e p o r t e d .  The  
m u t a t i o n  r a t e  is o I = 0.1. - - - -, haploid ( ~ ) - s t r a t e g y  wi th  

= N = 5, it = D = 10. A f t e r  decay ing  r a t h e r  rap id ly  
f luc tua t ions  a r o u n d  Q = 2.0 pe r s i s t .  - - ,  haploid 
(~ + ~,)-strategy wi th  ~ - 5, ~, = 10. T h e  cost  func t ion  Q 
converges ,  Q -* 0. 
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Fig. 2. Cost function I of a population of ~ = 20 processors. Development over last 40 generations in a (~,lkstrategy. 
Simultaneous fluctuations in the population are clearly visible. 

TABLE 1 

Comparison of influence of different population configura- 
tions ~,A and variance parameters o on convergence 
velocity. Indicated are numbers of generations t the popu- 
lation needed to fall short off 1% of cost function I at t = 
0 in haploid (~,~) and (p + t) (in parentheses) strategies. 

Configuration Variance parameters 
of processor 
population o = 0.01 o = 0.1 o = 1.0 o = 10.0 

= 2 > 100 (31) > 100 (28) 13 (29) 20 (33) 
i ( = 1 2  

= 2 > 100 (16) >100 (17) 18 (18) 24 (43) 
, t = 2 0  
li = 5 > 100 (31) 70 (25) 13 (12) 14 (19) 
J .=30  
p = 10 >100(19) 56(27) 11(11) 7(21} 
~t=30 

= 20 >100(40) >100(27) 12 (11) 9(8) 
A=120  

sons  why  in the  pas t  e v o l u t i o n a r y  s t r a t e g i e s  

w e r e  fel t  to be v e r y  di f f icul t  to handle .  
I n t r o d u c t i o n  of diploid r e c o m b i n a t i o n  as it  

is done  now will  c h a n g e  the  s i t u a t i o n  d ras t i -  

cally.  Tw o  m a j o r  po in t s  a re  w o r t h  m e n t i o n i n g :  
f i rs t ly ,  r e c o m b i n a t i o n  s u p e r s e d e s  r a n d o m  
m u t a t i o n s  as the  p r inc ipa l  sou rce  of v a r i a t i o n s  

in a popu la t i on  a nd  secondly ,  we a r e  defi- 
n i t e ly  forced to i n t r o d u c e  a d i s t i n c t i o n  
b e t w e e n  i n f o r m a t i o n  c a r r i e d  by  g e n e s  of an  
ind iv idua l  which  will  be  twofold  in the  diploid 
case, and  i n f o r m a t i o n  e x p r e s s e d  by  an 
ind iv idua l  which  will be  s ing le .  

Diploid s t r a t e g i e s  a re  p a r t i c u l a r l y  well  
su i t ed  for p r o b l e m s  wi th  m a n y  local e x t r e m a .  
To s t u d y  t he se  effects  we i n t r o d u c e  a cost  
func t ion  H 

10 10 10 

Q(p) = ~. a,p~ + ~_. b,p~ + ~ c,p, (8) 
i=I i=l i=l 



A special choice of coefficients a~, b,, c~ is 

a i = 1, b, = - 4 ,  c, = 1.5 V i  (9) 

which will guarantee the presence of 2 local 
minima in every dimension or 2 l° minima in 10 
dimensions. For the sake of simplicity, all 
coefficients are chosen equal. These 1024 local 
minima obey a binomial distribution regard- 
ing its quality. 

Mutations are still present, but rate adap- 
tion (cf. Eqn. (7)) is turned off. 

Let us consider a system of 20 processors 
(10 male and 10 female) with 10 descendants. 
Diploid strategies will be formally repre- 
sented from now on by 

([P,, P2] + ([~',, L~]) (lOa) 

(finite lifetime) and 

([p,, ~] ,  ([~.,, ~2] ) (lOb) 

(infinite lifetime). ~ ,  ~2 are numbers of par- 
ents (male and female, respectively), ~'i, ~2 are 
numbers of male and female descendants. In 
our case 

~A 1 = 10, ~ = 10, ~i + ½ = 10 (11) 

Note that the sex of descendants is not pre- 
determined. Figure 3a is a record of the 
decrease in cost function II of two exemplars. 
Abrupt transitions are noticeable. This is due 
to recombinations as the major source of 
improvements. Different individuals have dis- 
tinct instants at which progress is made. On 
the other hand, they follow each other during 
radiation of improvements. Figure 3b shows 
the average of the total population together 
with the best and the worst individual. One 
can clearly see a decrease in variance 
between different individuals. From Fig. 3b,c 
we learn at times when nothing is going on 
with the best exemplar, i.e. generation steps 
~40 to ~60,  progress is nevertheless occur- 
ring: improvements are radiated, variance 
decreases and the average falls off with 
undiminished velocity. 
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Fig. 3. (a) Course of cost function II over number of 
generations (steps) for two exemplars of the population. 
Diploid strategy used: ([10,10] + [~1, L l), ~ + ~ = 10. 
Abrupt leaps are due to recombination. Both exemplars 
have approached the deepest minimum in around 150 
generations. (b) Course of cost funct ion / /over  number of 
generations (steps) for the best and worst exemplar and 
for the average of population. After 150 generations vir- 
tually all members of the population possess the same 
quality of its cost functions. (c) Variance of cost function 
II. Variance is sharply increasing during fast progress of 
single processors and decreasing during stagnation of the 
best exemplar. 
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T A B L E  2 

C o m p a r i s o n  of i n f l uence  of d i f f e r e n t  p o p u l a t i o n  

c o n f i g u r a t i o n s  ~ ,  ~ ,  ~t~, ~ a n d  v a r i a n c e  p a r a m e t e r s  o on 

c o n v e r g e n c e  ve loc i t y .  I n d i c a t e d  a r e  n u m b e r s  of g e n e r a -  

t i ons  t t h e  b e s t  e x e m p l a r  of a p o p u l a t i o n  n e e d e d  to  fall  

s h o r t  off 10% of cos t  func t ion  H a t  t = 0 in d ip lo id  ([Pe 

PbJ + [~' ~'~]) strategies. 

C o n f i g u r a t i o n  V a r i a n c e  p a r a m e t e r s  

of p r o c e s s o r  
p o p u l a t i o n  o = 0.01 o = 0.1 o = 1.0 o = 10.0 

~ = ~ = 2 333 > 500 184 174 

~ + ~ = 2  
~ = ~ = 4 388 193 176 373 

taj = ~z = 8 75 91 113 122 

) ` , + ~ = 8  
~ = ~ = 16 105 80 96 62 

,t~ + ~ = 16 
Px = ~ = 20 53 87 84 114 

)`, + ~ = 20 

Thus a sharp ascent of variance signals an 
enormous progress of single individuals, 
whereas a collapse in variance signals the end 
of development and an equally partitioned 
quality of solutions. 

An important point is the convergence 
velocity to the best solution, i.e. the deepest  
minimum. We suppose that it will depend 
upon the number of individual processors par- 

ticipating at the search, but not on any para- 
meter which regulates mutation. Table 2 
gives an overview over 20 searches with dif- 
ferent configurations of processors and muta- 
tion parameters o. It is evident that increase 
in N accelerates the search. Variation of o, on 
the other hand, has no stringent conse- 
quences. 

At the end of this section we present a 
comparison of tests of different strategies 
with cost function II.  We tested strategies 
such as gradient search, haploid and diploid 
search applying each s trategy to 100 
randomly chosen starting states. In Table 3 
we give the frequency of appearance of the 
retrieved minima states over their quality. 
This clearly demonstrates superiority of 
diploid strategies. 

From the tests  one discovers that it is pos- 
sible to virtually enlarge the population by 
allowing only one substitution of an individual 
in every generation. In this way, however, 
convergence time is lengthened. We 
emphasize that time consumption considera- 
tions need not play an important role here (at 
least as increases are not exponential) since 
we are concerned with the question of secu- 
rity of retrieval of global minima which is a 
greater problem than acceleration of conver- 
gence. 

T A B L E  3 

C o m p a r i s o n  of d i f f e r e n t  s t r a t e g i e s  in i t s  a b i l i t y  to  d i s c o v e r  a g loba l  m i n i m u m  of cos t  func t ion  H in 10 d i m e n s i o n s .  100 

t r i a l s  w i t h  d i f f e r e n t  s t a r t i n g  p o i n t s  in (a) g r a d i e n t  s e a r c h ,  (b) hap lo id  s ea r ch ,  ~ = 1, )` = 10, 
(c) hap lo id  s e a r c h ,  ~ = 5, ~t = 10, (d) d ip lo id  s e a r c h ,  pz = ~ = 10, A~ + ~z = 20, (e) d ip lo id  s e a r c h ,  p~ = 
= 10, )'x + ~ = 40, (f) d ip lo id  s e a r c h ,  ~ = ~2 = 20, )̀ 1 + )'2 = 20 c o n v e r g e d  to  

t h e  m i n i m u m  i n d i c a t e d .  

S t r a t e g y  N u m b e r  t r a p p e d  in local  m i n i m u m  of q u a l i t y  A v e r a g e  
q u a l i t y  of 

- 61.9 - 57.6 - 53.4 - 49.2 - 44.9 - 40.7 - 36.5 - 32.2 - 28.0 - 23.8 - 19.8 s o l u t i o n s  

a --  2 18 36 23 14 5 2 . . . .  46.97 

b 9 26 32 18 11 4 . . . . . .  53.06 

c 55 24 14 5 2 . . . . . . .  58.73 
d 83 17 . . . . . . . . . .  61.17 
e 94 5 1 . . . . . . . . .  61.60 

f 100 . . . . . . . . . . .  61.90 
No. of m i n i m a  1 10 45 120 210 252 210 120 45 10 1 



Other experiments with a still more hilly 
cost function (5 minima in every dimension, 
51° = 9,765,625 minima in 10 dimensions) give 
evidence for an interesting supposition (Has- 
tings 1986): In a diploid strategy, the number 
of generations will not grow exponentially if 
the number of possible solutions does. Indeed, 
the number of generations required by a typi- 
cal diploid population with suitable mutation 
rates is only 500~ 

5. Conclusions 

A model for parallel computing was pre- 
sented here which has certain similarities to 
natural evolution. The basic entity was a pop- 
ulation of processors which was adapted to a 
given static problem by means of diploid 
recombination of "programs" and by muta- 
tion. Selection took place under the auspices 
of a predefined cost or quality function. The 
programs here were just numbers parameter- 
izing coordinates of a space in which the cost 
function was well defined. The selection was 
done deterministically by throwing away all 
trials which were inferior in a set of fixed 
size. 

It turned out that  diploid recombination of 
genes was a very important ingredient in 
improving performance of evolutionary algo- 
rithms. The traditional approach consisting of 
mutation of genes as the only source of 
variability was criticized. It was shown that  
the security of discovering a global minimum 
of a relatively complicated cost function was 
greatly enhanced by introducing diploidy. 

On the other hand, mutational effects were 
not treated adequately. By increasing the 
population size and introducing a correlation 
between the quality function and "fecundity" 
one would reach a more realistic model with 
respect to biological systems. 

We noticed that  a distinction between 
genotype and phenotype of an individual was 
inevitable and could be seen as a separation 
of time scales in the evolutionary process. 
Different adaptive processes are equipped 
with such a separation of time scales (e.g. 
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Conrad, 1985; Banzhaf, 1987). We took the 
viewpoint that  optimization based on a simu- 
lation of natural evolution would lead to pow- 
erful and very fast algorithms. This can be 
seen in contrast to the viewpoint that  species 
are frozen states of evolution or, in other 
words, caught in a process of development far 
from being optimal (Cohen, 1973; Holland, 
1975). 

Evidence for progress in leaps was seen in 
simulations, the reason of which again was 
correct recombination of portions of informa- 
tion, each partly superior in some regions. 
Although results are preliminary in that  sta- 
tistics should be improved, we can notice 
interesting progress towards a realistic 
simulation of evolution. The work done can be 
extended in different directions: one can com- 
plicate the mapping function of genotype to 
phenotype, one can include time-varying cost 
functions, and one can make selection 
dependant on other criteria, not necessarily 
formulated as a cost function. Much remains 
to be done, since nature will ever provide us 
with interesting and successful processes to 
study. 
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