
Useful algorithms can be designed by 
imitating natural evolution1–4. For example, 
an algorithm inspired by evolution that 
aims to estimate the phylogeny of a set of 
amino-acid sequences might ‘evolve’ one or 
more sets of parameters that describe the 
topology and branch lengths of a phyloge-
netic tree. It might do so by simulating the 
data under each of several proposed trees, 
selecting trees that produce higher prob-
abilities, varying those trees by exchanging 
or altering parameters, replacing older trees 
with new ones, and repeating the process. 
The analogy with evolution by reproduc-
tion, variation and natural selection 
is obvious.

We refer collectively to the current field 
of studying and applying such algorithms as 
artificial evolution (AE); this term groups 
approaches that are sometimes distin-
guished in the literature, such as evolution-
ary programming5, genetic algorithms6, 
evolutionary strategies7 and genetic 
programming8. AE has traditionally had 
a strong engineering focus, and has been 
applied successfully in such disparate areas as 
the optimization of spacecraft trajectories9, 
nano-transistor design10 and quantum 

circuits11, and has performed as well as or 
better than human designers in some areas 
such as designing analogue circuits12,13. 

The purpose of AE research is to 
develop new algorithms that solve difficult 
design and optimization problems. Many 
biological problems are of this type, such as 
inferring regulatory networks from micro-
array data, inferring phylogenies from 
taxa, classifying protein sequences and 
discovering remote homologies. AE, 
however, can do more. Significantly, 
AE provides a framework for a computa-
tional model of evolution that could help 
us to understand and quantify the mecha-
nisms, trajectories and pace of natural evo-
lution. By providing an in silico test bed for 
evolutionary biology, the AE approach is 
useful in testing hypotheses about mecha-
nisms for speciation or in quantifying 
trade-offs among gene regulatory networks 
or metabolic networks, for example.

However, most current AE research 
proceeds from a restricted and dated under-
standing of natural evolution. For example, 
most AE ‘genomes’ are small, and are 
mapped directly into correspondingly 
simple ‘phenotypes’, both with little 

variation. In particular, AE rarely uses self-
modification, or feedback of any kind, even 
though these features are pervasive in natu-
ral evolution. AE approaches typically drive 
relentlessly to an a priori, invariant objective 
and stop once they get there.

We propose a richer paradigm for algo-
rithms inspired by evolution, which we call 
computational evolution (CE). The term 
has been used before, but in a less general 
sense14–16. We are a group of AE researchers 
and evolutionary biologists who met in the 
summer of 2005 to identify specific biologi-
cal concepts that should be incorporated 
more fully into AE. Our hope is that CE will 
enable computational scientists to address 
new, difficult problems, including those of 
interest to natural scientists, and that the 
more sophisticated evolutionary modelling 
in CE will be directly useful to evolution-
ary biologists and ecologists as a basis for 
simulations. We also hope to promote 
a more sophisticated dialogue between 
computational and natural scientists about 
evolution.

In the following section, we give an 
overview of the limitations of AE. We then 
present some specific biological concepts 
that, if incorporated, would transform AE 
into CE. Some of these concepts have been 
explored individually in AE research, but 
none has been systematically applied. We 
also present some specific research areas 
that CE could address. In the final section, 
we discuss the difficulties one might face 
pursuing CE and suggest how they might 
be overcome.

The problems with artificial evolution
Material of evolution. In most AE applica-
tions, information, an abstraction repre-
sented in programming code, is the material 
of evolution. These AE applications assume 
a simple model of ‘genotype’, ‘phenotype’ 
and ‘fitness’, in which simple relationships 
exist between these concepts. The so-called 
‘central dogma of artificial evolution’ was 
inspired by Crick’s formulation of the 
‘central dogma of biology’ (FIG. 1a,b), which 
states that information flows in one direc-
tion, from DNA to proteins. This simple 
model of information flow manifests itself 
in AE as an evolutionary model (FIG. 1c,d) in 
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which a population of individuals, each with 
a genotype encoding a single phenotype, 
undergoes variation and selection; changes in 
adjacent bits in the computer’s representation 
of the genotype tend to change the same or 
closely related features of the phenotype. AE 
optimization algorithms typically make the 
following assumptions: that the genome is 
composed of discrete and independent genes, 
that there is no interesting role for non-genic 
material in the genome, that all genes are 
passed directly from parent to offspring, that 
variation occurs only at the genetic level, 
that selection operates only on the pheno-
type, and that the organization of the genome 
remains essentially unchanged throughout 
evolution.

Biological evolution is now understood 
to be much more intricate and nuanced, 
with evolution working at all levels of this 
complexity. DNA itself, the genetic code, 
and all control and feedback mechanisms 
are themselves products of evolution. RNA, 
alternative splicing, genetic regulation, 
retrotransposition and so on have made 
defunct the idea of a simple, direct relation-
ship between gene and character. Natural 
evolution offers much richer possibilities for 
tuning, self-regulation, feedback and evolv-
ability, yielding a level of complexity that 
was previously inconceivable17. AE must also 
evolve in ways that correspond to advances 
in evolutionary genetics.

Mechanisms of evolution. Even Crick’s 
dogma allows more complexity than AE. 

For example, transcription and translation18,19 
allow differential gene expression and a 
mapping of one genotype to many pheno-
types; these processes operate simultane-
ously on many genomic loci, and modify 
templates, transcripts and products. By 
contrast, the most common implementation 
of genotype-to-phenotype mapping in AE is 
simple and direct (one-to-one), with some 
notable and encouraging exceptions20–23.

Natural evolution is an open-ended proc-
ess. But AE for optimization is closed, with 
precise invariant objectives. This approach 
reduces the amount of variation present 
during AE runs. It precludes emergent 
phenomena such as the re-use of genotypic 
and phenotypic structures for new purposes, 
complex networks that regulate component 
interactions, dynamic mapping between 
layers of information, interactions between 
individuals, and speciation.

Problems for evolution to solve. The current 
approach to AE limits our vision of what is 
possible for algorithms that use evolution. 
Although current AE approaches might 
be adequate24,25 for solving single, specific 
optimization or design problems, solving 
more difficult problems will require a richer 
evolutionary understanding. Complexity 
and robustness in nature is proof that bio-
logically inspired processes can be powerful 
algorithmic tools. To ignore this is to seri-
ously impoverish our algorithms. We present 
potential problems that CE might be able to 
address in BOX 1.

Using biology to transform AE into CE
We recommend that AE be transformed into 
CE by incorporating algorithmic analogues 
of our current understanding of natural evo-
lution. These recommendations are summa-
rized in BOX 2. Such a transformation should 
be articulated by addressing three principal 
questions. The first concerns the material on 
which evolution acts, and requires revising 
the concept of what is evolving. The second 
question relates to the mechanisms of 
evolution: how does evolution happen? The 
third question relates to the problems that 
CE needs to address, and the practical uses 
that it can bring. These three questions are 
explored in turn in the following sections.

Materials of evolution
Physicality and embodiment. Natural evolu-
tion acts on physical systems26–28; it operates 
on a large complex of molecules, including 
DNA, that interact dynamically with them-
selves and a host of other molecules, there-
fore allowing complex interactions to emerge 
and cascade in unexpected ways. This proc-
ess enables natural systems to discover new 
ways to represent and interpret information, 
which are then available as parts for further 
evolution. Evolution is a tinkerer29.

By contrast, AE suffers largely from 
the curse of programmability30. It tends 
to assume that the genetic material is 
symbolic rather than physical, so that it is 
not influenced by physical properties such 
as electrostatic charge and temperature. AE 
implementations also tend to follow good 
programming practice by avoiding side 
effects, which could, for example, cause a 
program module to change the behaviour of 
an unrelated module.

CE research will include the evolution 
of physical systems, or simulated physi-
cal systems, rather than abstract entities. 
Productive steps towards this more biologi-
cally significant feature, physicality, have 
involved evolving circuits on actual silicon 
chips. Miller and Downing have argued that 
non-traditional ‘hardware’, such as liquid 
crystals rather than computer chips, might be 
even more suitable for computer-controlled 
evolution31,32.

In short, just as natural evolution happens 
in a physical universe, and takes advantage 
of embodiment in surprising ways, CE will 
explore the creative possibilities of evolution 
in real or simulated33–36 physical and chemical 
systems.

Metabolism and dynamically transforming 
components. Living systems have evolved 
complex metabolic networks of molecular 

Figure 1 | The biological ‘central dogma’ as implemented in artificial evolution. a | A simplified 
view of the biological ‘central dogma’, namely that DNA is translated into RNA and then expressed 
as a phenotype by means of protein function, with selection operating on function. b | Artificial evo-
lution (AE) assumes that, in biological systems, information flows from the genotype to a functional 
phenotype by being expressed as proteins; this view of a one-way flow of information is derived from 
the biological central dogma shown in panel a. c | The typical AE algorithm is an iterative loop in 
which information-carrying individuals in a population are randomly varied and then evaluated with 
respect to the objective of the algorithm, thereby assigning a fitness to the individual that determines 
which individuals are selected for the next generation. d | Note that there is no feedback from the 
evaluation of any individual to information other than through selection, which determines the next 
generation. In each case (panels a–d), information (red) is expressed as a function (blue), which forms 
the basis of selection. 
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transformations, which are often mediated 
by enzymes18. These networks frequently 
incorporate sophisticated regulatory 
mechanisms, such as allosteric inhibition 
or substrate-induced enzyme clustering. As 
well as ensuring that all the requisite mol-
ecules are available to the cell, metabolism 
captures enough energy from the organism’s 
environment to allow survival.

Most algorithms, including AE, are 
based on abstract machines, such as Turing 
machines, that tacitly assume that sufficient 
energy exists to execute all necessary opera-
tions. CE will follow the lead of some artifi-
cial life research37,38 and recent AE research39 
by taking into account finite energy and 
resource availability. For example, CE will 
provide simulations where adjacent individ-
uals or subpopulations compete for different 
limited nutrients, in order to test hypotheses 
about how strategies for nutrient uptake, 
such as generalism versus specialism, emerge 
from subpopulations.

Cellularization and development. Natural 
genomes orchestrate a vast network of 
interactions40–42 that guide the development 
of living beings, which often have extensively 
compartmentalized units such as organelles, 
cells and tissues. Therefore, development 
turns a time-independent entity (the 
genome as an information source) into an 
autonomously adaptive system (the organ-
ism) in which time is an essential variable. 
The resulting organisms are hierarchical 
collections of structures within structures, 
with interactions between each level, which 
smooth out the effects of environmental 
fluctuations on the organism43.

Similarly, in CE, the network of interac-
tions between genetic information and 
evolving individuals will be dynamically and 
hierarchically organized, with different levels 
of organization able to affect each other. 
Achieving this goal requires a new approach 
to algorithms inspired by evolution, in which 
individual data structures can be nested and 
interact with each other.

Ecosystems. Ecological interactions are 
ubiquitous at all scales, and change the 
nature of individuals and entire ecosystems. 
Such changes constrain the variety of avail-
able species, and alter the rate and effect of 
evolution. Some phenomena in nature, such 
as food webs, symbiosis and disease, require 
complicated ecosystems even to make sense.

CE incorporates adaptive ecosystems, 
which create new challenges for individuals, 
and thereby new ecosystems. In a sense, this 
is merely a restatement of our earlier call 

for emergent hierarchies of interactions and 
behaviours, but now at the population level 
rather than at the individual level. This is not 
surprising, as a population can be treated as 
an ‘individual’ for the purposes of modelling 
or understanding ecosystems.

Mechanisms of evolution
Genotype-to-phenotype mapping. In 
natural evolution, the transformation of 
genotype into phenotype is a multilayered 
process that operates on diverse elements, 
distributed throughout the cell18, with many 
paths for feedback. For example, the activ-
ity of a protein might vary according to its 
phosphorylation state; the activity of RNA 
might vary because of alternative splicing 
or post-transcriptional modification; or the 

activity of a gene might vary as a result of 
methylation.

One important feature of CE is the 
incorporation of complex, evolvable 
relationships between genotype and pheno-
type44,45, involving multiple interconnecting 
processes that have the potential for inter-
actions with themselves and each other. 
The relationship between genotype and 
phenotype should preferably be emergent, 
not hard-wired (BOX 3).

Exaptation and innovation. The recruitment 
of a component selected for one use to a new 
purpose (exaptation) could be an important 
source of innovation in natural morphogen-
esis46 and a source of new functionality, such 
as the efficient uptake of oxygen in the eyes 

Box 1 | Representative challenges that are more likely to be met by CE than by current AE

The challenges listed below are not specific, and are far from exhaustive: they are suggestive of 
topics that could be beneficial to both artificial evolution (AE) and biological researchers. We do not 
claim that computational evolution (CE) will provide the final answer to these challenges. Rather, CE 
will provide a platform from which to discover and test hypotheses in an appropriately realistic way.

Genomic organization
CE will allow researchers to explore the possible interactions between networks at different levels 
of abstraction. For example, CE would enable simulations to:
• explore how complex metabolic networks might facilitate or inhibit the emergence of complex 

gene expression networks during evolution;

• explore how endosymbiosis or independently replicating transposable elements might affect the 
complexity of the genome;

• develop and test scenarios for the transition from an RNA world to a DNA world, or the 
emergence of cellularity.

Speciation
CE will provide a simulation environment that is rich enough to implement different models of 
speciation. This framework will allow researchers to formulate and test hypotheses about 
organismal and ecological interactions that lead to sympatric versus allopatric speciation, and to 
model the influence of co-evolution on speciation.

Environmental sensing
CE can enable individuals to discriminate between environmental cues. For example, autonomous 
robots, especially those operating in environments that they are themselves modifying, could use 
CE to select different sensory data to solve the same problem; a biological analogy would be the 
evolved use of hearing instead of sight to capture insects in both bats and swallows.

Continuous data mining
CE could autonomously explore databases that change significantly and rapidly, allowing 
researchers to periodically sample inferences for new insights that were not previously available. 
Potential targets are bioinformatics and terrestrial image databases.

Innovative design
CE allows for new variables to be created or old ones to be eliminated; this approach is unlike that 
implemented in routine design, which works within predetermined constraints. For example, 
innovative molecular design of antibiotics could require that new variables be introduced to 
account for the adaptive responses of both the host and target organisms, or variables that are 
considered important initially, such as the ability of a molecule to interact with non-organic 
molecules, could prove to be unnecessary and be eliminated.

Hypothesis generation
CE enables algorithms to vary which sets of data are relevant to a given problem, without relying on 
presuppositions about which data are important and which types of hypothesis should be explored. 
For instance, drug discovery is sometimes like a good mystery story, in that many molecular 
interactions are known, but it is unclear which are important for a specific pathology. CE could 
generate potentially interesting hypotheses about molecular interaction pathways.
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and swim bladder of fishes47. The probable 
transition from RNA-based life to DNA-
based and protein-based life, the emergence 
of multicellularity, and even genotype-to-
phenotype mapping, might be examples of 
exaptation building on modules of molecu-
lar activities48. Exaptation presupposes a 
rich set of interactions between components 
and functions, so that a change in one item 
changes others; it might therefore happen 
that a side-effect is more valuable than the 
feature originally selected for, leading to 
amplified selection and eventual fixation of 
the new function. Another key to emergent, 
structured complexity and stability in nature 
is the way in which evolution acts on weakly 
coupled modular systems49,50.

In nature, co-evolution of evolved units 
is the rule not the exception. CE encour-
ages interactions between components and 
explicitly promotes emergent modularity, 
which allows slight changes in a variable 
to produce surprising innovations and 

novel selective advantages. For example, 
data structures that represent parts of a 
genome, or part of a genome translation 
pathway, might duplicate and diverge, or 
one such element might be translocated 
into another. Another potentially powerful 
CE strategy is to allow individuals to alter 
their environment and then to adapt both 
to the new conditions and to their original 
selective pressure.

Enabling variety. Living beings counter 
diversity and unpredictability in the chal-
lenges they face with corresponding variety 
in their parts51. Sensory organs provide 
a rich range of responses to stimuli by 
presenting a variety of detectors for diverse 
specific signals. Immune systems retain a 
vast memory of previously encountered 
antigens with diverse challenge-specific 
B cells. In some genomes, introns and 
intergenic sequences might provide a vast 
reservoir of dormant genetic material that 

can be mobilized when needed52. These 
are all networks that generate variety from 
a relatively small number of different 
specialist components.

CE overcomes the constraints that compu-
tational limits have historically forced on AE. 
Again, the key is to choose data structures 
that, by interacting, increase the number of 
internal degrees of freedom in the system. 
The target number of interacting components 
should be several orders of magnitude 
greater than current population sizes or the 
number of features described in current AE. 
Alternatively, it might be necessary to 
introduce noise into systems inspired by 
evolution, rather than relying on 
pseudo-random sources of variation40,53.

Problems to address
Open-endedness. In an open-ended set-
ting — such as the one in which natural 
systems operate — different evolutionary 
trajectories can coexist, providing new 
degrees of freedom. This leads organisms to 
develop specific partial solutions to multiple 
challenges. For example, species with heavy 
parental investment in offspring might coex-
ist with others with prodigious numbers of 
progeny. Moreover, while developing such 
partial solutions, organisms will modify 
and thereby restructure their environments, 
changing the challenges to which future 
generations must adapt.

CE systems would target open-ended 
problems, rather than those that are 
precisely specified a priori. Open-ended 
systems still have constraints, however. Just 
as natural organisms are constrained by 
spatial, energetic and other resource limita-
tions in their environment, so CE systems 
are constrained by open-ended specifica-
tions and by the state of the evolving system. 
Evolvability is as important in CE54–56 as 
it is in nature57–59, because of the interplay 
between degrees of freedom and necessities 
imposed by constraints. To be evolvable, 
systems must not be overly constrained, 
or they will adapt and stop changing; nor 
can they be under-constrained, as that 
would lead to mere random variation.

Interpretation of genome-encoded infor-
mation. DNA is more than just a passive 
information carrier: it is also an active 
participant in transcription, translation, and 
packaging and organizing the genome60. 
CE incorporates this insight. For example, 
by encoding key features of the translation 
machinery in the genome, such as faithful-
ness and specificity, these features become 
evolvable. Indeed, combining the evolution 

Box 2 | The road to computational evolution

Computational evolution (CE) originates from richer algorithmic approaches to three questions 
about evolution: what evolves, how does evolution happen, and what use is evolution?

What evolves? The stuff of evolution
• CE simulates evolution in an environment where physical features of the evolving entities can 

affect how they change. For example, just as the ‘sticky’ nature of oligonucleotides affects how 
DNA-based organisms evolve, an embodied CE system using liquid crystals or electrical circuits 
could take advantage of electromagnetic properties that are unavailable to mere simulations.

• CE will allow simulations in which different materials with different properties interact. Natural 
evolution often relies on this sort of interaction, as for example when DNA binding proteins 
interact with DNA molecules to regulate gene expression. With CE, hardware and software might 
co-evolve, which is analogous to how genomes and molecular interactions co-evolve in nature.

• With CE, nested data and control structures will interact simultaneously at multiple scales: basic 
data objects will interact with each other, populations of individuals will interact with other 
populations, populations will interact with atomic data structures, and so on. In particular, the 
environment in which evolution occurs in CE will itself evolve, and this will shape the evolutionary 
trajectories of other evolving entities. It is impossible to imagine natural evolution without 
interactions that scale from molecules to ecosystems.

How does evolution happen? The mechanisms of evolution
• Interactions between evolving objects and processes in CE will allow feedback loops to arise 

within or between objects and processes. This makes new evolutionary trajectories possible. 
Control mechanisms in nature, from methylation to horizontal gene transfer, are feedback loops 
by which evolving individuals, from molecules to populations, respond to change.

• As in nature, selection pressure in CE will be ‘felt’ at the level of basic data and control items 
(analogous to molecules and molecular interactions), collections of such items (analogous to cells, 
tissues and individuals), and even simulated species and ecosystems.

• CE will provide mechanisms for reproductive isolation and for merging and integrating evolving 
objects. After all, there is more to natural evolution than independent evolving organisms 
diverging cleanly into new species.

Why bother with CE? The application of evolution
• CE will make it possible to design algorithms that address open-ended problems. This is typically 

not possible with traditional algorithm design, which presupposes fixed specifications.

• CE will make it possible to design computational artefacts, from programs to special-purpose 
hardware, that must operate even when conditions and constraints vary in unpredictable ways.

• CE will provide a more life-like foundation for addressing problems in which the specifications 
might be unknown or too complicated to express (BOX 3). 
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of interpretation processes with physical 
materials that themselves evolve allows 
information to flow from the hardware (the 
genome) to the software (the machinery 
that interprets the information stored in 
the genome).

Repertoire exploitation. Some natural 
systems, such as the stress response in 
prokaryotes and the immune system, 
can retain a large repertoire of potential 
responses to support rapid responses to 
unusual stimuli. These systems effectively 
maintain counterselection by retaining a 
population of ‘sleeping’ cells or molecules 
that consume few resources, but which can 
be rapidly activated. Efficiency in these sys-
tems demands a division of effort between 
generalists that sample the space of possible 
stimuli and specialists that respond directly 
to individual challenges61. CE implements 
algorithmic analogues of biological reper-
toire exploitation with larger, more diverse, 
less constrained population sizes.

Speciation. Speciation is the mechanism by 
which natural systems self-organize into 
groups of genomes that evolve (relatively) 
independently 62,63. Reproductive barriers 
are not always absolute, as hybridization is 
common in plants, horizontal gene transfer 
is common in prokaryotes64, and occa-
sionally entire genomes can be acquired 
symbiotically 65. In fact, genetic barriers 
between related species can be removed 
or established by the level of expression of 
single mismatch repair proteins55.

CE allows reproductive barriers to arise 
and can change their permeability without 
constraint, as the barriers themselves could 
evolve, allowing speciation to emerge as 
a property of the system. This contrasts 
with ‘speciation’ in AE, which exists only to 
increase population diversity66,67.

What we can gain: solving new problems
CE will allow algorithm designers to 
address new challenges. Potential target 
problems will tend to have the following 
features: they cannot be completely 
specified a priori; they are dependent 
on temporal variations; the information 
needed to solve them is apparently avail-
able, but it is not clear which data are rel-
evant; and their solution requires autonomy 
and cannot presume on-demand human 
intervention (see BOX 1 for examples).

Challenges
There are both social and technical barriers 
to realizing our vision of CE.

Social challenges. The main difficulties 
will be psychological. CE practitioners must 
be willing to be patient and generous with 
resources. Patience will be necessary given 
the complexity and robustness of living 
systems compared with the simplicity and 
brittleness of engineered systems.

AE researchers will also have to be 
willing to sacrifice precise specifications 
and a full understanding of how individual 
components work. But CE will allow us to 
explore realistically complicated evolution-
ary scenarios at machine speeds, and to ask 
and address new, complex and open-ended 
questions.

Technical challenges. CE will require new 
data and control structures to implement 
interacting hierarchies of information and 
processes. AE researchers have already taken 
some steps in this direction by creating 
genomes that encode rules for translating the 
genome21(known as ‘indirect representation’), 
and by using new module synthesis tech-
niques; for example, one in which segments 
of the genome are segregated to evolve 
and be used as a single entity (known as 
automatically defined functions8).

CE will require considerable computa-
tional power. AE was born a half century 
ago, when computing power was at a 
premium, and many AE practitioners still 
insist that run-times be ‘reasonable’ on 
readily available machines. Because CE is 
more complex than existing AE implemen-
tations, reasonable run-times will require 
significantly more power. Fortunately, 

available power continues to grow, 
compounded by new ways of combining 
existing facilities.

Many of the evolutionary processes that 
we suggest should be incorporated into CE 
are still poorly understood. But our current 
understanding far exceeds what is typically 
incorporated into AE. Much as AE was able 
to ride the wave of technological progress 
over the past 50 years, CE should incorpo-
rate new biological knowledge as it becomes 
available, so riding the wave of advances 
in biology as well as that of ongoing 
technological progress.

Conclusions
We recognize that our proposals are sugges-
tive, rather than precise. Note also that CE 
will not be a magical elixir and there will 
always be specific optimization and design 
problems that can be solved without the 
complexity of CE.

One example of a question that CE could 
address in future is whether it is possible to 
construct a program that functions like an 
organism, with interacting software objects 
(analogues of cells) that collectively perform 
a global function such as providing operat-
ing system services (such as file manage-
ment), with the ability to respond gracefully 
to demand and damage (analogously to 
homeostasis).

The need for such reliable, self-
maintaining software is great and growing 
quickly. For example, IBM is investing heavily 
in traditional engineering efforts to define 
and build ‘autonomic’ software systems68.

Box 3 | Complicating the genotype–phenotype relationship

Most artificial evolution (AE) approaches use a simple, unidirectional map from genotype to 
phenotype. Computational evolution (CE) would enrich the translation from an evolving substrate 
(the ‘genotype’) into a configuration that is evaluated (the ‘phenotype’). For example, a regulatory 
feedback mechanism could emerge if genotypic information were expressed only when other parts 
of the genotype have already been expressed. This would generate a dynamic system that would 
allow environmental interactions to intervene and stabilize self-organization, much more like 
natural evolution69.

For instance, artificial regulatory networks45,70,71 have recently become a field of active 
exploration, because they lend themselves to the sort of dynamics and side-effects necessary for 
the emergence of novelty. Other types of network and interaction are being explored as well72,73.

Multiple interactions occur between the various steps that lead from genotype to phenotype: 
many regions of the genome, transcriptome and proteome affect each other, and all work together 
to determine individual functionality, which forms the basis for selection.

How would one promote these emergent interactions in CE? One way would be by deliberately 
encouraging interactions between system components. Instead of isolating functions, as is usual in 
an engineering setting, one would allow for smooth variation of many components and cross-talk 
between them. If a sort of regulatory network would determine the mapping between genotype 
and phenotype, there would be a combinatorial explosion of possible interactions74,75. Given such a 
sufficient number of degrees of freedom, it would always be possible to suppress undesirable 
effects by adding an extra inhibitor or co-opting an existing one. However, if an unintended slight 
change in a variable results in a beneficial innovation, CE would be able to select for the new 
unfolding functionality.
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We argue that CE will be required to 
define and perfect such a system. Traditional 
software engineering breaks down problems 
into highly constrained interactions between 
modules, until the modules are simple 
enough to be implemented in computer 
code. But this approach abhors emergence 
and avoids surprises. There is also a natural 
ceiling in the program size achievable by a 
limited number of human programmers with 
traditional engineering.

Multicellularity, hierarchically defined 
expressions of the genome and massive par-
allelism will benefit a CE approach to design-
ing an autonomic operating system. In living 
systems the genetic code is copied in full 
with each cell replication, and full organismal 
complexity emerges through physical inter-
actions of cells and cell products. Similarly, 
a CE approach would allow the complexity 
of the software system to emerge from 
massively distributed interactions between 
hierarchically organized data and control 
structures, described by an evolving genome.

Pursuing our proposal, even imperfectly, 
will help to close the loop between biology 
and computing, for the benefit of both: CE 
could point to a new way of computing and a 
new way of understanding the living world, 
including how evolution works.
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