
Repeated patterns in genetic programming

W. B. Langdon Æ W. Banzhaf

Received: 1 May 2005 / Accepted: 6 March 2007
� Springer Science+Business Media B.V. 2007

Abstract Evolved genetic programming trees contain many repeated code fragments.

Size fair crossover limits bloat in automatic programming, preventing the evolution of

recurring motifs. We examine these complex properties in detail using depth vs. size

Catalan binary tree shape plots, subgraph and subtree matching, information entropy,

sensitivity analysis, syntactic and semantic fitness correlations. Programs evolve in a self-

similar fashion, akin to fractal random trees, with diffuse introns. Data mining frequent

patterns reveals that as software is progressively improved a large proportion of it is

exactly repeated subtrees as well as exactly repeated subgraphs. We relate this emergent

phenomenon to building blocks in GP and suggest GP works by jumbling subtrees which

already have high fitness on the whole problem to give incremental improvements and

create complete solutions with multiple identical components of different importance.

Keywords Genetic alogorithms � ALU � SINE � Frequent subgraphs �
Frequent subtrees � Macky-Glass � Poly-10 � Nuclear protein localisation �
Tiny GP � GPquick � Evolution of program shape � Sensitivity analysis

1 Introduction

Genome Biology is full of surprising findings that need explanation. One of these was the

discovery of repeated sequences of nucleotides in genomes which would sometimes stretch

for millions of basepairs. Upon closer inspection it was found, that repeated sequences are

commonplace in natural genomes. A vast amount of repetition in the DNA of microbes,
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plants and animals has been discovered (Britten and Kohnen 1968). For instance, less than

3% of a human genome consists of protein-coding genes whereas around 50% of it consist

of repetitive sequences (Smit 1996; Patience et al. 1997). Biologists have recently turned

their attention toward these patterned sequences (Lupski and Weinstock 1992; Toth et al.

2000; Achaz et al. 2002) because the huge percentage of it indicates that these sequences

play a major role in hereditary biology. We ask whether this emergent phenomenon might

also be present in artificial genomes used for genetic programming (Koza 1992; Banzhaf

et al. 1998; Langdon and Poli 2002).

Initially, our search was conducted in genomes similar to natural genomes. We found

multiple repetitive sequences in those linear GP genomes (Langdon and Banzhaf 2005a).

More recently, we have turned to tree GP genomes (Langdon and Banzhaf 2005b). We find

that there are indeed small and large repeated patterns in large trees once evolution has

worked for a sufficiently long time. Evolved trees are incrementally constructed from high

fitness subtrees. These subtrees are, however, not classic GP building blocks. Instead,

diffuse introns ensure that most code is robust to change.

We suggest that observations of this type can shed some new light on the old question of

building blocks in GP (O’Reilly and Oppacher 1995). Do they really exist? If so, how does

GP make use of them? If they do not, how does genetic search succeed? In a nutshell, the

concept of building blocks suggests that solutions to a problem are assembled from highly

fit smaller subsolutions.

We start by following up on our work which suggests repeated patterns are prevalent in

linear genetic programming (Langdon and Banzhaf 2005a) by evolving solutions within

two different tree based GP systems. We will use our time series modelling and Bioin-

formatics classification test problems and we will also use a recent benchmark (Poly-10,

Poli 2003).

The real world problems and benchmark are described in Sect. 2 and in Langdon and

Banzhaf (2005a). Analysing the evolved programs shows that, despite high mutation rates,

multiple large repeated patterns can occur in standard subtree crossover as well as linear

GP (Sect. 3). We deepen this analysis in Sect. 4 by measuring tree shape, entropy, sub-

fitness and sensitivity within trees. This will lead us back to suggest (Sect. 5) at least in

some simple modelling and prediction applications: (1) ‘‘introns’’ are somewhat diffused,

rather than discrete subtrees with a well defined root node that immediately nullifies their

effect. Instead, as information passes up through the tree towards the root node (where it

determines the program’s output) it is progressively diluted. I.e. there is no single node in

the tree which completely disables the code beneath it. (2) GP incrementally assembles

solutions from large fit components. The components are self similar and to a large degree

different from the classic ‘‘building block’’. Section 6 concludes.

2 Demonstration problems

We have chosen three moderately difficult benchmark problems to represent typical

modelling and prediction applications of genetic programming. The first two were origi-

nally used as machine learning benchmarks, whilst the third has been used by several

authors in recent GP work. The Mackey-Glass chaotic time series has been used to

demonstrate scientific, medical and financial modelling, e.g. Oakley (1994). The GP

system is given historical data from which to predict a next value. We used the IEEE

benchmark discretised into 8 bit unsigned integers, see Fig. l1. All 1,201 sample data

points were used for training.
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The second benchmark is a binary classification bioinformatics problem. Reinhardt and

Hubbard (1998) have shown that amino acids in a protein can be used to predict its location

in the cell. They trained neural networks to distinguish between seven cellular locations in

animals and microbes. We restrict ourselves to localising animal proteins (normally it is

known if a protein is animal or bacterial) and to a binary classification problem. To this end

we evolve models which predict if an animal protein will be found in the cell nucleus or

elsewhere. I.e. in the cell cytoplasm, in the mitochondria or outside the cell (Reinhardt and

Hubbard 1998). We used the same Swissprot data for 2,427 proteins as used in Reinhardt

and Hubbard (1998). There are 1,097 nuclear (and 1,330 non-nuclear) sequences of amino

acids (see Fig. 2). Data were split evenly into training and test sets.

The last benchmark is a symbolic regression of a multivariate cubic polynomial, Poly-10.

Poly-10, is f ðx1; . . . ; x10Þ ¼ x1x2 þ x3x4 þ x5x6 þ x1x7x9 þ x3x6x10. The 50 fitness cases are

obtained by selecting uniformly at random each of the ten inputs from the range [�1, + 1].

3 Genetic programming configuration

Even though we expect crossover (Koza 1992) to be responsible for repeated patterns, we

follow recent GP practise and use a high mutation rate and a mixture of different mutation

operators. In some runs, to avoid bloat, we also used size fair crossover (FXO) (Langdon

2000). See Tables 1 and 2. (Briefly size fair crossover is like normal subtree crossover

except, after the crossover point in the first parent tree has been chosen randomly, the

crossover point in the second parent is chosen so that the size of the exchanged subtree is

more-or-less the same as the size of the subtree to be deleted.) To further demonstrate that

repeated patterns may appear in a wide range of circumstances we also use a totally

different tree GP system, tinyGP (Poli 2004), on the Poly-10 benchmark. TinyGP is a
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Fig. 1 Discrete Mackey-Glass chaotic time series http://www.neural.cs.nthu.edu.tw/jang/benchmark/,
s = 17.1201 data points, sampled every 0.1
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steady state GA (Syswerda 1989), often used with a high point mutation rate (to combat

bloat). Because we cannot expect to see large repeats in small (i.e. non-bloated) programs,

we run tinyGP for many more generations than are commonly used. This allows evolution

more time to expand the trees, see Table 3.

Ten runs, each with an initial population of 500 individuals, suggested this was too

small for the protein localisation benchmark. There was a correlation (0.4 size fair and 0.2

two point (2XO) crossover) between the fitness of the best random tree and that of the best

50 generations later. So a population of 5,000 and 50 generations was used. As a result, the

correlation co-efficient fell to 0.17 (FXO) and 0.12 (2XO) and mean holdout fitness rose

4% for both types of crossover.
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Fig. 2 Number of amino acids in nuclear and non-nuclear proteins. To reduce clutter only 5% of the
proteins are plotted. The 3 (of 20) amino acids and function where suggested by sensitivity analysis of the
smallest GP model

Table 1 GPquick (C++) parameters for Mackey-Glass time series prediction

Function set: MUL ADD DIVa SUB operating on unsigned bytes

Terminal
set:

Registers are initialised with historical values of time series. D128 128 time steps ago, D64
64, D32 32, D16 16, D8 8, D4 4, D2 2 and finally D1 with the previous value. Time points
before the start of the series are set to zero. Constants 0.127.

Fitness: RMS error

Selection: Generational, non-elitist, tournament size 7. Population size 500.

Initial pop: Ramped half-and-half (2:6) (50% of terminals are constants)

Parameters: 50% mutation (point 22.5%, constants 22.5%, shrink 2.5% subtree 2.5%). Max tree size
1,000. Either 50% subtree crossover or 50% size fair crossover (90% on internal nodes),
FXO fragments � 30 (Langdon 2000)

Termination: 50 (500) generations

a In GPquick the protected division operator DIV is defined as DIVðx; yÞ ¼ ðy ¼ 0Þ?1 : x=y

Nat Comput

123



The best program in nine Poly-10 random initial populations is x1 · x2. (This means all

but one initial generation have identical fitness. Therefore the correlation across runs

between initial fitness and final fitness, or anything else, is automatically near zero.) The

lack of variation between runs of best initial populations, the poor performance and (R.

Poli personal communication) all suggest that the already large population would have to

be increased by one or more orders of magnitude to solve Poly-10. Nevertheless we can

learn from unsuccessful runs.

4 Results

4.1 Performance and size of Mackey-Glass, protein and Poly-10 programs

Table 4 summarises each of the ten runs with the two types of crossover on the Mackey-

Glass modelling problem. As expected, size fair runs are both faster and evolve signifi-

cantly smaller trees (Wilcoxon Two Sample Test p = 0.007). Also as expected with

standard GP, tree size increases up to the maximum size limit (1,000) when evolution is

continued to 500 generations. Figure 3 shows the fall in RMS error of the best individual in

the population in each of the ten extended runs with standard crossover. It is the formation

of repeated subtrees in these runs and similar protein prediction and Poly-10 runs that we

Table 2 GPquick parameters for protein localisation

Function set: MUL ADD DIVa SUB operating on floats

Terminal
set:

Number (integer) of each of the 20 amino acids in the protein.) 100 unique constants
randomly chosen from tangent distribution (50% between �10.0 and 10.0) (Langdon
1998). (By chance none are integers.)

Fitness: 1
2

True Positive rateþ 1
2

True Negative rate (Langdon and Barrett 2004)

Selection: Generational, non-elitist, tournament size 7. Population size 5,000.

Initial pop: Ramped half-and-half (2:6) (50% of terminals are constants)

Parameters: 50% mutation (point 22.5%, constants 22.5%, shrink 2.5% subtree 2.5%). Max tree size
1,000. Either 50% subtree crossover or 50% size fair crossover (90% on internal nodes),
FXO fragments � 30 (Langdon 2000)

Termination: 50 generations

a In GPquick the protected division operator DIV is defined as DIVðx; yÞ ¼ ðy ¼ 0Þ?1 : x=y

Table 3 TinyGP (Java) parameters for Poly-10

Function set: MUL ADD DIVa SUB operating on doubles

Terminal
set:

Ten inputs x1; . . . ; x10. Training values selected at random from �1; . . . ;þ1. No constants.

Fitness: Sum over 50 training examples of absolute difference between GP value and target value.

Selection: Steady state (binary tournaments used both for selecting parents and for selecting who is
replaced), non-elitist, population size 10,000.

Initial pop: Created by random recursive growth (depth 2:6).

Parameters: 10% subtree crossover (crossover points chosen uniformly in both parents to give a single
child). 90% point mutation (rate 0.02 per node). No limit on tree size.

Termination: 500 generations

a In tinyGP the protected division operator DIV is defined as DIVðx; yÞ ¼ ðjyj � 0:001Þ?x : x=y
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shall concentrate upon. While at first sight progress appears continuous, note that there are

many generations where the best fitness is identical to that in the previous generation even

though the best individual in the population has been replaced (by crossover/mutation).

Table 5 summarises the ten runs on the protein prediction problem with both types of

crossover. Again size fair crossover produces small trees more quickly than standard GP.

As with Mackey-Glass both tree GP approaches produce models with a similar perfor-

mance to linear GP (Langdon and Banzhaf 2005a). GP is comparable to the best neural

Table 4 Best Mackey-Glass prediction error after 50 and 500 generations using size fair (FXO) and
standard two point (2XO) crossover

Mean

FXO error 4.42 4.38 4.85 4.89 4.01 4.92 3.84 4.65 3.66 4.80 4.44

size 33 53 81 339 55 25 15 13 69 27 41

secs 226 342 363 275 363 205 83 44 467 163 253

2XO error 3.82 3.59 3.81 4.27 4.28 2.20 2.78 4.16 2.38 3.47 3.48

size 59 45 143 117 47 87 91 43 123 145 90

secs 617 384 610 416 412 503 543 269 967 645 537

2XO error 3.74 1.51 1.18 3.66 3.41 1.09 2.78 3.78 1.08 1.85 2.41

500 size 793 705 669 957 963 883 847 923 957 467 816

gens secs 13,200 12,200 11,400 16,100 11,900 14,500 11,000 14,300 22,300 9,500 13,600

Rows are RMS error and size of best of run tree and elapsed time. Results after 500 generations (2XO only)
show all runs improved fitness but trees increased enormously in size
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Fig. 3 Evolution of smallest RMS error in ten 2XO M-G runs. Despite size and shape changing from one
generation to the next, for many successive generations the best fitness is identical to that in the previous
generation. (Initial fitness, not shown, of the ten runs varied from an RMS error of 5.5–18.3)

Nat Comput

123



network approaches given in Reinhardt and Hubbard (1998). Figures 4 and 5 show the

evolution of fitness in ten 2XO runs (performance in the size fair runs evolves similarly).

For the Poly-10 symbolic regression problem, we again made ten independent runs. The

accuracy and size of the best individual in the last generation of each run is reported in

Table 6. Poly-10 is known to be a very hard problem and so it is no surprise that a

population of 10,000 is not sufficient. Even after 500 generations, no run solved the

problem. With our selection of training data, x1 · x2 is a strong attractor. In nine of the ten

runs it is the best of the initial random programs. While in six of nine cases the population

escapes from it within four generations, in the remaining three it remains the best until the

end of the run.

Table 5 Holdout set fitness on Bioinformatics benchmark (Fitness is mean accuracy over nuclear and non-
nuclear animal proteins.)

Mean

FXO percent 80 82 81 79 82 78 82 80 79 80 80

size 57 77 43 47 69 77 85 59 53 41 61

secs 1,400 2,300 1,300 1,200 2,100 1,700 1,600 1,700 1,400 1,400 1,600

2XO percent 81 82 80 82 83 82 83 83 82 81 82

size 571 349 223 711 843 283 435 195 515 147 427

secs 6,100 5,600 4,200 6,500 9,600 4,100 4,500 4,200 4,800 3,900 5,400

Ten tree GP runs with size fair crossover (FXO) and 10 with standard two point crossover (2XO) using a
population of 5,000 and 50 generations. As with Mackey-Glass, size fair runs are both faster and evolve
smaller trees
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Fig. 4 Evolution of training fitness in ten Nuclear vs. non-Nuclear protein classification runs with normal
crossover (2XO). Note change in horizontal scale compared to Fig. 3. Despite size and shape changing from
one generation to the next, in 25% of generations the best training fitness is identical to that in the previous
generation
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4.2 Evolution of program shape

To confirm our previous results on the evolution of tree shapes (Langdon et al. 1999;

Langdon and Poli 2002) on the three problems, Figs. 6–8 plot the size (total number of

nodes) and (maximum) depth of trees during the standard GP runs. The cross hairs give the

population mean and standard deviation. As expected (except as noted in the previous

paragraph for three Poly-10 runs) the GP runs do not converge, instead the populations

contain trees of different sizes and depths. Figures 6–8 are plotted on top of statistics

relating not to GP but to the underlying distribution of binary trees (labelled ‘‘full’’,

‘‘5%’’, ‘‘peak’’, ‘‘95%’’ and ‘‘minimal’’) (Langdon and Poli 2002). Cf. the Catalan

distribution of subtree sizes (Sedgewick and Flajolet 1996, pp. 241–242). While initial

populations contain only small trees, Figures 6–8 show they evolve into populations of

trees whose shape lies near that of the most popular trees in the underlying distribution.

Note that Figs. 6–8 show similar shaped trees evolve in radically different problems.

4.3 Shape of subtrees

The previous section has established that standard GP finds good models on both real world

problems and programs’ size and shape evolves as expected. Solutions were not expected to
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Fig. 5 Evolution of training vs.
generalisation fitness
(1
2

true positive rateþ 1
2

true negative rate) in ten Nuclear
vs. non-Nuclear protein
classification runs with normal
crossover (2XO). (Same runs as
Fig. 4). Each arrow represents the
change in performance of the best
fitness individual in the
population in one generation
equivalent. Dotted diagonal line
shows where training
performance is identical to out of
sample (generalisation)
performance. Note performance
at the end of the runs is below the
diagonal, indicating overfitting.
This is common in machine
learning

Table 6 Best Poly-10 programs after 500 generations in ten tinyGP runs

Mean

2XO percent 6.53 7.82 15.83 4.62 15.83 4.07 8.10 5.33 7.85 15.83 9.18

size 155 6,577 3 461 3 635 2,419 1,321 181 3 1,176

secs 1,100 12,100 200 1,400 200 1,100 10,000 5,900 1,100 200 3,327

Rows are absolute error summed over 50 training cases, size of best of run tree and elapsed time. Note runs
3, 5 and 10 collapse to the three node program x1 · x2
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Poly-10 but, except for three runs which get trapped by x1 · x2, Poly-10 programs also evolve

to have shapes near to those of random trees. This section starts to consider what is happening

inside the trees. Figures 9–11 use the same size-depth plots as Figs. 6–8 to look at the evolved

programs. Instead of taking an average of the whole of the population, Figs. 9–11 plot a point

for each node within each of the best trees. Lines of crosses are caused by chains of nodes in a

tree where one argument is a small subtree and the other continues the chain. Subtrees tend to

lie between the 5% and 95% lines. I.e. subtrees within the best program at the end of the runs

have distributions of size and shape similar to that of the whole trees in previous generations.

This means that there is a strong tendency for trees to be composed of subtrees which are also

approximately randomly shaped. This fractal self similarity would be expected of random trees.

For comparison Fig. 12 plots the size vs. depth distribution for seven randomly created

binary trees whose sizes are the same as the highly evolved Poly-10 trees plotted in Fig. 11.

While obviously different in detail, it is clear the subtrees within evolved trees (as plotted

in Figs. 9–11) show similar behaviour to those in random binary trees.

4.4 Repeated code fragments

In all cases using standard crossover (2XO), GP evolved best of run trees containing large

repeated patterns. As with linear GP, this happens despite a high level of mutation and a
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Fig. 6 Evolution of mean depth and size with mutation and standard crossover (2XO). Ten Mackey-Glass
runs. To reduce clutter standard deviations are only plotted every 100 generations. As expected (Langdon
et al. 1999), size increases until largest in population reach limit (1,000) and much of the populations lie near
the peak in the distribution of tree shapes. Dotted lines indicate general features of binary trees. Moving left
to right horizontally, i.e. constant tree size, ‘‘full’’ indicates shortest most balanced trees. The number of
trees of a given size and depth increases up to the ‘‘peak’’. ‘‘5%’’ indicates 5% of trees, of the chosen size,
lie between ‘‘full’’ and it. 95% lie to the left of the ‘‘95%’’ line. Finally the ‘‘minimal’’ line indicates trees
without side branches, i.e. the deepest possible trees
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size limit. Figure 13 shows the identical repeated patterns (allowing overlaps) for one

evolved program. Between 56% and 91% (mean 71%) of the ten best of run Mackey-Glass

(2XO) models are part of repeated subgraphs which are too big to have formed by chance.

(Figure 14 shows in black an example of a repeated subgraph in a tree.) The values for the

ten best of run protein prediction programs are: 33–92%, mean 74%, and for seven

symbolic regression runs: 65–84% mean 72%, see Fig. 15. The replications in Figs. 13–15

refer to any fragment of the whole tree, while the rest of Sect. 4 considers only whole non-

overlapping subtrees.

4.5 Syntactically repeated subtrees

Figure 16 shows the location and size of exactly repeated subtrees in the largest of the

protein prediction trees. Figure 17 gives the same data for the best program from the first

Poly-10 symbolic regression run. Figure 18 refers to the same 27 best of run programs as

Fig. 15, however it considers only exactly repeated subtrees (rather than any fragments).

The requirement to include all the leafs in a repeated fragment tends to reduce their size but

we see a similar picture: in every run, in which non-trivial subtrees evolved, repeated

subtrees are evolved. Further the repeats are too large and/or numerous to be due to chance.

Obviously the bigger a subtree is the less likely it is to occur more than once in a

random tree. Indeed the largest repeated subtrees observed in random programs contain

three nodes and are repeated in only about one in 500 random programs, i.e. p-value 0.2%.

Yet evolution produces repeated pattern far bigger than this. These large non-random

repeats are highly significant. We have developed a model of random trees which estimates

probabilities (p-values).
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Fig. 7 Evolution of mean depth and size with mutation and standard crossover (2XO). Ten protein runs,
standard deviations are only plotted every ten generations. As with Fig. 6, size increases until largest in
population reach limit (1,000) and much of the populations lie near the peak in the distribution of tree shapes
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4.6 Entropy of subtrees

As might be expected, variation in values calculated by subtrees across the training set has

a strong tendency to increase from the leafs to the root. This is also true of random

programs. Figures 19 and 20 shows the variability within the largest protein location tree

(2XO, 50 generations). We use information entropy (Shannon and Weaver 1964) (calcu-

lated using signal value to six decimal places) as our measure of variation.

The protein location programs do not contain ‘‘classic’’ intron nodes. I.e. there are few

places deep in the tree where information passes only from one input of a function to its

output, totally ignoring the other input. The entropy, if any, of such ‘‘classic’’ intron nodes

would come from just one input. Thus the entropy of an ‘‘all or nothing’’ intron would be

the same as that of its active argument.

Sometimes entropy (i.e. variability) falls from the leaf towards the root are caused by a

SUB subtree with both arguments referring to the same amino acid. This has no variation

since it always yields zero, so the subtree has less entropy than either of its leafs. (Random

programs also contain bottleneck nodes of low entropy.) Most cases where entropy falls are

very close to a leaf. However, a few of the largest protein location (2XO) programs do

possess bottlenecks where entropy falls on the output of a large subtree. This means the

subtree has less effect on the whole program.

We can perform a similar entropy analysis on the symbolic regression problem but it is

less informative. Remember that each of the training examples is randomly generated. This

means none of the 50 · 10 input values are repeated. In at least some cases, the evolved
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Fig. 8 Evolution of shape in ten Poly-10 populations. Standard deviations are plotted every 100
generations. Note, TinyGP does not impose size or depth limits, however as with Mackey-Glass and Protein
prediction (cf. Figs. 6 and 7) many individuals in the seven bloated populations have shapes near those of
random trees
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Fig. 9 Depth and size of every subtree in best of run trees (2XO). Ten Mackey-Glass runs. Note the
similarity with the shape of whole trees as they evolved, see Fig. 6 (Small amount of noise added to spread
data that would otherwise be plotted directly on top of each other.)
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Fig. 10 Depth and size of every subtree in best of run trees (2XO). Ten protein runs. Note the similarity
with the shape of whole trees as they evolved, Fig. 7 (As Fig. 9, small amount of noise added.)
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Fig. 12 Depth and size of every subtree in seven random binary trees. Size of trees chosen to be same as
those in Fig. 11 (Again a small amount of noise added to improve display.)
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Fig. 11 Depth and size of every subtree in seven bloated Poly-10 trees. Due to extreme size of programs in
runs 1 and 6 data for the best programs after 250 generations is presented for these two runs. Once again note
the similarity with the shape of whole trees as they evolved, Fig. 8 (Again a small amount of noise added to
improve display.)
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program’s subtrees never calculate the same value. So the plot corresponding to Fig. 20

would be a flat line with every subtree having maximal entropy.

4.7 Fitness of subtrees

As might be expected, correlation or anti-correlation with training data tends to rise from

the leafs to the root. In protein predictions runs, between 15 and 78 (depending on the run)

subtrees in each best of run program exceed the performance of random search (106

ramped half-and-half trees), see Fig. 21. Since fitness tends to fall away from the root, there

are more lower fitness subtrees. Secondly, despite being non-elitist, fitness increases

monotonically. Therefore the fitness distribution within the best subtrees can also be

explained by saying: the longer evolution has had to work since a fitness level was reached,

the larger the number of subtrees exceeding that fitness there will be.

In Poly-10 runs, subtrees in evolved solutions also tend to increase in fitness toward the

root. Typically only the root node has a fitness (or correlation with the target) that exceeds

that of x1 · x2. This may be due to the difficulty of the problem, exacerbated by the

random test data.

4.8 Importance of subtrees (sensitivity analysis)

While the trees do not contain large numbers of ‘‘classic introns’’, where one argument of

a function has no impact on its output, some nodes do have much more impact than others.

To see this, we replaced each subtree in turn by its median value and counted the number

of training cases where this changed the output. (Those which changed the prediction in

more than ten fitness cases are highlighted in Fig. 22.) The upper solid curves in Fig. 23

plot the number of fitness cases where the output was changed by more than 0.005%.

Fig. 13 Repeated patterns in the largest protein prediction program (2XO, 843 nodes). Largest pattern (133
nodes) in black. Other nodes in repeated patterns are filled according to size of the repeated pattern (33–132
grey and 11–32 light grey). Unique nodes and nodes which are part of small patterns are not filled
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Fig. 14 Repeated patterns in best symbolic regression program from first Poly-10 run (155 nodes). Largest
pattern (13 nodes) in black. Other nodes in repeated patterns are filled according to the size of the largest
repeated pattern to which they belong (8–12 grey). Unique nodes and nodes which are part of small patterns
which could arise by chance are not filled
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While the lower dashed curves show the number of cases where subtrees contribute to

fitness, i.e. the number of training cases where replacing it changed the program’s pre-

diction. Between 5% and 23% of nodes in protein prediction programs have less than

0.005% impact on all training cases. If we consider just fitness (lower dashed curves) this

rises to between 7% and 57% of the program. I.e. on average 30% of subtrees can be

replaced without changing any of the program’s predictions.

For the Poly-10 problem deciding how to quantify the importance of subtrees proved

more problematic. Since the test cases are chosen with (approximately) equal positive and

negative values, the median values are usually near zero. This tends to make DIV oper-

ations appear important. To avoid this problem, the importance of subtrees was measured

by replacing them with leafs and calculating the mean change in fitness. Figure 24 shows

the impact of replacing each subtree with each input x1; . . . ; x10 in the first symbolic run.

While Fig. 25 plots the sensitivity for all seven non-trivial Poly-10 best of run programs.

Figure 25 makes clear that the performance of evolved trees on the training data depends

little on a large proportion of the tree. We can also see that bigger evolved trees are less

sensitive.

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

Fraction of best Mackey-Glass program

10 M-G 2XO 500 gens

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

Fraction of best Protein prediction 2XO program

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

Fraction of best Poly-10 program

5 500 gens
2 250 gens

Fig. 15 Size of repeated pattern vs. fraction of best of run trees (2XO). In every run the largest repeated
pattern is too big to arise by chance. Depending on run 9–44% (Mackey-Glass), 8–67% (Protein) and
16–74% (Poly10) of these programs is not part of a repeated fragment of 11 or more nodes. I.e. at least
91–56% (Mackey-Glass), 92–33% (Protein) and 84–26% (Poly10) of the code is part of a non-random
repeated structure. The three x1 · x2 Poly-10 programs are not included. Also two Poly-10 programs
at generation 500 are too large to be analysed exhaustively (2,419 and 6,577 nodes). These are
replaced by the best program at generation 250 from the same runs (plotted with dotted lines, 225 and 193
nodes)
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Depending upon run, between 15% and 89% of Poly-10 trees can be replaced with leafs

without changing their error by more than 1.0, averaged across all ten inputs x1; . . . ; x10.

(In Fig. 24 a fitness difference of 1.0 is shaded with the lightest grey, e.g. the leaf X8

furthest from the root.) Another way of looking at the data presented in Fig. 25 is to

consider which subtrees are important I.e. which subtrees—when replaced—will on

average change fitness by at least 1.0. In these seven Poly-10 runs, there are only 94–153

important nodes in the evolved programs. (Note by this point in the runs, half the popu-

lation was within 1.6–3.1 of the best in the population. Since we are using binary tour-

nament selection, a change in fitness of 1.0 will reduce their expected rate of producing

children by a factor of less than 2 (Blickle 1996, p. 71).)

5 Discussion

Sections 4.2 and 4.3 confirm (cf. Langdon et al. 1999) trees have evolved to the same

fractal shape as random trees but Sects. 4.4 and 4.5 show repeated patterns which are far

from random. Sections 4.6 and 4.7 suggest GP programs (composed of non-Boolean

function sets without side effects) are composed of high fitness subtrees which mostly pass

information upwards towards the root. That is, they are not dominated by classic ‘‘introns’’

(which ignore data from one or more subtrees). However, the sensitivity analysis

(Sect. 4.8) shows that large parts of the tree, including repeated parts, can be replaced (e.g.

by a constant or input) and this will have no or little effect on fitness.

We suggest the repeated patterns seen in GP used for modelling and prediction are not

like classic GA ‘‘building blocks’’ (O’Reilly and Oppacher 1995): (1) They are not small;

(2) they have high fitness on the whole problem, rather than sub-components of it. It

appears evolution is haphazardly assembling a complete program by repeatedly reusing

Fig. 16 Same program as in Fig. 13. Here whole subtrees are exactly repeated. Nodes are filled according to
size of the repeated subtree. Unique nodes and nodes which are part of small patterns (3 nodes or less) are
not filled. Two largest (59 nodes, right hand side) filled with black. Note these are partially repeated
elsewhere in the tree (e.g. 55 node subtree, centre of figure, shaded dark grey)
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Fig. 17 Same program as in Fig. 14. Here whole subtrees are exactly repeated. Nodes are filled according to
how unlikely the repeat of the subtree is to be due to chance. Note six identical five node subtrees are
coloured black (p-value 4 · 10�20). They are part of four seven node subtrees. The two non-overlapping
nodes are filled with dark grey. Two of these are in turn part of a pair of 11 node subtrees. Again non-
overlapping nodes shaded, this time in grey. The 20 copies of input x5 (p-value 10�5) are shaded in light
grey
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subtrees it has already discovered in ways allowing it to squeeze out marginal incremental

improvements. In the process some components become of lesser importance in the final

program than others.

In simple genetic programming problems, the preferred subtrees are not classic building

blocks, since they tend to have high fitness on the whole problem rather than on compo-

nents of the problem. Also as GP jumbles together copies of subtrees to create complete

solutions, similar, or even identical, components (which may in themselves have similar, or

indeed, identical problem solving abilities) tend to have very different importance in the

whole program. So over time, evolved programs accumulate exact or nearly exact copies of

useful code but most copies have only a marginal impact.

6 Conclusions

Correlation between performance of initial and evolved populations suggests lack lustre

initial random programs can have an impact on the final outcome. While results from

different problems are mixed, such correlation might yet prove to be a useful population

size analysis tool or aid to finding a restart heuristic.
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Fig. 18 Size of identical subtrees vs. fraction of best of run trees (2XO). In every run the largest repeated
subtree is too big to arise by chance. Indeed, depending on run, only 4–29% (Mackey-Glass), 4–30%
(Protein) and 54–91% (Poly10) of these programs is not part of a repeated subtree of five or more nodes. I.e.
at least 96–71% (Mackey-Glass), 96–70% (Protein) and 46–9% (Poly10) of the code is part of a non-random
repeated subtree. The three x1 · x2 Poly-10 programs are not plotted. Two large Poly-10 programs replaced
by programs from generation 250 (plotted with dotted lines)
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Fig. 19 Entropy of each node in largest protein program (cf. Figs. 13, 16 and 22.) Darker grey indicates
more variation across the training set. Note entropy tends to increase towards root. (At levels 7 and 9 there
are two links, dotted red, where large subtrees pass through bottlenecks, i.e. entropy falls). Cf. Fig. 20
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Fig. 20 Entropy on each of 422 paths from leaf to root in largest protein program (cf. Figs. 13, 16 and 22).
At levels 7 and 9 there are two links where large subtrees pass through bottlenecks. The bottlenecks near the
root show up as repeated dips in the tail. This structure is an artefact caused by paths passing through similar
routes near the root but having different lengths
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Fig. 21 High fitness (or anti-fitness) subtrees as a fraction of the ten best protein trees (2XO). Note range of
horizontal axis. Since fitness is a very non-linear function, we define a normalised fitness as being, for each
run, the generation in which a program of the corresponding fitness was first found. All runs exceeded the
best fitness found in a million random trees programs by generation 8

Fig. 22 Importance of nodes within protein prediction trees. Largest protein prediction tree. The 125 (15%)
subtrees which change more than ten training cases are highlighted in black. (Same example as in Figs. 13,
16 and 19.) Of the remaining 725, 277 have no impact on fitness at all, while a further 151 affect only one
(of 1,213) training case. Note several large repeated subtrees (which must produce the same values) make
little contribution to fitness
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As expected, size fair crossover (FXO) (Langdon 2000) and a range of mutation

operators controlled bloat (Langdon et al. 1999). In these experiments, the compact models

performed slightly worse than the much larger ones evolved with standard crossover and

mutation.

Entropy and subtree fitness analysis suggest genetic programming (GP) succeeds in

finding ways to put together moderately sized fit subtrees to yield larger trees containing

few highly sensitive components with higher performance. The situation seems to resemble

that found in genomes, where certain segments of genes have much more impact on the

final organism than others.

While it is always difficult to generalise from a limited number of examples, we have

investigated a variety of representations, genetic operations and generational strategies,

implemented in two different languages, using three diverse non-trivial problems (two

successfully solved and one less so). In every case, where program size allows, we have

seen the spontaneous emergence of repeated patterns in both linear (Langdon and Banzhaf

2005a) and tree based GP. This leads use to tentatively suggest on problems, without tight

limits on tree size, depth, etc., where bloat is possible, GP will generally evolve programs

containing copious repeated patterns. Although this work is far from complete, we suggest

future analysis may discover further spontaneous effects which arise from evolution rather

than the programmer, cast light on the workings of GP and may lead to new automatic

programming techniques.

Source code: A modified version of Andy Singleton’s GPquick (GProc) can be obtained

via anonymous ftp site cs.ucl.ac.uk directory genetic/gp-code. Code to generate Graphviz

format dot files from GP programs can be found at http://www.cs.ucl.ac.uk/staff/

W.Langdon/lisp2dot.html
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Fig. 23 Number of training cases which subtrees influences as a fraction of the ten 2XO best of run
programs. Solid curves plot where impact is more than 0.005%. Dashed lines: node causes prediction to
change
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Fig. 24 Importance of nodes within symbolic regression trees (best program in first Poly-10 run, cf.
Figs. 14 and 17). Subtrees which when replaced by a leaf would produce on average more than a 10%
change in fitness are shaded. More than 100% change are highlighted in black. Note identical subtrees make
different contributions to fitness
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