
Nanotechnology 7 (1996) 307–314. Printed in the UK

Emergent computation by catalytic
reactions

Wolfgang Banzhaf †‡§, Peter Dittrich ‡ and Hilmar Rauhe ‡

† Informatik Centrum Dortmund (ICD), Dortmund, Germany
‡ Department of Computer Science, Dortmund University, Baroper Strasse 301,
44221 Dortmund, Germany‖

Received 14 May 1996

Abstract. Recently, biochemical systems have been shown to possess interesting
computational properties. In a parallel development, the chemical computation
metaphor is becoming more and more frequently used as part of the emergent
computation paradigm in computer science. We review in this contribution the idea
behind the chemical computational metaphor and outline its relevance for
nanotechnology. We set up a simulated reaction system of mathematical objects
and examine its dynamics by computer experiments. Typical problems of computer
science, such as sorting, parity checking or prime number computation are placed
within this context. The implications of this approach for nanotechnology, parallel
computers based on molecular devices and DNA-RNA-protein information
processing are discussed.

1. Introduction

The idea of using natural systems for computational
purposes has long been pondered. Haken, for instance,
has proposed the use of laser mode competition as a way
to recognize patterns [1]. Others have proposed chemical
and biological systems as being useful for computational
purposes [2–4]. Recently, biochemical systems have been
shown to possess interesting computational capabilities
[5–8]. For the first time, biochemical systems have been
used to do some actual computation.

The pioneering usage of DNA for computation in
[7] gave an idea of the potential power of molecular
computation. Its strength is based on the high density of
information storage in DNA and the amount of molecules
that are usable for parallel computation. Molecular
computationin vitro, however, is still at its infancy and
the computational concepts which take advantage of its
potential power are still under exploration. Suggestions
have been made already for universal molecular computers
based on graphs [9, 10] or molecular Turing machines
[6, 11, 12].

The properties of DNA, i.e. its ability to store
information and use it for the specifity of molecular
interactions (DNA–DNA or DNA–enzyme based) seem to
predestine DNA for the usage in information processing
at a molecular level. On the other hand, the methods for
the manipulation of DNA currently available via molecular
biology [13] have very limited programming capability
and computational concepts will have to adapt to the
characteristics of the molecular environment.

§ Author to whom correspondence should be addressed.
‖ E-mail: banzhaf,dittrich,rauhe@LS11.informatik.uni-dortmund.de

In a second, and nearly simultaneous development,
natural metaphors for computation are more and more
frequently used in computer science. Already established
fields such as artificial neural networks [14] and
evolutionary computation [15, 16] have recently gained
company by approaches using the chemical metaphor
to computation as their central notion. In this way,
concepts are being developed which might well in the
future converge with the technological abilities to realize
molecular computers. In this contribution, we shall
concentrate on this new concept in computer science.

The chemical metaphor for computation has been
discussed at various places in the literature. Haken
proposed the use of chemical reactions for information
processing [1] (ch 9.8). In 1988 the0-language was
introduced into computer science by Banatreet al [17, 18].
Their primary motivation was the inadequacy of the
imparative programming paradigm for massively parallel
computers of the coming decades.0 is based on a single
data structure called multiset. A computation can be seen
as a transformation of the multiset by consuming elements
of the multiset and by producing new members according
to specific rules. Banatreet al [17, 18] also discuss similar
applications of the paradigm as we do here, although their
point of view is parallelizability of the approach. Rather,
our point of view will be the dynamics of such a system.

Later, the idea was further developed into the
‘CHemical Abstract Machine (CHAM)’ by Berry and
Boudol [19]. The CHAM adds new features to the
paradigm by considering solutions of multisets and allowing
for the definition of membrane-like encapsulation of
subsolutions. The authors also examine more theoretical
aspects of the approach, for example its relation to

0957-4484/96/040307+08$19.50 c© 1996 IOP Publishing Ltd 307

W Banzhaf et al

concurrentλ-calculi [20] and to Milner’s calculus of mobile
processes [21, 22].

Another contribution to the chemical computation
metaphor stems from Fontana and colleagues who study
organizational aspects of resulting interaction webs. In
a series of papers [23, 24] a computational system was
devised which is based on theλ-calculus. Elements
are interpreted as functions which react with each other.
Through intermediate states,λ-expressions are evaluated
with the reaction partner as an argument and the result of
this computation is considered as an analogue of a reaction
product. The work of Fontana and colleagues is mainly
concerned with the static aspects of organization, however,
and does not focus on the resulting macroscopic dynamics.

Certain dynamical aspects in systems based on chemical
computation have been considered in our own work
[25–27], where a system of computational objects has been
set up and its evolution was studied. Our point of view on
chemical computation is to consider information processing
in algorithmic reactors. Simply spoken, analgorithmic
reactor is a computer which computes by the analogue of
chemical reactions. The algorithmic reactors that will be
presented in this paper implement single algorithms rather
than universal computers.

The principle of all algorithmic reactors is the
implementation of parallel algorithms which require
relatively simple local interactions of their computational
‘molecules’. The computation of a reactor is encoded in its
hardware, since the construction of the molecules allows
only limited interactions. Through their interactions, the
‘molecules’ execute the algorithm. Though the presented
algorithmic reactors lack programmability, they perform the
computation rather efficently. This approach could serve as
a reasonable compromise between universal computation
and what will be implementablein vitro. We do, however,
expect programmable molecular computers to arrive on the
scene sooner or later.

The rest of this paper is organized as follows. Section 2
gives an informal description of the chemical computation
metaphor as used by us. Section 3 discusses some
implications of this view for nanotechnology in general.
Section 4 discusses three examples of algorithms, starting
with a very simple problem: parity checking, followed by
a more complicated problem, sorting. The final problem
is prime number computation. Section 5 summarizes our
results and gives our conclusions.

2. The chemical metaphor

Chemical reactions take place under specific physical
and structural conditions. An event that is reproducible
under the same conditions, such as an interaction between
molecules, is potentially able to carry information. The
information is stored in the composition of the molecules.
Therefore a reaction, as it causes changes of the
composition of the reacting molecules, can be seen as an
act of information processing. The capacity of information
processing increases with the speed of the reaction and
the complexity and number of the reactants. Beyond the
microscopic events a reaction system which contains many

reactants should be able to show a trend in its macroscopic
behaviour that can be interpreted in a meaningful and
unique sense. The strategy to create an algorithmic reactor
from a system of chemical or quasi-chemical reactions
is to establish local interactions in a manner so that
they are elementary operations of an algorithm in which
computation emerges as macroscopic behaviour of the
whole system. In principle this can be done through the
selection of the physical conditions, the composition of the
molecules and the specificity of their reactions. Preferably,
algorithmic reactors implement parallel algorithms that are
based on relatively simple local interactions with low
interdependence in order to make full use of the number
of reactants in the system. In comparison toin vitro
systems the ‘molecules’ of the presented reactors and their
interactions have a complexity which suggests molecules
like DNA as possiblein vitro implementations.

In today’s desktop computers the information content
of a stored bit sequence depends heavily on its position
in memory. The interpretation of data is performed by an
instruction flow which refers to specific predefined memory
locations. Changing the position of data randomly will
disrupt the computational process.

In the chemical computation metaphor used here, no
spatial structure is used. Data are viewed as certain particles
(objects) which collide arbitrarily with other particles.
When they collide they are able to interact and may produce
other objects or they may be destroyed. If nothing happens
the collision is calledelastic.

It is important to consider a collision as a simple
microscopic event. The desired computation emerges out
of many collisions of a vast number of objects. This
requires that the structure of the object and the interaction
mechanism must be simple, for example describable by a
small finite state machine or by simple rules.

The metaphor is summarized in the following table.

Data Substances or molecules
Processing Chemical reaction
Algorithm Substances and their reaction laws

3. Molecular computing and nanotechnology

Feynman was the first to consider molecular computing
seriously with his seminal work [28, 29] from 1959.
An entire field has developed since this time, with
computation using quantum effects as its main concern
[30]. Thermodynamic considerations and the possibility
of computation to become reversible were also of high
importance [31, 32].

In the early 1980s, nanotechnology was incepted
as a new field [33]. It has since developed into
an engineering discipline [34]. Although Drexler
considers biotechnology as an important path toward
nanotechnology as it demonstrates the feasibility of such an
approach, mainstream studies have focused on engineering
realizations in the traditional top–down approach.

Our emphasis will be somewhat different. In
our opinion, chemistry with molecules diffusing and

308

Emergent computation by catalytic reactions

colliding in solutions offers enough potential for molecular
computing to go along with. Therefore we are concerned
about signals in the form of concentration peaks and do
not consider immobility as a precondition for achieving
molecular computation.

The approach, therefore, stands between what is now
envisioned in nanotechnology and what is already realized
in bulk-matter electronics. Our reasoning is based on
the fact that the majority of molecular machinery in
biological systems is working in solution. Concepts of self-
organization, self-assembly and self-programming are at the
centre of our attention. It goes without saying that emergent
phenomena [35] play a central role in this argument.

4. Three examples of algorithms

4.1. The general set-up

For the following examples we use an experimentation
system with these components:
• A soup (population, reactor vessel) of objects. These

objects may be character sequences [36],λ-expressions
[23], binary strings [25, 37] or numbers. In a basic setting,
the soup has no spatial structure so that its state can be
noted as a concentration vector.
• A reaction or collision rule.The reaction rule defines

the interaction among two objectss1 ands2 which may lead
to the generation of a new objects3. This is denoted as

s1+ s2 H⇒ s3. (1)

• An algorithm to run the system.In this contribution
we use two algorithms that can also be found with minor
modifications in [23, 25, 36, 37].

Reactor algorithm I
1. Randomly select two objectss1, s2 from the soup,

without removing them.
2. If there exists a reactions1+ s2 H⇒ s3 and the filter

condition f (s1, s2, s3) holds, replace a randomly selected
object of the soup bys3.

The replaced objects form thedilution flux of the
system. Thefilter f can be used to block lethal objects
and to introduce elastic collisions. An object is said to
be lethal if it is able to replicate in an unproportionally
large number in almost any ensemble configuration. The
algorithm instantiates the interaction scheme:

s1+ s2+X −→ s1+ s2+ s3. (2)

This means thats1 and s2 are not consumed and act as
catalysts of the reaction. Theraw material X is used
to balance the equation and does not appear explicitly in
the system. It could be interpreted as being computational
resources such as processing time or memory ([38], p 373).
Reaction systems which exhibit this kind of reaction scheme
are able to formhypercyclicorganizations [39–41].

Reactor algorithm II
1. Randomly select two objectss1, s2 from the soup,

without removing them.
2. If there exists a reactions1+ s2 H⇒ s3 and the filter

condition f (s1, s2, s3) holds, replace the objects1 of the
soup bys3.

This algorithm instantiates the interaction scheme:

s1+ s2 −→ s2+ s3. (3)

This means that the objects1 is transformed intos3 with the
catalytic help ofs2. An important difference to algorithm
I is that there is no dilution flux, for example an objects1
that does not react with any object will stay in the soup
forever.

To measure the running time of an algorithm we shall
call M iterations of the two steps of the algorithm a
generation, whereM is also the reactor or soup size. Thus,
during one generation, every object of the reactor will have
had a chance to react with another object.

4.2. Parity checking

In this first example a reaction system should decide
whether a given binary sequence contains an odd or even
number of ones. This problem has a linear complexity
with respect to the length of the given sequence. It should
illustrate how a linear loop can be performed.

The objects for this task are binary strings of arbitrary
length and an operator objectsw. In order to prepare the
reaction system, the soupP is initialized with ni units of
the input sequencesi ∈ {0, 1}∗ andnw units of the operator
objectsw. Then the reactor algorithm I is iterated for some
generations.

For the reactions1 + s2 H⇒ s3 the following collision
rules are applied.
• If the length ofs1 = · · · b2b1b0 is greater than 1 set

s3 = · · · b2b, with b = (b1 6= b0) andb2, b1, b0, b ∈ {0, 1}.
That means thats3 becomess1 where the first two bitsb1, b0

are replaced by their exclusive-or product(b1 6= b0).
• If s1 is equal to 0, 1 or sw, replicates1 (s3 = s1). This

amplifies the result when it appears.
For instance, the reactions performed in the run of

figure 1 with the inputsi = 01101 are

sw + 01101H⇒ 0111 (4)

sw + 0111H⇒ 010 (5)

sw + 010H⇒ 01 (6)

sw + 01H⇒ 1 (7)

sw + 1H⇒ 1 (8)

sw + sw H⇒ sw. (9)

The last two reactions constitute a replication of the result
(former) and a self-replication of the operator stringssw
(latter), respectively.

Figure 1 shows the results of a typical simulation.
The different steps of the loop become noticeable by
concentration peaks of intermediate substances. The result
is the substance with a high concentration at the end of the
simulation. If it consists of 1s the answer to the decision
problem becomes ‘yes’.

309

W Banzhaf et al

0

20

40

60

80

100

5 10 15

C
on

ce
nt

ra
tio

n
 in

 %

Generations

intermediate products

result 1input si

operator sw

Figure 1. Parity computation by an algorithmic reactor.
The reactor is filled with ni = 800 objects of the input
si = 01101 and nw objects of the operator objects sw .
During the computation intermediate substances are
produced and displaced. Their concentration peaks
indicate different steps of the linear loop performed.

4.3. A sorting algorithm

In the second example, we would like to devise an
algorithm for a real number sequence to become sorted.
The property of being sorted shouldemerge from the
interactions of participating subsequences and numbers.
The algorithm should be tolerant to the addition of new
numbers during the computation process as well as to other
perturbations.

Our starting point is again the chemical computation
methaphor. In analogy to elements in a reaction vessel,
consider a pool of numbers realized in the memory of our
computer. These numbers come in multiple copies and have
the possibility of reacting with each other on encounter. In
the case of a reaction, the numbers stick together forming
(part of) a sequence that grows in length with successful
further reactions. One could say that a polymerization
reaction between numbers takes place. Such a reaction,
however, is only possible if certain conditions are fulfilled
by its reaction partners. Otherwise, the encounter is elastic
and results in an unchanged pool.

The idea is to devise a reaction condition which
incorporates the sorting criterion. A naive approach to this
end is to provide the possibility of a number to ‘react’
with a sequence if the last number of the already existing
sequence is, say, smaller than the number trying to react
with it. In this way, sorted sequences grow longer only by
adding (sequences of) larger numbers.

Formally, if we consider elementary numbers to
be symbolized byn1, n2, . . . , nL, and N1(k),N2(k), . . . ,

NL(k) to be subsequences of arbitrary lengthk with last
(rightmost) elementn1, n2, . . . , nL then such a reaction
(collision) rule might be described as

Ni(k)+ nj →

Ni(k)+Ni(k) ◦ nj → Ni(k)+Nj(k + 1)

iff ni < nj (10)
Ni(k)+Ni(k) iff ni = nj (11)
Ni(k)+ nj else (12)

where ‘◦’ indicates concatenation. As we can see, the
reaction is enzymatic, sinceNi(k) is unchanged. Also, one
of the two reactants is usually able to replicate.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10

Y
ie

ld

Different numbers

Algorithm I
Algorithm II

Figure 2. Yield of fully sorted sequences over length of
sequences in the naive approach. Yield falls very quickly to
zero for algorithm II, and slower for algorithm I. This
indicates stabilization of the system by missing reaction
pathways. Soup size M = 1000.

The second reaction merges the two numbers into one.
For single numbers or only one subsequence participating,
this case could be treated as an elastic reaction (like (3)).
But the second reactant could be a subsequence as well,
in which case its first (leftmost) element would have to
be compared to the last (rightmost) element of the former
sequence. The merging reaction does, therefore, lead to
elongated sequences even in the case of equal outmost
numbers.

Since the entire system is set up as a competitive
system (reactions are enzymatic), it is expected that long
(polymerized) sequences carrying numbers in correct order
should dominate the pool after sufficiently many reactions
have taken place. As it turns out, however, this is not the
case! All reactions quickly turn elastic rendering the system
stable.

Figure 2 shows the yield of fully sorted sequences
as a function of the numberK of participating different
numbers. It should be kept in mind that the size of the
pool is considerably larger thanK.

The second curve in figure 2 shows the behaviour of a
system with more pressure towards proliferating reactions,
i.e. if a sequence is able to be produced more often than
another, this will help it to become more frequent in the
pool. Not surprisingly, also in this case the number of
elastic reactions grows quickly, ultimately leading to a
stable system.

This behaviour demonstrates quite clearly the impor-
tance of devising suitable reaction pathways for the system
to reach the anticipated goal. In the naive approach taken,
the interactions were obviously set up in the wrong way.
The probability of reactions decreases quickly with an in-
creasing length of strings. There are too many reactions
leading into dead ends from where no reaction paths lead
any further, and the system quickly becomes stuck.

Another approach, and as it turns out the correct one,
is to carefully provide for reaction paths even for larger
sequences. We shall do so by allowing copy reactions of
a form usual in DNA double strands in addition to the
reactions (1)–(3).

310

Emergent computation by catalytic reactions

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18

C
on

ce
nt

ra
tio

n

Generations

l = min
l = max

25 < l < 36
5 < l < 16

75 < l < 86

Figure 3. Concentrations of sequences in different length
windows. The concentration of shortest sequences
(equivalent to numbers) decays quickly, the concentration
of intermediate length sequences is transient, growing and
falling in an orderly fashion, the concentration of strings of
maximum length (L = 100) grows monotonously and
stabilizes. Population size: 10 000.

A formalization reads like this. Suppose, two
subsequences have already been formed,

N3(3) = {n1, n2, n3} (13)

N4(3) = {n1, n3, n4} (14)

where indices inn1, n2, n3, n4 indicate their respective
order:

n1 < n2 < n3 < n4. (15)

We now allow for matching reactions which generate
intermediate double-stranded states:({n1,−, n3, n4}

{n1, n2, n3,−}
)
. (16)

Gaps, symbolized by ‘−’ are becoming detectable since
matching reactions enforce connections. In a second step,
these gaps are filled by copies of missing elements, upon
which single strands form again:({n1, n2, n3, n4}

{n1, n2, n3, n4}
)
→ N4(4)+N4(4). (17)

As we can see immediately, this type of reaction does
not suffer from the same problem as the earlier one. Yield
remains 100% for all sets of numbers considered. Figure 3
shows how the complete solution emerges within the pool.
We can see also how various transient states are assumed by
the system. In order to arrive at ordered sequences of full
length the system has to first build shorter subsequences.
Since reactions nearly always happen (elastic reactions are
confined to cases where identical sequences encounter each
other) this is easy to achieve.

Figure 4 shows the concentration development of the
largest subsequence at any one moment. This concentration
grows within bounds (constituting, at times, even around
1% of the pool population), though it never does reach a
large concentration. Thus, even without knowing which

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 10 20 30 40 50 60 70 80 90 100

C
on

ce
nt

ra
tio

n

Generations

l = min
l = max

l = 30
l = 10
l = 80

Figure 4. Concentrations of sequences of maximal length
in different length windows. The concentration grows within
bounds before taking off at around 95 generations
indicating that the maximum has been reached. Population
size: 10 000.

number is largest in the pool, a concentration increase
passing a critical threshold does indicate the end of the
sorting process and the macroscopic result.

We have seen the importance of interactions and
how they serve as a means to destabilize the present
state of a population. For the chemical computation
metaphor to be useful, it is necessary to identify and realize
reaction pathways towards the result wanted. If, for any
reason, reactions generate useless intermediary results more
frequently than useful ones, the algorithm will either get
stuck or be, at the least, very inefficient.

4.4. A prime number generator

In the third example we would like to use a reaction
system to produce prime numbers (see also [18]). Here
we will demonstrate that the population size is critical for a
successful computation. For reasons that will become clear
later, by increasing the population size a phase transition
occurs with respect to the qualitative behaviour of the
system, for example to the production of prime numbers.

Starting with a reactor ofM numbers selected randomly
from the set{2, 3, . . . ,max} with M � max the following
requirements must be met.

1. Prime numbers should be generated either directly
or through intermediate numbers.

2. Prime numbers and intermediate numbers with a low
number of prime factors should have advantages in terms
of stability over numbers with many prime factors.

The first point is taken into account by using the
mathematical division as the collision or reaction rule.
More precisely, the products3 of the collisions1+s2 H⇒ s3
is defined as

s3 = s1/s2 if s1 mod s2 = 0 ands1 6= s2. (18)

Otherwise, i.e. ifs1 cannot be divided throughs2 without
remainder, the collision is elastic. In order to stabilize
ensembles of prime numbers or numbers ‘nearly’ prime,
thus meeting the second requirement, reactor algorithm II

311

W Banzhaf et al

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

P
rim

e
nu

m
be

r
co

nc
en

tr
at

io
n

Generation

Figure 5. A single run for the prime number problem where
finally every object inside the reactor is a prime number.
The soup is initialized with random numbers out of
{2, . . . ,10 000}. Soup size: M = 100.

is used. Hence, a prime number is never replaced and every
collision with s1 being prime becomes elastic. A number
s1 is therefore only replaced if a reactions1 + s2 H⇒ s3
successfully produces a new numbers3.

Figure 5 shows a simulation where the population size
M is set to 100 and max= 10 000. The concentration of
prime numbers increases until no non-prime is left. The
entire process could be termed ‘emergence’ of the feature
prime.

Figure 6 shows how critically this behaviour depends
on the population size. For different soup sizesM the
concentration of prime numbers is measured after 700
generation. For eachM 30 runs of the reactor algorithm II
have been performed.

As is well known from the theory of phase transitions,
this sort of behaviour, i.e. the increase in fluctuations near
the critical point is typical for a phase transition.

5. Summary and conclusions

In this contribution it has been demonstrated on an abstract
level how computation can be achieved by chemical
systems. The results will hopefully give insight into
the design of molecular reactors which can be used for
information processing. Two different kinds of reactor
algorithms have been employed.

The parity checking example served as an introduction
into the general concepts put forward here (see table 1).

The sorting example shows that the collision mecha-
nism has to be carefully designed. Slight modifications of
the reaction rule lead to a massive increase in efficiency.
For larger systems, this is not only a matter of efficiency
but a prerequisit for reaching the desired goal.

The prime number example demonstrated that reactor
size is a critical quantity. As always, it is decisive to have
reaction pathways at hand which do not lead to dead ends
but keep enough reaction paths open toward the state aimed
at (high prime number concentration). Here the numbers
can be viewed as simple machines that manipulate other

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 p
rim

e
co

nc
en

tr
at

io
n

Soup size

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100 120 140 160 180 200

M
ea

n
va

ria
nc

e
of

 p
rim

e
co

nc
en

tr
at

io
n

Soup size

Figure 6. Dependence of prime number production on the
population size. The figures summarize a series of runs of
the reactor algorithm II with different soup sizes. Each dot
represents 30 runs with the same soup size M . In the first
graph the avarage prime concentration at the end of each
run (generation 700) is displayed. For small soup sizes
(M < 40) the algorithm runs mostly into a dead end so that
the soup still contains a lot of non-prime numbers. With a
larger soup size (M > 100) the reactor is nearly always
able to transform every number to prime number resulting
in a prime number concentration of 100%. In the vicinity of
the phase transition (40 < M < 100) a strong fluctuation of
the number of resulting primes produced each run can be
observed. This results in the second figure, where the
mean variation of a single run is depicted.

numbers by dividing them†. A small soup size does not
provide enough useful ‘machines’ (e.g. numbers that are
able to divide other numbers) at the beginning to initiate
the avalanche-like process depicted in figure 5.

The presented implementations of algorithmic reactors
are specialized on the efficient computation of defined
problems and could be a compromise between universal
molecular computers and what is realizable with today’s
molecular technology. We anticipate, however, that general
purpose molecular computing will become feasible in the
future (see also [27]).

Considering the chemical metaphor it can be assumed
that DNA and other biomolecules are a suitable material
for in vitro implementation. Under the assumptions of

† The term ‘enzymatic numbers’ has been suggested to us for reflecting
this feature.

312

Emergent computation by catalytic reactions

Table 1. Overview of different reactor algorithms used.

Application Objects Reaction Algorithm

Parity check Binary strings Two-bit exclusive-or Reactor algorithm I
Sorting Number sequences Conditional concatenation Reactor-algorithm I

Match & copy Reactor-algorithm II
Prime number Numbers Division Reactor-algorithm II
computation

the chemical metaphor as it was put forward here, three
factors limit the power of molecular computation: the
number of molecules which are available per computation,
the speed of the chemical reactions in a reactor and the
amount of information that can be stored per molecule.
In this context the usage of DNA would allow for two
considerable advantages in molecular computation. Firstly
by the amount of information that can be stored per DNA
molecule is very high, secondly, DNA does not need to
be generated in large quantities. Macroscopic effects can
be detected even if caused by only a few molecules which
can be amplified using standard techniques of molecular
biology [7].

Despite the fact that the reactors presented in this paper
still make use of hypothetical interactions, they show a
strategy of implementing parallel algorithms for molecular
computation and give an insight into the reactor’s design
and system dynamics that will determine the behaviour of
in vitro reactors.

Acknowledgment

This work has been funded in part by Deutsche
Forschungsgemeinschaft under contract Ba 1042/2-1.

References

[1] Haken H 1979 Pattern formation and pattern
recognition—an attempt at a synthesisPattern
Formation by Dynamical Systems and Pattern
Recognitioned H Haken (Heidelberg: Springer)

[2] Bennett C H and Landauer R 1985Sci. Am.254
[3] Conrad M 1993 Integrated precursor architecture as a

framework for molecular computer design
Microelectron. J.24 263

[4] See, for instance Paton R (ed) 1995Int. Workshop on
Information Processing in Cells and Tissues (IPCAT95)
(Liverpool, September 1995)

[5] Arkin A and Ross J 1994 Computational functions in
biochemical reaction networksBiophys. J.67 560

[6] Hjelmfelt A, Weinberger E D and Ross J 1991 Chemical
implementation of neural networks and Turing machines
Proc. Natl. Acad. Sci. USA88 10 983

[7] Adleman L M 1994 Molecular computation of solutions to
combinatorial problemsScience266 1021

[8] Okamoto M, Tanaka K, Maki Y and Yoshida S 1995
Information processing of neural network system
composed of ‘biochemical neuron’: recognition of
pattern similarity in time-variant external analog signals
Information Processing in Cells and Tissues (IPCAT 95
Proc.) (Liverpool, September 1995)ed R Paton

[9] Lipton R J 1995 Speeding up computation via molecular
biology, unpublished

[10] Mayoh B 1995 Biological computation is universal,
unpublished

[11] Beaver D 1995 A universal molecular computer,
unpublished

[12] Rothemund P W K 1995 A DNA and restriction enzyme
implementation of Turing machines, unpublished

[13] Sambrook J, Fritsch E F and Maniatis T 1989Molecular
Cloning 2nd edn (New York: Cold Spring Harbor)

[14] Hecht-Nielsen R 1989Neurocomputing(Reading, MA:
Addison Wesley)

[15] Holland J J 1994Adaption in Natural and Artificial Systems
2nd edn (Ann Arbor, MI: University of Michigan Press)

[16] Schwefel H-P 1995Evolution and Optimum Seeking
2nd edn (New York: Wiley)

[17] Banatre J-P, Coutant A and Le Metayer D 1988 A parallel
machine for multiset transformation and its
programming styleFuture Generation Comp. Sys.4
133

[18] Banatre J-P and Le Metayer D 1990 The gamma model
and its discipline of programmingSci. Comp. Prog.15
55

[19] Berry G and Boudol G 1992 The chemical abstract
machineTheor. Comp. Sci.96 217

[20] Boudol G 1989 Towards aλ-calculus for concurrent and
communicating systemsTAPSOFT 1989 (Lecture Notes
in Computer Science 351)(Berlin: Springer)

[21] Milner R, Parrow J and Walker D 1989A Calculus of
Mobile ProcessesLFCS, Edinburgh University,
Technical report ECS-LFCS-89-85

[22] Milner R 1990 Functions as processesICALP 1990,
(Lecture Notes in Computer Science 443)(Berlin:
Springer)

[23] Fontana W 1991 Algorithmic chemistryArtificial Life II:
Proc. 2nd ALife Workshoped C G Langtonet al
(Reading, MA: Addison Wesley) p 159

[24] Fontana W and Buss L 1994 The arrival of the fittest:
toward a theory of biological organizationBull. Math.
Biol. 56 1

[25] Banzhaf W 1993 Self-replicating sequences of binary
numbers—foundations I and II: general and strings of
lengthN = 4 Biological Cybernetics69 269

[26] Banzhaf W 1994 Self-organisation in a system of binary
stringsArtificial Life IV: Proc. 4th Int. Workshop on the
Synthesis and Simulation of Living Systemsed R Brooks
and P Maes (Cambridge, MA: MIT) p 109

[27] Banzhaf W 1995 Self-organizing algorithms derived from
RNA interactionEvolution and Biocomputation:
Computational Models of Evolutioned M Banzhaf and
F H Eeckman (Berlin: Springer) p 69

[28] Feynman R P 1960 There’s plenty room at the bottomEng.
and Sci.23 22

[29] Feynman R P 1986 Quantum mechanical computers
Foundations of Physics16 507

[30] Deutsch D 1985 Quantum theory, the Church-Turing
principle and the universal quantum computerProc. R.
Soc.181897

[31] Landauer R 1961 Irreversibility and heat generation in the
computing processIBM J. Res. Dev.3 183

313

W Banzhaf et al

[32] Benett C H 1982 The thermodynamics of computation–a
review Int. J. Theor. Phys.21 905

[33] Drexler K E 1986Molecular Engineering: An Approach to
the Development of General Capabilities for Molecular
Manipulation (New York: Anchor)

[34] Drexler K E 1992Nanosystems(New York: Wiley)
[35] Forrest S 1991Emergent Computation(Cambridge, MA:

MIT)
[36] Kauffman S 1993Origins of Orderch 7 (Oxford: Oxford

University Press)
[37] Thürk M 1995 Ein Modell zur Selbstorganisation von

Automatenalgorithmen zum Studium molekularer
Evolution PhD dissertationUniversiẗat Jena

[38] Ray T S 1991 An approach to the synthesis of life
Artificial Life II: Proc. 2nd Artificial Life Workshop
ed C G Langton, C Taylor, J Doyne Farmer and S
Rasmussen (San Francisco: Morgan Kaufmann) p 371

[39] Eigen M and Schuster P 1977 The hypercycle: a principle
of natural self-organisation, part ANaturwissenschaften
64 541

[40] Eigen M and Schuster P 1978 The hypercycle: a principle
of natural self-organisation, part BNaturwissenschaften
65 7

[41] Eigen M and Schuster P 1978 The hypercycle: a principle
of natural self-organisation, part CNaturwissenschaften
65 341

314

