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We consider a model of multistablc units acting together in a network. We modify the landscape algorithm of 
spinglass-likc neural nets to cope with new conditions. Collective capabilities such as associative memory function or pattern 
classilication arc demonstrated using the simplest possible learning rule of Hebb. 

I. Motivation 

Last years have shown an enormous conver- 
gence of seemingly different research areas. Brain 
research and computer simulations of neural nets 
are bringing closer and closer together neurophysi- 
ology, cognitive science, computer science, biology 
and physics. 

Since the early days of artificial intelligence one 
of the key issues is the following question: What 
are the fundamentals of "intelligent" behaviour of 
organisms and how can one realize them with the 
materials to the disposal of mankind? 

The efforts of AI have uncovered huge problems 
one encounters in copying intelligent behaviour at 
the high level of abstraction as, say, the cognitive 
level. Now interest has turned again to a deeper 
level of natural realization: the neural level which 
was already studied more than twenty years ago. 
In present days there is substantial hope to under- 
stand intelligent behaviour by deciphering the 
self-organization processes going on in networks 
of neurons. In the fifties McCulloch and Pitts [1] 
have modeled neurons as all-or-none units firing if 
its inputs exceed a certain threshold and otherwise 

being silent. These ideas were followed by the 
development of models of neural networks for 
associative memory and pattern recognition tasks 
[2-4]. Typical models are spinglass-like neural 
networks [5-10] which are in addition well suited 
for simulation on digital computers. 

Neurophysiological studies, however, have 
brought up the idea of frequency coding of signals 
in the nervous system [11,12]. This means that 
neurons are working in an analog fashion rather 
than a digital one at least in the frequency do- 
main. No wonder: The majority of environmental 
observables we can measure at macroscopic level, 
i.e. the level sensory neurons are receptive, are 
continuous-valued functions to which special neu- 
rons are optimally adapted. Thus it seems to be 
reasonable to study models which incorporate this 
aspect as well as simple dynamics known from 
models of 2-state neurons. 

Here we want to present a network model moti- 
vated by analog coding. The units we consider can 
achieve one from a finite set of states. Memory 
function is understood as being able to store and 
retrieve arbitrary collections of these states lumped 
together to state vectors. Being not binary and not 
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continuous in state space this model constitutes a 
sort of compromise between different require- 
ments. We study this network with respect to its 
pattern recognition abilities. 

Section 2 outlines the general ideas whereas 
section 3 gives the detailed model. Section 4 shows 
simulations of the network done on a serial com- 
puter. 

2. The general principles 

The most important aspect of spinglass-like 
models of neural networks designed to memorize 
patterns x is its action in a high-dimensional 
landscape E(x)  of a generalized energy-function. 
Stored patterns are local minima of this function 
whereas its attractor basins coincide with the val- 
leys surrounding these minima. 

Recalling dynamics can be described as an over- 
damped motion downhill in this high-dimensional 
landscape. Thereby, a starting pattern x changes 
its form as long as it is distinct from the pattern 
x" constituting the (presumably) nearest local 
minimum, x has recalled x ~ the same way x + 8x 
would have recalled x". 

Typically, this function is used as an auto- 
associative memory. But we want to remark here 
that it can be used for hetero-associative memory 
and even for pattern classification as well. One 
can see this as follows: Suppose your stored pat- 
terns x" are composed of two parts 

(y°) = , ( 1 )  
Z a 

then you can regard y"  as key or stimulus pattern 
and z" as a corresponding response pattern. Now 
you constrain retrieval dynamics to the z-part, i.e. 
you fix y to, say, yV (or yV+ By), then (after a 
while) dynamics should give you z v 

In other words, dynamics has to look for a 
global minimum of the energy landscape under 
the cunstraints given by fixed y. Since a simple 

gradient search will not do the job, a suitable 
dynamics has to be chosen (see below). Of course. 
z v could be the same for more than one stored 
pattern 

Z~'-. Z/I-. ga. 

Thus, we have a data compression or classification 
in that - constraining dynamics to the z-part - one 
z may result from a set of y, y ~ { y", y/i, yY . . . .  } ,  

whereas another z' may result from a different set 
of patterns y ~ { yS, y~,... }. 

If, on the other hand, dynamics is constrained 
to the y-part of patterns under a given z = z, it 
depends on the starting state in the y-domain 
which of the previously learned patterns will be 
chosen. More specifically, the system will relax to 
that example y of the corresponding class which 
had the maximum overlap just from the begin- 
ning, since only motions downhill in the energy 
landscape are allowed by the dynamics. If two 
examples have the same initial overlap or an unbi- 
ased null vector y = 0 is the starting state, a 
random fluctuation of the dynamics will decide. 
The entire operation may be termed "'inverse" 
classification giving an example of the class z. 

In addition, if we could relax the restriction of a 
binary valued state space, we would have still 
more possibilities. These include classification of 
patterns according to intrinsic criteria like e.g. the 
most significant feature different in all stored pat- 
terns or according to criteria totally at will. In 
general this will require a projection to a subspace 
which is not binary. 

To summarize, what has to be done is to con- 
strain dynamics to an arbitrary subspace of the 
state space of patterns where things additionally 
are going on faster. 

Since spinglass-like models are good examples 
of associative memory based on a dynamics, it is 
near at hand to try to generalize the underlying 
principles in such a way as to ensure storage. 
retrieval and classification abilities of the model in 
a denser state-space. 
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To give an overview we list here what we keep 
from these models: 
- The overdamped motion in a high-dimensional 

Lyapunov-function landscape downhill to local 
minima. 

- T h e  mechanism of storing information by 
changing synaptic weights (connections), i.e. by 
modifying the interaction between processing 
elements, with a linear learning rule. 
Compared to spinglass-like models we change: 

- The state space density: Each dimension (com- 
ponent of x) ranges from - m , . . . ,  + m in inte- 
ger steps, in our case m - 5. 

- The connect: ,a n,.trix J~j comprise addition- 
ally self....,upling terms J.. 

- The dynamics will be driven by fluctuations 
leading to local equilibrium states. 

- T h e  kinds of motion: Any realizable con- 
strained dynamics on subspaces will be allowed. 

- New non-linearities are introduced and the pro- 
cessing of patterns needs non-local operations 
(e.g. computation of absolute values of the state 
variables over all components). 
Let us make some comments: Clearly, noise in 

J~j will destroy our memory capabilities at a criti- 
cal value a c = p J N .  Thus, the used learning rule 
forces us to store orthogonal prototype patterns or 
at least weakly correlated ones with randomly 
chosen components. Although this is not a real 
world problem, the simplest learning rule for pat- 
terns ~'~ (Hebb-like) 

J,j = E ~  (2) 
~t 

realizes a constraint satisfaction network (cf. [13]). 
It uses noise to proceed on the way downhill. One 
could conjecture that the brain works similarly: it 
presumably uses noise in a very efficient way 
rather than struggling against it. 

Note that the Boltzmann-machine algorithm [13] 
was designed following the same line of thoughts. 
The difference may be that it was also inspired by 
statistical mechanics whereas our approach tends 
to be more like natural evolution proceeding by 
some kind of mutation and selection. We suppose 
that evolution-like algorithms can be applied very 
efficiently to network dynamics as well as to learn- 
ing dynamics. This is, however, beyond the scope 
of the present paper and will be subject to another 
contribution [14]. 

The necessary change with respect to spin mod- 
els was the introduction of absolute value or norm 
of a state. In contrast to binary models for pat- 
terns from { -  1, + 1 }, the norm here is a non- 
constant variable characterizing each state vector 
together with its angles (corresponding to the 
overlaps) to the stored patterns. The former en- 
ergy function 

E (  x )  = - ~"~x ,J i jx  j (3) 
iy 

has to be modified to compensate for the effects of 
Jo on the length of a state vector. A new energy 
function can be written down as 

1 1 
E ( x )  = - ~x,J~JXJlxl IJxl' (4) 

ij 

- which means just the superposition of the dyadic 
products of prototype patterns- was applied here 
for the sake of clarity. Another choice for a learn- 
ing rule-though not considered in the present 
pape r - i s  a connection matrix including the 
Moore-Penrose pseudoinverse which amounts to 
a complete orthonormalization of prototype pat- 
terns. 

Fluctuation driven dynamics is chosen to study 
an alternative kind of motion in state space which 

where 

[x[ = ~/27,/x/~, (Sa) 

Computing E(x) means 
1. mapping x by J into the subspace L~ spanned 

by ~ ,  a = 1,..., p; 
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Binary patterns (orthogonol to stored ones) n-ary patterns (orthogonol to stored ones) 
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Fig, 1. Dynamical succession of two states: (a) With 2-state neurons. After projecting arbitrary binary patterns x to the subspace L~ 
of known patterns a non-linear threshold operation O takes place to restore the binary structure of pattern vectors. In general one 
can observe convergence toward the axis of stored patterns. (b) With multistate units. After projection and normalization re_,ulting in 
an energy proportional to the angle a a new x is looked for which has smaller a. This pattern vector is nearer to the L~-space. Search 
ends in the direct neighborhood of the axis of stored n-ary patterns. 

2. comparison of the result J x  with the original x 
on the common basis of normalized vectors. 

As will be shown below, E has indeed minima if 
x is one of the stored patterns x a. 

By Ixl and IJxl we have introduced new non- 
linearities to be able to compare x and J x .  The 
situation can be illustrated according to fig. 1. 
Whereas in the binary model a simple threshold 
operation 0 will restore the constant length of 
pattern vectors, a more complicated operation N 
of normalization is needed in non-binary models. 
This ensures an energy function proportional to 
cos a, a being the angle between a presented pat- 
tern and its mapping to the subspace of stored 
patterns. 

The idea of introducing new non-linearities can 
be generalized and leads to a new class of dynami- 
cal models for pattern recognition [15]. Normal- 
izing factors such as Ixl constitute non-local 

non-linearities in the sense that the result of the 
. Ix (mapping)operation at every site i firstly has 
to be (quadratically) summed over all sites i and 
then secondly has to be propagated back to every 
unit. One mechanism to perform this operation 
would be a second net connecting all processing 
elements which runs alternatively and proliferates 
every unit with the result of this normalization. 

3. Th_e de~,.'!ed model 

Now it is necessary to give a more detailed 
description of the behaviour of the proposed algo- 
rithm. Suppose we want to store patterns x'L 

a = l , . . . , p ,  x i ~ { - 5 , - 4  . . . . .  + 4 , + 5 } ,  i =  
1 , . . . ,  N, in the network. After subtraction of the 
average vector m, m = (1/p)~,ax ~ the new x ~' are 
normalized ~j" = x ~ ' / I x " ' l  and superimposed to 
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form the matrix where 

1 J , j -  ~ Z~ 'C .  (6) 

This matrix determines the energy landscape of 
eq. (4). In [16] we have shown the behaviour of the 
system for orthogonai patterns ~". Here we gener- 
alize the treatment to non-orthogonal patterns by 
introducing correlations A °~ between prototype 
patterns ~*, ~ .  We show that 
i) E (x )  has local minima for xllx ~, 
fi) the x" are attractor states for its neighborhood. 

i) Any pattern x can be written as 

x = aax#  + v#, (7) 

ha = j r # ,  and 

k# ffi a#1x# I ~* a °#. 
IX 

Now E reads 

E.~ 
x x ~  
Ixl IxjI 

- + :)(a:' + h' + :) 

1 
x ~,'xj'"--'rlxl ~ - 1, 

which is minimal for 

(11) 

(~3) 

where x # corresponds to one of the stored pat- 
terns ~#,/~ - 1, . . . ,  p and a# is the scalar product 
x a .  x. Thus, it is understood as composed of a 
known pattern plus some noise vector which is 
composed of contributions from the other known 
patterns and pure noise: 

v~ = E ~ x ~  + n. (8) 

1. v #ffiO. h #ffiO. 

2. v Ij = i~  xVav e L~, h # = v # + 1  a 
v,~ B 

with l # = ~ ~*,~"a~. 

3. v a eigenvector of J ,  h a = h v  a. 

(14a) 

(14b) 

(14c) 

By application of J,j on x, x is mapped into the 
subspace L~ of all stored patterns. Note, however, 
that J,j is not a projection operator in the usual 
sense, since its components ~'~ are not orthogonal. 
This may be cured by introduction of adjoint 
patterns which are appropriately defined. Let the 
deviation of ~* from orthogonality be formulated 
as  

P . 

The probabilities of solutions 2 and 3 are small 
and could even be reduced by a small amount of 
noise added to x. Note that k # is constant as long 
as we are in the basin of x # and hence does not 
contribute differently to variations of x. 

ii) Let x, x '  be two patterns which fulfill the 
following additional conditions: 

x - x  ~ + v  v IvVl<lv~l ) 

x' = x ~ + v 'v V e {1 . . . . .  P } Iv'~l < Iv'al (15) 

Then the mapped state vector xa can be written as v~= v i, i ¢ k ,  Iv'kl > Ivkl .  

x j  - J x  = a , x  a + h a + k a, (10) (Note that we set for simplic j a v  = 1.) Then it is 
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straightforward to show that 

E =  
1 1 

I ,,i 2(x,  + + + 
I 

(16a) 

stored pattern x ~. This search can be done by a 
variety of algorithms one of which (driven by 
fluctuations) we have chosen for the simulations 
below. 

1 1 
Ix'l Ix.fl 

- -  + + + k f ) .  
i 

(16b) 

With 

, 1  1 ( x  
x .  x T ~  Ixq -- 1 - ½ Ixl 

we get 

x ' )  2 

Ix'l 

u, , I  < u,'a I . 

Now v ' ~ :  v ~ + By, k ' ~ :  h ~ + J~v and 

(17) 

I t ,~ - k ' l  < I v '  - k~s + e l ,  

c = 8 v -  J S v .  

(18a) 

(18b) 

This is the case since c ~t v - h  after triangle in- 
equality. Therefore, search for an x' near x which 
has a smaller energy leads nearer and nearer to a 

4. Simulations 

Before we demonstrate the network operation a 
few words about the chosen dynamics. 

The kind of random dynamics we apply could 
be characterized as an evolutionary optimization 
strategy [17, 18] where optimization means search 
for the state with minimal energy. To be more 
concrete: It is a (1 + 1) strategy of the class of 
(/~+ h)strategies (p: # of parents, h: # of 
descendants). This strategy is simple and well 
suited for problems in finite sets such as that 
represented by x i ~ { - 5 , - 4 , . . . ,  + 5}. 

A descendant state x' is generated from the 
parent state x by a random flip in one component 
according to the possibilities. The energy E(x')  is 
calculated. On this basis it is decided whether x or 
x' is the new parent state. 

We now want to demonstrate the following two 
functions of the network: Autoassociative mem- 
ory. in the following mode 1, and pattern classifi- 
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cation, hereafter mode 2. A more detailed descrip- 
tion is given in [16]. We use random patterns, 
since the learning algorithm (2), (6) is very sensi- 
ble to correlations-as is well known from other 
work [5-10]. 

Fig. 2 illustrates mode 1 by an example. The 
dynamical process changes x as long as E(x)  is 
non-minimal. This, however, depends on step size 
of the flips which was fixed to , ~ x -  :t: 1. Fig. 3 
shows the decrease in state energy and the corre- 
sponding increase in overlap of x to the nearest 
stored pattern. These curves are well described by 
f ( T )  -- e - ~ r  respectively, 1 - e -#r laws. Al- 
though it could not be applied here, a gradient 
search strategy would exhibit a similar behaviour. 
Since Z~x is fixed, the convergence velocity scales 
roughly with the number of dimensions of pat- 
terns. As in [19] convergence is said to be reached 
if the overlap with a stored pattern exceeds 97%. 
Mode 2 of network operation is shown in fig. 4 
where components cl + 1 . . .  c2 are dedicated to 
class description and components c0 . . . c l  are 
those of different sample patterns. The gain in 
convergence velocity is considerable, cf. fig. 5. 

The capacity of the network can be examined 
by presenting patterns including more and more 
noise and observing the recognition capability of 
the net. As as consequence of the Hebb-like learn- 
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Fig. 3. (a) Energy decrease accompanying the convergence 
process of fig. 2. (b) Corresponding increase in overlap to 
pattern 2. After 2500 steps convergence is reached. The expo- 
nential decay of  perturbations is evident. 
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Fig. 4. Pattern classification. Same conditions as in fig. 2: N = 100, p = 5. Components c o = 1 . . .  c t = 90 are different for every 
random pattern, whereas compot~ents 91 . . .  100 represent classes and are the same for 3 resp. 2 patterns. In the example, a given 
pattern 3, the class of which is unknown, can be processed very, fast to converge to class 1. 
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Fig. 5. Convergence in energy i~ reached very fast (after 130 
trials) due to the fact that dynamics was constrained seriously 
to components 91. . .  100. 

ing rule a kind of phase transition should be 
expected when a = p/N exceeds a certain value. 
Some results can be seen in Figs. 6(a,b) and 7 
respectively. 

Fig. 6(a) demonstrates the behaviour of a sam- 
ple net where different degrees of noise are added 
to prototype patterns. The amount of noise is 
measured by the Euclidean distance from the orig- 
inal prototype. Although quite fluctuating, a dif- 
ferent choice for a results in a more or less secure 
retrieval characteristics under the perturbation 
conditions shown. Fig. 6(b) gives a more refined 
sketch for a = 0.05 with better statistics. One can 
see a continuous degradation of the retrieval relia- 
bility. 

Finally, in fig. 7 the influence of a on the 
retrieval reliability is shown explicitly. One can see 
a sigmoid-like decrease of retrieval with growing 
a. The smooth shape of this curve should be 
contrasted with the sharp failing-off found in 
Hopfields net [5]. The reason may be that the 
transition is washed out by choosing a n  Euclidean 
distance measure. 

5. Conclusion 

An example of a new class of associative mem- 
ory models was presented here, equipped with the 
simplest possible learning rule of Hebb. Evolu- 
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Fig. 6. (a) 25 perturbed patterns are processed for Euclidean 
distances between 1 and 40. The percentage of correct retrieval 
(overlap m, after convergence m c > 0.97) is shown for three 
differer~ a =p/N. (b) 100 p e r t u r b a t i o n s  of  pa t t e rn  1 with 
Euclidean distance between I and 40 are processed in a net 
w i t h  p -- 5, N --- 100, a - 0.05. U p  to distances around 7 

retrieval is sure (m c > 0.97). 

tionary dynamics was applied since it is well suited 
for constrained dynamics like this. Consequently, 
a natural parallelization of the algorithm would be 
to search on different routes simultaneously. 

It should, however, be emphasized that only 
v e ~  simp!s evolution strategies will do the desired 
job. In general, more complicated evolution strate- 
gies will tend to the global minimum of the Lya- 
punov function of E(x) [14], whereas memory 
content is stored in local minima of E. The advan- 
tages of further constraining dynamics by using 
reliable knowledge on parts of the subject were 
exemplified. At least the possibility of using noise 
with profit in memory models was indicated. 
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Fig, 7. Dependence of the retrieval on a -  p/N. Every cross 
corresponds to a different a and was obtained by averaging 
over 5 runs of 100 random perturbations each of stored pattern 
1 with a constant Euclidean distance of 10. 

Examples of application of the kind of network 
we considered here are given by image or sound 
processing. In general, all physical data coming 
into a system in an analog fashion could be 
mapped more efficiently to a network of multi- 
stable units than to one consisting of bistable 
units. 

We have seen the necessity to introduce new 
non-linearities due to the non-invariance of the 
pattern vector length in models using multistable 
units. Note that nature provides us with an im- 
mense richness of different kinds of non-lineari- 
ties. There is no doubt that the diversity in natural 
phenomena is closely related to this arbitrariness. 
It may well be that intelligent behaviour as the 
adaptability to different environmental conditions 
is only possible in systems with a high degree of 
¢,-o,~a,.,,...,....~..,. to  choose  :-"~-'-'.,,~,,,,~l non- l inear i t i es  for  
proper representation of the environment. 
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