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Abstract. In this contribution we investigate the influence of differ-
ent variation effects on the growth of code. A mutation-based variant of
linear GP is applied that operates with minimum structural step sizes.
Results show that neutral variations are a direct cause for (and not only
a result of) the emergence and the growth of intron code. The influence
of non-neutral variations has been found to be considerably smaller. Neu-
tral variations turned out to be beneficial by solving two classification
problems more successfully.

1 Introduction

One characteristic of genetic programming (GP) is that variable-length indi-
viduals grow in size. To a certain extent this growth is necessary to direct the
evolutionary search into regions of the search space where sufficiently complex
solutions with a high fitness are found. It is not recommended, in general, to ini-
tiate the evolutionary algorithm already with programs of a very large or even
maximum size.

However, by the influence of variation operators and other reasons discussed
in this paper genetic programs may grow too fast and too large such that the
minimum size of programs required to solve the problem is exceeded signifi-
cantly. As a result, finding a solution may become more difficult. This negative
effect of code growth, i.e., that programs emerge larger than necessary with-
out corresponding fitness improvements became known as the bloat effect. Code
growth has been widely investigated in the GP literature [9,5,12,10,13,11,14,2]
(see below). In general, a high complexity of GP programs causes an increase of
evaluation time and reduces the flexibility of evolutionary manipulations. More-
over, it is argued to lead to a worse generalization performance.

Most evolutionary computation (EC) approaches model the Darwinian pro-
cess of natural selection and adaptation. Contrary to this theory, Kimura’s [8]
neutral theory considers the random genetic drift of neutral mutations as the
main force of evolution. In EC such variations are argued to explore flat regions
of the fitness landscape more widely while non-neutral variations exploit regions
with (positive or negative) gradient information. Banzhaf [1] first emphasized
the relevance of neutral variations in genetic programming. Yu and Miller [16]
demonstrated that neutral variations are advantageous after extra neutral code
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has been explicitly included into a graph representation of programs. Better per-
formance was found for a Boolean problem with neutral mutations than without.

It is well-known, that a high proportion of neutral code (also referred to as in-
trons) in genetic programs may increase the probability for variations to become
neutral. But which type of variation creates the intron code in the first place?
In our linear GP approach we apply minimum mutations. We demonstrate ex-
perimentally that neutral variations almost exclusively represent a direct cause
for the growth of intron code. The influence of different variation effects on code
growth and on prediction quality is verified for two approximation and two clas-
sification problems. Our observations differ from results reported for crossover-
based GP which identify destructive variations as a direct [13] or indirect [12]
cause of code growth.

2 Basics on Linear GP

In linear genetic programming (LGP) [3,6] the program representation consists
of variable-length sequences of instructions from an imperative programming
language. Operations manipulate variables (registers) and constants and assign
the result to a destination register, e.g., ri := rj + 1. Single operations may be
skipped by preceding conditional branches, e.g., if(rj > rk).

The imperative program code is divided into effective and non-effective in-
structions. Such a separation of instructions already results from the linear pro-
gram structure – prior to execution – and can be computed efficiently in lin-
ear runtime O(n) where n is the program length [6]. Only the effective code
may influence program behavior. Non-effective instructions manipulate registers
not impacting the program output at the current position and are, thus, not
connected to the data flow generated by effective instructions. Non-effective in-
structions are also referred to as structural introns for a better distinction from
semantic introns that may still occur within the (structurally) effective part of
code [6]. For instance, all instructions preceding r0 := r1 −r1 that only influence
the content of register r1 are semantic introns. Note that structural introns do
not exist in tree-based GP, because in a tree structure, by definition, all program
components are connected to the root. Hence, intron code in tree programs is
semantic.

The length of a linear genetic program is measured as the number of in-
structions it holds. In linear GP the absolute program length and the effective
program length are discerned. While the first simply includes all instructions of
a program, the latter counts effective instructions only.

2.1 Variation Effects

Basically, two different effects of a variation operator can be discerned in EC.
These are its effect on the genotype representation and its effect on the pheno-
type (fitness). In the current study, we focus on the proportion of constructive,
destructive, and neutral operations per generation as semantic measurements
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of variation effects. If we assume that a better fitness always means a smaller
fitness value the following definitions are valid: A variation is constructive if the
difference in fitness between the parent individual Fp and the its offspring Fo is
positive, i.e., Fp − Fo > 0. In case of a negative difference we refer to a destruc-
tive variation, i.e., Fp − Fo < 0. Finally, a genetic operation is neutral if it does
not change the fitness, i.e., Fp = Fo.

On the structural level we measure the proportion of effective and non-
effective variations. According to the distinction between effective code and
non-effective code, as defined above, let an effective variation denote a genetic
operation that modifies the effective code of a linear genetic program. Other-
wise, a variation is called non-effective. Note that there is no change of program
behavior (fitness) guaranteed by such (structurally) effective variations.

The notion of variation step size refers to the amount of structural change
between parent and offspring that is induced by the variation operator. In this
paper we apply a pure mutation-based variant of linear GP that induces mini-
mum variation steps on the imperative program structure. We distinguish macro-
mutations from micro-mutations. Programs grow by macro-mutations which in-
clude insertions or deletions of single random instructions. Micro-mutations ex-
change the smallest program components that comprise a single operator, a
register or a constant.

3 Code Growth in GP

Several theories have been proposed to explain the phenomenon of code bloat
in genetic programming. Basically, three different causes of code growth have
been distinguished up to now that do not contradict each other while each be-
ing capable of causing code growth for itself. In general, the minimally required
complexity of a solution may be exceeded by incorporating intron code (may be
removed without changing the program behavior) or by mathematically equiva-
lent extensions. All causes require the existence of fitness information, i.e., may
not hold on (completely) flat fitness landscapes. The (effective) program size
develops depending on how strongly it is correlated to the fitness. In this way,
fitness may be regarded as a necessary precondition for code growth.

One theory (protection theory) [12,5,2,14] argues that code growth occurs as a
protection against the destructive effects of crossover. The destructive influence
on the program structure strongly depends on the absolute variation step size.
If the maximum amount of code that may be exchanged in one variation step
is large, e.g., restricted only by the program size, evolution may reduce the
strength of variation on the effective code by developing a higher proportion
of introns within the replaced subprograms. This phenomenon may occur when
using crossover as well as subprogram mutations.

Another theory (drift theory) [10,11] claims that code growth results from
the structure of the search space or, more precisely, from the distribution of
semantically identical solutions. For many problems more larger program solu-
tions exist with a certain fitness than smaller ones. Therefore, larger solutions
are created and selected for a higher probability.
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Finally, the third theory (bias theory) [15,11,14] of code growth is based on
the hypothesis of a removal bias in tree-based GP. The potential destruction
caused by removing a subtree depends on the subtree size. The effect of the
replacing subtree on the fitness, instead, is independent from its size. As a results,
the growing offspring from which the smaller subtree is removed (and in which
the longer is inserted) will survive for a higher probability than the shrinking
offspring.

Soule et al. [13] demonstrated for tree-based GP that significantly less code
growth (especially of introns) emerges if only those offsprings are incorporated
into the population that perform better than their parents. The authors hold the
missing destructive crossover results responsible for this behavior. While a direct
influence of destructive variations on the growth of (intron) code is not doubted
here, it has to be noted that not only destructive but also neutral variations are
excluded from evolutionary progress in [13]. Moreover, the proportion of (the
remaining) constructive variations is usually rather low in GP.

If we want to clearly identify a reason for code growth it is important to
design the experiment in such a way that the other mechanisms (if existent) are
disabled as much as possible. In linear GP, the protection theory may not be
valid if the step size of the variation operator is reduced to a minimum and code
is not exchanged, but only added or removed. Both may be achieved easily for
the imperative program structure by single instruction mutation as described
above.

With a mutation step size of one instruction only, intron instructions cannot
be inserted or deleted directly along with a non-neutral variation. In particular,
this allows destructive variations to be analyzed with only a minimum influence
on the size of intron code. Structural introns may only emerge with such opera-
tions by deactivation of other depending instructions (apart from the mutation
point). The same is true for the creation of introns on the semantic level. In
general, linear GP allows structural variation steps to be permanently minimum
at each position of the genom. On reason for this is that the data flow in lin-
ear genetic programs is graph-based [4]. Due to stronger constraints of the tree
representation, small variation step sizes are especially difficult in upper tree
regions. If single tree nodes are tried to be deleted only one of its subtrees may
be reconnected while the others get lost.

The influence of the second cause is reduced, too, because the difference be-
tween parent and offspring is only one instruction. At least, using such minimum
variation steps exclusively will make the evolutionary process drift less quickly
towards more complex regions of the search space. In general, the maximum
step size of a variation operator decides on the potential maximum speed of
code growth but does not represent a explicit force (if the variation operator is
not length-biased).

4 Conditional Variation

We use a steady state evolutionary algorithm that applies tournament selec-
tion with a minimum of two participants per tournament. Variations happen on
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copies of the parent individuals (tournament winners) that replace the tourna-
ment losers. The integration of newly created individuals into the population is
restricted so that offsprings are accepted only if they result from certain types
of variation (see Section 2.1). Such a conditional acceptance of a variation im-
plies automatically that the reproduction of parents is omitted, too, since the
population remains unchanged.

5 Benchmark Problems

The different experiments documented in this contribution are conducted with
four benchmark problems – including two symbolic regressions and two classifi-
cation tasks. The first problem is represented by the two-dimensional mexican
hat function as given by Equation 1. The function constitutes a surface in three-
dimensional space that resembles a mexican hat.

fmexicanhat(x, y) =
(
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The second regression problem, called distance, requires the Euclidean dis-
tance between two points (vectors) x and y in n-dimensional space to be com-
puted by the genetic programs (see Equation 2). The higher the dimension is
chosen (n = 3 here) the more difficult the problem becomes.

fdistance(x1, y1, .., yn, yn) =
√

(x1 − y1)2 + .. + (xn − yn)2 (2)

The third problem is the well-known spiral classification [9] where two inter-
wined spirals have to be distinguished in two-dimensional data space. Finally,
the three chains problem concatenates three rings of points that each represent a
different data class. Actually, one “ring” denotes a circle of 100 points in three-
dimensional space whose positions are slightly noisy. The rings approach each
other at five regions without leading to intersection. The problem difficulty may
be scaled up or down depending on both the angle of the rings to one another
and on the number of rings.

6 Experimental Setup

Table 1 summarizes attributes of the data sets that have been created for each
test problem. Furthermore, problem-specific configurations of our linear GP sys-
tem are given that comprise the compositions of the function set, the fitness
function, and the number of registers.

It is important for the performance of linear GP to provide enough registers
for calculation, especially if the input dimension is low. Thus, the total number
of available registers – including the minimum number that is required for the
input data – is an important parameter. In general, the number of registers
decides on the number of program paths that can be calculated in parallel. If it
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Table 1. Problem-specific parameter settings.

Problem mexican hat distance spiral three chains
Problem type Regression Regression Classification Classification
#Inputs 2 6 2 3
Input range [−4.0, 4.0] [0, 1] [−2π, 2π] [0, 5]
Output range [−1, 1] [0, 1] {0, 1} {0, 1, 2}
#Output classes – – 2 3
#Registers 6 12 6 6
#Fitness cases 400 300 194 300
Fitness function SSE SSE CE CE
Instruction set {xy} {√

x, x2} {sin, cos, if >} {xy, if >}
∪ {+, −, ×, /}

Table 2. General parameter settings.

Parameter Setting
Number of generations 1000
Population size 1000
Tournament size 2
Maximum program length 200

Parameter Setting
Initial program lengths 5-15
Macro-mutations 75%
Micro-mutations 25%
Set of constants {1, .., 9}

is not sufficient there may be too many conflicts by overwriting register content
within programs.

For the approximation problems the fitness is defined as the continuous sum
of square errors (SSE) between the predicted outputs and the example outputs.
For the two classification tasks specified in Table 1 the fitness function is dis-
crete and equals the classification error (CE) here, i.e., the number of wrongly
classified inputs.

The spiral problem applies an interval classification method, i.e., if the output
is smaller than 0.5 it is interpreted as class 0, otherwise it is class 1. For the
three chains problem we use an error classification method, instead. That is the
distance between the problem output and one of the given output classes (0, 1, or
2) must be smaller than 0.5 to be accepted as correct. General configurations of
our linear GP system are summarized in Table 2 and are valid for all experiments
and test problems.

7 Experimental Results

The experiments documented in Tables 3 to 6 investigate the influence of dif-
ferent variation effects on both, the complexity of (effective) programs and the
prediction performance. The average prediction error is calculated by the best
solutions of 100 independent runs together with the statistical standard error.
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Table 3. Mexican hat problem: Conditional acceptance of mutation effects and condi-
tional reproduction. Average results over 100 runs.

Experiment ID SSE Length Variations (%)
mean std.err. abs. eff. % constr. neutral noneff.

std 3.5 0.5 140 60 43 0.8 54 52
nodestr 3.3 0.5 139 61 44 0.2 53 52
noneutr 1.6 0.1 38 28 72 7.5 37 34
nononeff 1.5 0.1 41 30 74 4.8 41 32

Table 4. Distance problem: Conditional acceptance of mutation effects and conditional
reproduction. Average results over 100 runs.

Experiment ID SSE Length Variations (%)
mean std.err. abs. eff. % constr. neutral noneff.

std 6.5 0.3 78 32 41 0.5 63 63
nodestr 8.0 0.3 78 32 41 0.1 64 63
noneutr 6.0 0.3 24 15 63 6.3 48 47
nononeff 6.5 0.2 25 16 62 4.7 52 48

The absolute and the effective program length are averaged over all programs
that are created during runs. (Figure 1 shows exemplarily the generational de-
velopment of the average program length in the population.) Due to the small
step size of mutations used here, the average length of best individuals develops
almost identically (not documented). The proportion of effective code is given in
percent while the remaining proportion comprises the structural introns. Addi-
tionally, we calculate the average proportions of constructive, neutral and non-
effective variations among all variations during a run (see Section 2.1). The rates
of destructive and effective variations are obvious then.

In the no∗ experiments of Tables 3 to 6 offsprings are not inserted into the
population if they result from a certain type of variation. Additionally, the re-
production of the parent individuals is skipped. Simply put, the variation is
canceled completely without affecting the state of the population. Nevertheless,
with all configurations the same number of variations (and evaluations) happens,
i.e., the same number of new individuals (1000) defines a generation. Thus, un-
accepted variations are still included in the calculation of the prediction error,
the program lengths and the variation rates.

The standard mutation approach std is characterized by a balanced ratio of
neutral operations and non-neutral operations, on the one hand, and effective
operations and non-effective operations, on the other hand.

Destructive variations hardly contribute to the evolutionary progress here.
The average prediction error changes only slightly with both the two continuous
test problems, mexican hat and distance, and the two discrete test problems,
spiral and three chains, if offsprings from destructive variations are not accepted
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Table 5. Spiral problem: Conditional acceptance of mutation effects and conditional
reproduction. Average results over 100 runs.

Experiment ID CE Length Variations (%)
mean std.err. abs. eff. % constr. neutral noneff.

std 13.6 0.6 128 64 50 0.3 50 42
nodestr 12.4 0.5 117 64 55 0.02 46 39
noneutr 20.0 0.6 37 31 82 5.0 32 20
nononeff 13.1 0.5 69 62 89 1.5 32 13

Table 6. Three chains problem: Conditional acceptance of mutation effects and con-
ditional reproduction. Average results over 100 runs.

Experiment ID CE Length Variations (%)
mean std.err. abs. eff. % constr. neutral noneff.

std 15.5 0.6 132 57 43 0.2 62 49
nodestr 16.4 0.7 124 53 43 0.03 62 49
noneutr 24.6 0.8 34 28 82 5.3 38 20
nononeff 12.9 0.7 80 71 88 1.0 45 13

(nodestr). This is true even though about 50 percent of all variations are rejected
and even if the rate of constructive variations decreases significantly, especially
with the classification problems (in Tables 5 and 6). Hence, almost only neutral
variations are responsible for evolution here. Obviously, the probability for se-
lecting an individual, that performs worse than its parent, seems to be so low,
on average, that it hardly makes any difference if this individual is copied into
the population or not. Due to the low survival rate of these offsprings and due
to the small mutation step size (see below), destructive mutations almost do not
have any influence on code growth here.

The influence of neutral variations is in clear contrast to the influence of
destructive variations. Obviously, the survival probability of offsprings is higher
after a neutral (or a constructive) variation. This facilitates both a continuous
further development of solutions and the growth of programs. An important
result is that both the absolute size and the effective size of programs are reduced
most if we skip neutral variations (noneutr).

Non-effective neutral variations, as defined in Section 2.1, create or modify
non-effective instructions, i.e., structural introns. Accordingly, we may assume
that mostly effective neutral variations are responsible for the emergence of se-
mantic introns – within the (structurally) effective part of program. Effective
neutral variations (and semantic introns) are harder to induce if the fitness func-
tion is continuous and, thus, occur less frequently. This is reflected here with the
two regression problems by similar rates of non-effective operations and neu-
tral operations. For the discrete classification problems, instead, the proportion
of neutral variations has been found significantly larger than the proportion of



294 Markus Brameier and Wolfgang Banzhaf

non-effective variations which means a higher rate of effective neutral variations.
Additionally, the frequency of neutral variations on the effective code depends
on the function set. Especially, branches create semantic introns easily while the
resulting larger effective code indirectly increases the probability for effective
(neutral) variations.

In the nononeff experiments non-effective variations are rejected, i.e., only
effective variations are accepted. This includes effective neutral variations in
contrast to the noneutr experiment. Semantic introns created by those variations
may be responsible for the larger effective code that occurs with both classifica-
tions in nononeff runs. With the two regressions the effective size is half-reduced
for both noneutr and nononeff because most neutral variations are non-effective
here.

We may conclude that neutral variations – in contrast to destructive varia-
tions – dominate code growth almost exclusively. Since mutation step sizes are
small, constructive variations may only play a minor role for code growth already
because of their low frequency. This is true even if the rate of constructions in-
creases (together with the rate of destructions) when not accepting the result of
neutral variations in the population (noneutr). One reason for this is the lower
rate of structural and semantic introns. Moreover, non-neutral variations may
hardly be responsible for an (unnecessarily) growth of code here because the
variation step size is minimum. Then intron code cannot be directly created by
such operations and all changes of a program are exposed to fitness selection.

As noted in Section 3, the possibility to induce small structural mutations
at each position of the linear representation is important for our results. Indi-
rect creation of intron instruction by deactivations seems to play a minor role
only. Note that due to changing register dependencies non-effective (effective)
instructions may be reactivated (deactivated) in a linear genetic program above
the mutated instruction. Besides, an increasing robustness of the effective code
lets deactivation of instructions occur less frequently in the course of a run [7].

When step sizes are larger, i.e., more than one instruction may be inserted
per variation, as this occurs with crossover, programs may grow faster and by a
smaller total number of variations. In particular, introns may be directly inserted
by variations, too, that are not neutral as a whole.

Concerning the prediction quality the noneutr experiment has a small positive
or no effect with the two approximation problems but a clear negative effect with
the two classification problems. Contrary to this, the performance never drops in
the nononeff experiment (compared to the baseline result). Consequently, effec-
tive neutral variations may be supposed to be more relevant than non-effective
neutral variations, in general. This is not obvious, because all neutral changes
may be reactivated later in (non-neutral) variations.

We may not automatically conclude here that neutral variations are more
essential for solving classifications only because those problems are discrete. It
has to be noted, that a better performance may also result from the fact that
programs grow larger by neutral variations. Depending on the problem definition,
the configuration of the instruction set, and the observed number of generations,



Neutral Variations Cause Bloat in Linear GP 295

 0

 50

 100

 150

 200

 0  200  400  600  800  1000

P
ro

g
ra

m
 L

e
n

g
th

Generation

std
nodestr
noneutr

nononeff

 0

 50

 100

 150

 200

 0  200  400  600  800  1000

P
ro

g
ra

m
 L

e
n

g
th

Generation

std
nodestr
noneutr

nononeff

Fig. 1. Development of absolute program length for distance (left) and three chains
(right) (similar for mexican hat and spiral). Code growth significantly reduced without
neutral variation effects. Average figures over 100 runs.

the optimum speed of code growth may be quite different. By making use of
branches, that allow many special cases to be considered in a program, both
classification problems profit less from a lower complexity of solutions than the
two symbolic regressions.

8 Conclusion

We have analyzed the influence of different variation effects on the development
of program size for a mutation-based LGP approach. In all test cases neutral
variations have been identified as a major reason for code growth. Almost no
bloat effect occurred if (1) neutral variations are not accepted and (2) the vari-
ation step size is reduced to a minimum. Especially, the linear (imperative)
representation of programs allows structural variation steps to be constantly
small.
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