
More on Computational Effort Statistics
for Genetic Programming

Jens Niehaus and Wolfgang Banzhaf

System Analysis
Computer Science Department

University of Dortmund
D-44221 Dortmund, Germany

{jens.niehaus,wolfgang.banzhaf}@cs.uni-dortmund.de

Abstract. In this contribution we take a look at the computational ef-
fort statistics as described by Koza. We transfer the notion from gener-
ational genetic programming to tournament-selection (steady-state) GP
and show why, in both cases, the measured value of the effort often
differs from its theoretical counterpart. It is discussed how systematic
estimation errors are introduced by a low number of experiments. Two
reasons examined are the number of unsuccessful experiments and the
variation in the number of fitness evaluations necessary to find a solution
among the successful experiments.

1 Introduction

Although more and more work is done examining the theory of genetic pro-
gramming (GP) most of the publications use an empirical approach to rate new
findings and modifications of traditional GP. For comparison purposes different
kinds of statistics are needed. One of those used traditionally is the computa-
tional effort statistics as presented in [4]. Lately, however, there were several
publications which took a closer look at this measure [3,2,5] and came up with
several problems regarding the accuracy of the empirically measured values. In
this contribution we show how computational effort statistics can be used in
conjunction with steady-state algorithms instead of generational GP (section 3).
With such an approach it is possible to reduce the difference between a theoret-
ical effort value and the measured one. We show further that other inaccuracies
are still remaining. They relate to the number of unsuccessful experiments (sec-
tion 5) and large differences in the number of fitness evaluations needed over
several experiments (section 6).

2 Measurement and Calculation
of the Computational Effort

In [4] Koza describes a method to compare the results of different evolutionary
methods, e.g. different modifications of GP. The so called computational effort

C. Ryan et al. (Eds.): EuroGP 2003, LNCS 2610, pp. 164–172, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

More on Computational Effort Statistics for Genetic Programming 165

is calculated as the number of fitness evaluations needed to find a solution of a
problem with a probability of success z of at least z = 99%.

The number of fitness evaluations GP needs to solve a problem can differ a lot.
Some experiments might find a solution very fast while others need many more
fitness evaluations – still others won’t find a solution at all in the given amount of
time / evaluations. Calculating the computational effort for a problem is based
on empirical data. We have to use relative frequencies instead of probabilities for
finding the solution after a certain number of fitness evaluations. For calculating
the computational effort I(M, z) Koza defines the following equation:

I(M, z) = min
i

Mi

⌈
ln (1 − z)

ln (1 − P (M, i))

⌉
(1)

In this formula M stands for the number of individuals in the population and i is
the number of generations. Thus Mi represents the number of fitness evaluations
calculated in one experiment. When i generations have passed without a solution
found the run has to be restarted with a different initial population. The value
P (M, i) represents the estimated probability for finding a solution within M × i
fitness evaluations and is calculated using the results of a certain number of
experiments for the examined problem. The value z represents the confidence
level of finding a solution and will be set to 0.99 throughout this work.

In [2] Christensen and Oppacher show that values calculated using equa-
tion (1) differ up to 25% from the theoretical computational effort. Among other
things they show the influence of the ceiling and minimum operators, which both
cause deviation of the results.

3 Computational Effort for Steady-State Algorithms

After a number of runs experiments with Koza’s generational GP-system the
probabilities P (M, i) are calculated as relative frequencies k/runs with k being
the number of runs in which a solution was found within the first i generations.
The values for P (M, i) are always calculated after M × i fitness evaluations.
Thus it has no influence whether the solution is always found near the beginning
of a certain generation or near the end1. This is comparable to calculating the
mean length of several lines in centimeters while each line is given in meters. The
bigger a population is the more inaccurate the values of P (M, i) become. Using
a steady-state approach (with tournament selection) [1] the relative frequencies
refer more precisely to a certain number of fitness evaluations. For the rest of this
paper we use the steady-state approach with the additional option to stop an
experiment after any fitness evaluation. In this way we can eliminate the ceiling
operator of equation (1) and concentrate on other problems regarding the use of
the computational effort statistics.

To calculate the number of required fitness evaluations we use the following
equation:

1 − (1 − P (eval))
effort

eval ≥ 0.99 (2)
1 Assuming the evaluations are executed sequentially.

166 Jens Niehaus and Wolfgang Banzhaf

The value effort represents the number of evaluations we are looking for. After
eval evaluations a run is stopped and a new independent one with a new pop-
ulation is started with the remaining number of fitness calculations. P (eval) is
the probability that a solution is found after at most eval evaluations. As this
probability is unknown we have to replace it with the estimates P̂ (eval) that
are based on empirical data collected from a number of experiments carried out
previously. More on the difference between P and P̂ can be found in [2].

Transformation of equation 2 leads to:

effort = min
eval

eval
ln 0.01

ln
(
1 − P̂ (eval)

) (3)

The differences to equation (1) are (i) the transition from generational to eva-
luation-based calculation and (ii) the loss of the ceiling operator.

4 Experimental Framework

In [2] some inaccuracies of the computational effort statistics were pointed out.
This section offers two more aspects that can lead to differences between the
calculated computational effort and the theoretical value. First, the influence of
the number of runs that do not find a solution is examined and second, we look
at the influence of the distribution of the number of fitness evaluations needed
to find a solution.

For a better illustration we use a group of hypothetical GP problems that will
not find a solution with a probability of Pfail

2. The number of fitness evaluations
needed to find a solution in the remaining runs follows a (100, 000, sd)-normal
distribution. As we are only interested in positive integer values for the number
of evaluations we use the floor operator and discard all negative values. The
assumption of a normal distribution does not hold for most of the problems GP
is used with, but even with this well known distribution problems appear that
have a large influence on the calculated computational effort.

To show the influence of varying values for Pfail and sd we chose

Pfail ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}

and
sd ∈ {1, 000, 2, 000, 5, 000, 10, 000, 11, 000, 20, 000, 30, 000} .

For each combination we calulated the theoretical computational effort using
equation (3) and the normal distibution’s density function:

P (eval) = (1 − Pfail)
1

sd
√

2π

∫ eval

0
exp

−(x − 100, 000)2

2sd2 dx (4)

The results are shown in Figure 1.
2 With solution we do not necessarily mean perfect solution. We just count the number

of runs that produce a solution that we can accept as good enough (see [5]).

More on Computational Effort Statistics for Genetic Programming 167

The lowest computational effort has the combination (Pfail = 0.2, sd = 1, 000)
with 295,701 evaluations, the biggest one belongs to (Pfail = 0.8, sd = 30, 000)
with 3,214,423 evaluations – ten times as many. The influence of Pfail is much
higher than the one of the standard derivation. Looking at equation (3) this is
quite obvious. Pfail directly influences the value of (1− P̂ (eval)). For values near
1 this has a large influence on the whole fraction, while a change in sd in most
cases only influences the linear term of eval. As an example we take a look at
all effort values with Pfail = 0.2. With changing values of sd (between 1,000 and
30,000), the number of evaluations eval at which the minimum occurs changes
from 103,041 to 153,192. At the same time, P̂ (eval) remains between 0.769 and
0.799 resulting in rather similar effort values.

5 Influence of Pfail on the Computational Effort

With Figure 1 it already becomes apparent that different values of Pfail can have
a large influence on the computational effort. This will result in problems when
the number of independent experiments is very small, for example 50.

A small number of experiments can lead to estimated P̂fail values differing
from the original value Pfail. In Figure 1 this is comparable with a shift of the
computational effort along the Pfail-axis.

For an empirical quantitative analysis of this behavior we used all hypo-
thetical problems with sd = 1, 000 and for each value of Pfail we created 500
experiments at random using the probability Pfail to decide whether an experi-
ment finds a solution or not and for all successful experiments we randomly chose
a number of evaluations needed to find the solution based on a (100, 000, sd)-
normal distribution. We used the floor operator to transform the values to inte-
gers and repeated an experiment if the picked number was negative3.

For each value of Pfail we calculated the empirical computational effort ̂effort
corresponding to these 500 experiments. On top of this, the ̂effort-calculation was
repeated 1,000 times with 500 different experiments. Executing 500 experiments
at random means that the proportion of unsuccessful experiments P̂fail differs
from the exact value Pfail.

The results of these experiments are presented in Table 1. The second column
contains the theoretical computational effort. The third column holds the mean
value of the 1,000 new ̂effort values each calculated with 500 experiments. The
percentage relative to the original effort value is also shown. The fourth column
contains the percentage of the smallest ̂effort value relative to the original effort,
the fifth column shows the highest.

As expected the mean of all new ̂effort values is similar to the theoretical
computational effort. On the other hand, the last two columns indicate that some

3 Calculating the computational effort with integers based on a normal distribution
and the floor -function gives slightly smaller values than expected theoretically. In
our examples these differences are always smaller than 0.001 percent and thus will
be ignored throughout this document.

168 Jens Niehaus and Wolfgang Banzhaf

0
10000

20000
30000

0.2

0.4

0.6

0.8
0

1

2

3

4
x 10

6

sdPfail

E
ffo

rt

Fig. 1. The computational effort for the 49 hypothetical optimization problems

Table 1. Executing 500 runs with a calculated empirical computational effort of ̂effort
and repeating this experiment a thousand times leads to a mean ̂effort near the theo-
retical value with a good chance of big deviation in single cases

Pfail effort
∑

̂effort /1, 000 min max
0.2 295,701 294,566 (99.6 %) 85.1 % 119.6 %
0.3 394,995 393,505 (99.6 %) 83.5 % 121.1 %
0.4 518,746 515,964 (99.5 %) 81.3 % 117.2 %
0.5 685,480 683,113 (99.7 %) 80.9 % 120.5 %
0.6 929,849 927,447 (99.7 %) 77.7 % 123.6 %
0.7 1,331,376 1,330,270 (99.9 %) 71.8 % 126.0 %
0.8 2,127,615 2,128,350 (100.0 %) 72.2 % 136.6 %

series of experiments lead to empirical computational efforts that underestimate
the true effort by 28% or overestimate it by up to 36% (both values for Pfail =
0.8). The higher Pfail, i.e. the more difficult a problem is, the larger a difference
effort − ̂effort may result.

When decreasing the number of experiments the result becomes even more
obvious. Instead of calculating an empirical computational effort ̂effort with 500
experiments we repeated the series with 200, 100 and 50 runs. Again, each of
those series was repeated 1,000 times. The results are presented in Figure 2.
The z-axis of the left diagram represents the differences of the percentage values
of the smallest and the highest ̂effort in relationship to the original effort. For
example, if the theoretical computational effort was 10,000 and the lowest and
highest ̂effort values of the 1,000 series with 500 experiments were 9,000 and
10500, respectively, the percentage values (columns four and five in table 1)
would be 90% and 105%. This would result in a difference of 105-90=15. Thus
the higher the z value is, the larger possible mistakes in the empirically calculated
computational effort might become.

More on Computational Effort Statistics for Genetic Programming 169

50100
200

500 0.2
0.4

0.6
0.8

0

100

200

300

400

500

Pfail

sd = 1000

Experiments

M
ax

 −
 M

in

50100
200

500 0.2
0.4

0.6
0.8

0

10

20

30

40

50

Pfail

sd = 1000

Experiments

S
ta

nd
ar

d
D

ev
ia

tio
n

Fig. 2. Deviations (in percent compared to effort) between the lowest and highest
̂effort value

Representing 1,000 new empirical computational effort values ̂effort as per-
centage values in correspondence to the original effort, the right diagram in
Figure 2 shows the standard derivations of these values.

For the series with 500 experiments the values of both diagrams are quite
low. This means that a number of 500 experiments will result in an empirically
calculated computational effort not too different from the theoretical value. The
smaller the number of experiments becomes, the larger a difference we see.

Using only 50 experiments and the parameter Pfail = 0.8 one of the test series
resulted in an empirical computational effort of 11,345,515, which is more than
500 percent of the theoretical value. Pfail = 0.8 corresponds to the fact that only
10 out of 50 runs should lead to a solution. In this special case only two of the 50
runs solved the problem, which drastically lowered the denominator of equation
(3) leading to a high ̂effort value.

Up to now we only varied Pfail leaving sd at a constant value of 1,000. Never-
theless, all series of experiments were repeated using values of sd = 2,000, 5,000,
10,000, 11,000, 20,000 and 30,000. The results show no significant difference to
those for sd = 1, 000. Again, for each number of runs 1,000 tests were per-
formed. For some (number of runs/Pfail/sd) combinations there are differences
in the maximum/minimum value to those shown in the left graph of Figure 2,
but the differences to the standard deviation of the 1,000 newly computed ̂effort
values for sd = 1, 000 – as seen in the right graph of Figure 2 – is always in-
significantly small. The main cause for differences between empirically calculated̂effort values and theoretical values stems from the differences between Pfail and
the empirical estimate P̂fail for this value.

6 Influence of sd on the Computational Effort

The previous section discussed the influence of the difference between the prob-
ability of success for finding a solution within one run (1−Pfail) and its estimate
(1 − P̂fail), calculated with a certain number of runs on the difference between
the computational effort and an ̂effort value calculated using those runs.

170 Jens Niehaus and Wolfgang Banzhaf

0
10000

20000
30000

0.2
0.4

0.6
0.8

85

90

95

100

sd

50 Experiments

Pfail

P
er

ce
nt

ag
e

of
 E

ffo
rt

0
10000

20000
30000

0.2
0.4

0.6
0.8

85

90

95

100

sd

100 Experiments

Pfail

P
er

ce
nt

ag
e

of
 E

ffo
rt

Fig. 3. The average percentage of the ̂effort values calculated on the base of 50 and
100 experiments in relationship to the theoretical computational effort

0
10000

20000
30000

0.2
0.4

0.6
0.8

85

90

95

100

sd

200 Experiments

Pfail

P
er

ce
nt

ag
e

of
 E

ffo
rt

0
10000

20000
30000

0.2
0.4

0.6
0.8

85

90

95

100

sd

500 Experiments

Pfail

P
er

ce
nt

ag
e

of
 E

ffo
rt

Fig. 4. The average percentage of the ̂effort values calculated on the base of 200 and
500 experiments in relationship to the theoretical computational effort

In this section we show that the values of effort and ̂effort may even vary if
the estimates for Pfail are chosen to be identical to the theoretical probability.

We need to take a look at the distribution of the number of fitness evalua-
tions needed to find a solution in successful runs. As written before, for each
(Pfail/sd/runs)-combination (runs ∈ {50, 100, 200, 500}) we did runs experi-
ments of which now exactly Pfail × runs fail to find a solution. The number
of fitness evaluations needed in sucessful ones is calculated as before (see section
5). This procedure guarantees that Pfail equals P̂fail.

For each combination (Pfail, sd, runs) we performed a series of 1,000 exper-
iments, calculated ̂effort for each of the experiments and finally calculated the
mean of all ̂effort values for each series.

Figure 3 and 4 show the results of these experiments. Each value of runs has
its own graph. The x- and y-axis represent the different values of sd and Pfail

while the z-axis represents the corresponding mean ̂effort over the 1,000 series.
This value is expressed as a percentage of the theoretical computational effort.

In all cases the computational effort is slightly underestimated. For larger
sd and Pfail the inaccuracy becomes more apparent. For small values of sd the
probability of Pfail has only little effect on the mean ̂effort value. For larger sd
the influence of Pfail grows. The smaller the number of runs is the more the
computational effort is underestimated.

More on Computational Effort Statistics for Genetic Programming 171

The reason for the underestimation is as follows: With a discrete number
of experiments the minimum of equation (3) is, in most cases, associated with
the highest number of fitness calculations needed within the successful runs4.
For this value of eval the denominator of the fraction of equation (3) equals
ln(Pfail). To reach the same denominator-value for the theoretical computational
effort using equations (3) and (4) the required value of eval is higher in most
cases and results in a higher effort. For smaller eval values the product eval ×
fraction becomes larger thus rendering this product unimportant for calculating
the minimum in equation (3). The discete number of experiments means that
P (eval) is larger than the corresponding value of the continuous case when
calculating the theoretical computational effort.

7 Summary

In this paper we showed how to use Koza’s computational effort statistics with
steady-state GP-systems using tournament selection. Although the correspon-
dence of effort values between theory and experiment should be higher than for
generational GP-systems there were still differences between both.

We showed two different factors that have an influence on the size of errors:

1. To calculate the computational effort P (eval) is needed. This stands for the
probability a solution is found within eval fitness evaluations. As this value
is usually unknown it has to be estimated based on empirical data. Using
relative frequencies leads, on average, to a computational effort similar to
the theoretical value but, depending on the number of runs carried out to
derive the empirical value, can differ a lot in some cases.

2. The distribution of numbers of evaluations needed to find a solution plays a
smaller but nevertheless important role. As an example we used a normally
distributed set and demonstrated that the calculated ̂effort underestimates
the theoretical value by up to 12 percent (Fig. 3).

While the second issue was only an example for a very specific distribution and
the effect will be different for other problems and other distributions, the first
issue affects all calculations of the computational effort.

Sections 5 and 6 showed that the differences between the theoretical value
of the computational effort and the calculated one increases when the number
of runs decreases on which the relative frequencies for P̂ (eval) are based. We
showed that calculating effort based on only 50 experiments may lead to values
quite off the theoretical values, and that even 200 experiments often are not
sufficient.

Furthermore, the more experiments fail to find a solution and the higher
the differences in the number of fitness evaluations needed to find a solution
in different runs are, the larger the deviation of empirical computational effort
might become. In such cases more experiments should be carried out.
4 For the series with runs = 50 and sd < 30, 000 there was on average less than one

eval value higher than the one the minimum was realized with.

172 Jens Niehaus and Wolfgang Banzhaf

References

1. W. Banzhaf, P. Nordin, R. E. Keller, F. D. Francone: Genetic Programming: An
Introduction. San Francisco, CA: Morgan Kaufmann, 1998

2. S. Christensen and F. Oppacher: An Analysis of Koza’s Computational Effort Statis-
tic for Genetic In: J. A. Foster, E. Lutton, J. Miller, C. Ryan, and A. G. B. Tetta-
manzi,(eds.), Proceedings of the 5th European Conference on Genetic Programming,
EuroGP 2002, volume 2278 of LNCS, Kinsale, Ireland, 3-5 April 2002. Springer-
Verlag, pages 182–191

3. M. Keijzer, et al : Adaptive Logic Programming. In: Spector, L., et al (eds.): Pro-
ceedings of the 2001 Genetic and Evolutionary Computation Conference: GECCO
2001, Morgan Kaufmann, pages 42–49

4. J. R. Koza: Genetic Programming: On the Programming of Computers by Natural
Selection. Cambridge, MA: MIT Press, 1992

5. S. Luke and L. Panait: Is the Perfect the Enemy of the Good? In: W. B. Lang-
don et al. (eds.), Proceedings of the 2002 Genetic and Evolutionary Computation
Conference: GECCO 2002, Morgan Kaufman, pages 820–828

	1 Introduction
	2 Measurement and Calculation of the Computational Effort
	3 Computational Effort for Steady-State Algorithms
	4 Experimental Framework
	5 Influence of $P_{textit {fail}}$ on the Computational Effort
	6 Influence of sd on the Computational Effort
	7 Summary
	References

