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Abstract. Evolution of quantum circuits faces two major challenges:
complex and huge search spaces and the high costs of simulating quan-
tum circuits on conventional computers. In this paper we analyze differ-
ent selection strategies, which are applied to the Deutsch-Jozsa problem
and the 1-SAT problem using our GP system. Furthermore, we show
the effects of adding randomness to the selection mechanism of a (1,10)
selection strategy. It can be demonstrated that this boosts the evolution
of quantum algorithms on particular problems.

1 Introduction

Quantum Computing results from the link between quantum mechanics, com-
puter science and classical information theory. It uses quantum mechanical ef-
fects, especially superposition, interference and entanglement, to perform new
types of computation which promise to be more efficient than classical compu-
tation. However, up to now only a very narrow class of problems is known to
be sped up by quantum algorithms, including factoring, (Shor’s algorithm) [1],
unstructured search (Grover’s algorithm) [2] and also certain structured combi-
natorial search problems (Hogg’s algorithm) [3] plus a few other number-theory
problems [4, 5, 6]. Unfortunately, progress is still slow, yet the development of
quantum algorithms seems to be crucial for future prospects of quantum com-
puting.

Automatic quantum circuit design was motivated by the difficulties in man-
ual quantum circuit design, because quantum algorithms are highly non-intuitive
and practical quantum computer hardware is not yet available. Thus, quantum
computers have to be simulated on classical hardware which naturally entails
an exponential growth of computational costs and allows only to simulate small
quantum systems (i. e. with only few qubits). Huge search spaces in even the sim-
plest problems render evolutionary approaches nearly unable to achieve break-
through solutions in the development of new quantum algorithms. At present
we must be content to evolve essentially already existing quantum algorithms
and to analyze the search space of these quantum circuits in order to improve



the efficiency of evolutionary search. Since the simulation of quantum circuits
cannot be sped up, the only way to novel, complex quantum circuits leads via
accelerated evolution.

This is our motivation for examining and comparing different selection strate-
gies with respect to their effectiveness. Using our linear GP system, that com-
prises a quantum simulator for fitness evaluation of quantum programs, we im-
plemented the (µ, λ) and (µ + λ) ES selection as part of a generational GP
approach and tournament selection as part of a steady state GP. Moreover, we
(i) combined the (1,10) selection strategy with additional randomness and, (ii)
tested independently a step size adaptation. Our experiments were exemplarily
performed on the Deutsch-Jozsa problem and the 1-SAT problem. Both problems
were made suitable by choosing small instances.

This paper is organized as follows: An overview of related work on automatic
quantum circuit design is given in Section 2. Our GP system, with the exception
of the selection algorithms, is described in Section 3. Included are some basics of
quantum computing, as far as they concern the understanding of this paper. The
selection algorithms are separately treated in Section 4, while Section 5 explains
the test problems. Section 6 presents experiments and their empirical results,
before conclusions are drawn in the last section.

2 Related work

The idea of using genetic programming to design quantum circuits was discussed
first by Williams and Gray in [7]. Given a unitary matrix U representing a desired
quantum computation the aim was to find its decomposition into a sequence of
elementary quantum gate operations. In contrast to subsequent GP schemes for
the evolution of quantum circuits, a unitary operator solving a given problem
had to be known in advance. Extensive investigations concerning the evolution of
quantum algorithms were subsequently done by Spector et al. [8, 9, 10, 11]. In [8]
the authors presented three different GP schemes for quantum circuit evolution:
standard tree-based GP and both, stack-based and stackless linear genome GP.
These were applied to evolve algorithms for Deutsch’s two-bit problem, the scal-
ing majority-on problem, the quantum four-item database search problem, and
the two-bit-AND-OR problem. Better-than-classical algorithms could be evolved
for all but the scaling majority-on problem. In [12] a linear-tree GP scheme was
successfully applied to evolve a scalable quantum algorithm for 1-SAT, anal-
ogous to Hogg’s algorithm. It was also found, that the mixing matrix can be
implemented more efficiently by using simple Rx-Gates. In [13] we analyzed the
structure of mutation landscapes of small instances of the Deutsch-Jozsa prob-
lem using autocorrelation functions and information measures for characterizing
their behavior.



3 The GP System

3.1 The Quantum Computer Simulator

An integral component of our GP system is a quantum computer simulator. It
simulates quantum algorithms, based on the idealized, noiseless (decoherence-
free) quantum circuit model. Briefly speaking, quantum circuits are sequences of
unitary matrices, so-called quantum gates, which are applied (i. e. multiplied) to
an initial vector (or state) – usually a basis vector of the complex Hilbert space.
This operation describes the transformation of a quantum mechanical, physical
system – resulting in a final vector.

The dimension of the vector space grows exponentially in the number of quan-
tum bits, qubits for short. A qubit is the basic unit of information in quantum
computing. A basic set of quantum gates is sufficient to perform any arbitrary
computations, i. e. it is, in the computational sense, universal. Some of the most
elementary quantum gates are the Hadamard gate H, the single qubit rotation
gates Rx [φ], Ry [φ], Rz [φ], the NOT and the controlled-NOT gate CNOT. The
rotation gates need an angle parameter. In our system the resolution of the angle
parameters was restricted to four bits allowing rotations as multiples of 1/8π.
Inputs to quantum algorithms are provided by certain unitary matrices (INP),
sometimes known as oracles. They may change from instance to instance of a
given problem, while the “surrounding” quantum algorithm remains unchanged.
Our experiments were conducted using the universal gate set {H, NOT, CNOT,
Rx[φ], Ry [φ], INP}. The initial vector is the first of the standard basis vectors.

At the end of a quantum computation always stands a measurement, other-
wise we could not gather any information about the system. This can be seen
just as a projection onto a basis vector. The probabilities for obtaining a certain
basis vector are defined by and calculated from the vector coefficients.

To get a deeper insight into quantum computing and quantum algorithms
[14, 15, 16] might be of interest.

3.2 Individual Structure and Genetic Operators

Because quantum circuits have a natural linear structure3, it seems obvious to
consider a linear genotypic representation for quantum circuits. The length or
size of a quantum circuit, i. e. the number of quantum gates, should be limited
to a reasonable value. It should be mentioned, that genotype and phenotype
correspond directly to each other. The GP algorithm, generational or steady-
state GP, decisively depend on the selection strategy that is described in detail
in the next section.

In our GP system we exclusively considered mutation operators as evolu-
tionary operators. These operators consist of random deletion, insertion and
replacement of a single quantum gate, random alteration of parameters of a
single gate and random swap of two neighboring quantum gates. Due to our ex-
perience, we refrained from using a crossover operator. Our observation showed

3 Intermediate measurements providing a linear-tree structure [12] are disregarded.



that the efficiency of the search improves. This experience is confirmed by an
analysis of the autocorrelation functions of time series obtained from random
walks on the mutation [13] and crossover landscapes [17] of certain instances of
the Deutsch-Jozsa problem4. For both, mutation and crossover landscapes the
correlations are rather low. However, for crossover landscapes it is substantially
lower (Fig. 1).
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Fig. 1. Autocorrelation functions of mutation (left) and crossover landscapes (right)
for the Deutsch-Jozsa problem with different values of n, the number of input bits of
some Boolean function f (cf. Section 5.1), and L, the maximum length of a quantum
circuit.

4 Selection Strategies

In general, selection is the result of a competition between individuals in a popu-
lation. The better the individual’s fitness in comparison with all other individuals
in the population, the higher is its selection probability.

Some popular generational selection algorithms are the (µ + λ) and (µ, λ)
selection as well as tournament selection. The (µ, λ) selection was originally
used in ES-algorithms [18]. Here, µ parents are allowed to breed λ offspring, out
of which the best µ are used as parents for the next generation. A variant of
that method is the (µ+λ) selection [19], where offspring and parents participate
in the selection. An algorithmic description of ES selection of type (µ + λ) and
(µ, λ) follows:

4 A detailed landscape analysis for landscapes regarding the 1-SAT problem has yet
to be done.



1. Generate the initial population; population size is:
– µ + λ (for (µ + λ) selection)
– λ (for (µ, λ) selection)

2. Evaluate the fitness of each individual;
3. Select the winners:

– the best µ individuals in the entire population (for (µ + λ) selection)
– the best µ newly created individuals or offspring respectively (for (µ, λ)

selection)
4. Perform one-point mutation on each winner to generate λ offspring (about

λ/µ offspring per winner);
5. Evaluate the fitness of the offspring;
6. Go to step 3 unless termination criteria are met.

For our experiments we extended the (1, 10) selection by adding randomness.
After fitness evaluation of the offspring, instead of the best offspring, individuals
were chosen randomly with a given probability p. In this case step 2 of the
algorithm above looks as follows:

2. Let be u = unif ([0, 1]) uniformly distributed; if u < p, then choose the
winner randomly from the set of offspring and go ahead to step 4, otherwise
evaluate the fitness of each individual;

Furthermore, we used (1,10) selection with self-adaptation [18] of the step-
sizes. The self-adaptation routine is due to [20] and looks as follows:

u = unif ([0, 1])
if u < 0.5
then m∗ = 1.3
else m/ = 1.3
nmut = geo (u, m)

The parameter nmut determines the step size, i. e. the number of mutations. It
is drawn from a geometric distribution. In more detail,

geo (u, m) =

⌊

ln(1 − u)

ln(1 − p)

⌋

, where p = 1 − m

1 +
√

1 + m2
.

The initial value of m has to be chosen appropriately.
Another important selection mechanism, tournament selection, does not be-

long to generational selection algorithms. Instead, it is based on competition
within only a (usually small) subset of the population. A number of individuals
taking part in the tournament is selected randomly according to the tourna-

ment size. In the smallest possible tournament, two individuals compete. The
better individuals (the winners) are subject to genetic operators and replace the
losers of the tournament. A higher selection pressure can be adjusted by a larger
tournament size.



Independent of the selection strategy and the evolutionary process our GP
system always stores the fitness of the best individual found so far. These data
are the basis of all empirical results.

5 The Test problems

5.1 The Deutsch-Jozsa Problem

Given a function f : {0, 1}n → {0, 1} (as a black box) promised to be either
constant, f(x) = c, ∀x ∈ {0, 1}n and c ∈ {0, 1}, or balanced, i. e. as the result
of f 0 occurs as many times as 1, the Deutsch-Jozsa problem is to determine
which of the two properties f has. For n = 1 the task is also known as Deutsch’s
problem.

In classical computing f has to be evaluated 2n−1+1 times in the worst case,
in quantum computing a single application of the corresponding input matrix,
which is a Boolean function matrix defining f , is sufficient [21] (cf. [15, 13] for a
detailed description of the input matrix). Using this matrix representation of a
Boolean function, n+1 qubits are necessary to solve the problem on a quantum
computer. The number of Boolean functions being either constant or balanced
amounts to 2+

(

2
n

2n−1

)

. The general quantum algorithm solving the Deutsch-Jozsa
problem is discussed in detail in [14, 15].

The fitness of a quantum program is measured by its ability to identify the
property of a given function f . To obtain the fitness value of a quantum circuit,
it is evaluated for each input matrix. Afterwards, the resulting vectors corre-
sponding to balanced functions are compared with those corresponding to the
two constant functions. On the basis of measurement probabilities for every base
state the determinability of a correct classification is quantified. Misclassifica-
tions are penalized. A proper quantum algorithm, solving the Deutsch-Jozsa
problem, classifies all functions correctly.

5.2 The 1-SAT Problem

The satisfiability problem (SAT) consists of a logical formula in n variables
v1, . . . , vn and the requirement to find an assignment a = (a1, . . . , an) ∈ {0, 1}n

for the variables that makes the formula true. For k-SAT the formula is given
as a conjunction of m clauses, where each clause is a disjunction of k literals
vi or v̄i respectively with i ∈ {1 . . . n}. Clauses which become false for a given
assignment are called conflicts. The 1-SAT problem for n variables, solved by
classical heuristics in O(n) steps, can be solved even faster on a quantum com-
puter. Hogg’s quantum algorithm, presented in [22, 3], finds a solution in a single
search step, using an input matrix, which encodes the number of conflicts for
each assignment.

The number of fitness cases (the number of formulas) is
∑

n

k=1

(

n

k

)

2k in total.
Each fitness case consists of an input matrix for the formula and the desired



output. The fitness value is determined by the probabilities, that the final mea-
surement will lead to a basis vector which corresponds to an assignment, making
the formula true.

It applies to the fitness calculation of both problems, that the fitness function
is also standardized and normalized. Moreover, quantum circuits with more than
one input gate are strongly penalized.

6 Experiments and Empirical Results

We did experiments for the Deutsch-Joza problem with n=2 (3 qubits) and n=3
(4 qubits) and for the 1-SAT problem with n=3 (3 qubits) and n=4 (4 qubits).
In this paper we present only plots of the problem instances with four qubits.

For these problem instances 20 evolutionary runs were performed for each
selection method. The results were averaged over the runs. A GP run terminated
when the number of single individual (quantum program) evaluations exceeded
1e + 07 or the fitness of a new best individual under-ran a given threshold,
which is close to zero. The length of the quantum circuits was limited to 15
gates. The best quantum circuits for the Deutsch-Jozsa (n=3) and the 1-SAT
problem problem (n=4) need about nine gates each using the same gate set. The
initial population was randomly created.

The selection strategies and parameter settings used in the GP system are:

– Comma- and Plus-strategies: (1,10), (5,20), (1+10), (5+20);
– (1,10) with step-size adaptation. The value of nmut (the step size) was

bounded to 5 mutations. The start value of m is set to 3. This might seem ar-
bitrary, but experiments with larger values showed no or virtually no effect.
A more detailed analysis is future work.

– (1,10), combined with additional random selection.
– Tournament selection with different population sizes (100, 500, 1000, 1500,

2000). Tournament size is 2.

Figure 2a shows four graphs illustrating the course of the evolutionary runs
for quantum circuits of the Deutsch-Jozsa problem using pure comma- and plus-
selection strategies. The (1,10) strategy achieved best results. However, for this
strategy 25% of the runs did not lead to an acceptable result. For the other
strategies the failure rate was even larger.

Tournament selection can outperform these runs when applied with a suit-
able population size of about 1500 to 2000 individuals, as shown in Figure 2b.
For larger populations the performance decreases more and more. Yet even for
tournament selection not every run was successfull within the required number
of evaluations.

Performance of the (1,10) selection can be visibly boosted using step size
adaptation, which was, all in all, the best selection strategy. In Figure 2c the
plot essentially runs below the plots relating to all other selection strategies.

Couriously enough, comparable good performance was achieved by using
the (1,10) strategy combined with 10% random selection. Further experiments



demonstrated that even higher percentages of random selection predominate over
the pure comma- and plus-strategies. In all runs the resulting quantum circuit
was a solution of the test problem. Thus, considering the number of successful
runs, this strategy behaves even better than tournament selection on the given
problem. Figure 2c illustrates the performance of all tested kinds of selection
strategies.

This result confirms our analysis of the mutation landscape of the Deutsch-
Joza problem. Because of the high ruggedness, the high modality and only a few
paths to global optima the evolution is often caught in local optima. Larger steps
or - what seems to help as much - additional randomness appears to compensate
for this.

Applied to the 1-SAT problem instance we obtained a completely different
result. Here, the best strategies are tournament selection with a population size
of about 500 individuals, as shown in Figure 3a, and (1+10) selection, as shown
in Figure 3b. Furthermore, Figure 3b illustrates, that plus-strategies perform
far better than the comma-strategies. Step size adaptation does not improve
evolution and additional randomness rather deteriorates the evolutionary search
(Figure 3a). Moreover, for each of the tested selection strategies all 20 evolu-
tionary runs were successful on this problem. This might be a hint that the
fitness landscapes of the Deutsch-Jozsa and the 1-SAT problem clearly differ.
The mutation landscape for 1-SAT should therefore be smoother and less com-
plex, allowing evolution with comma- or plus-strategy to be more effective and
independent of additional randomness and step-size adaptation. It remains to be
seen, whether the fitness landscape analysis for the 1-SAT problem will confirm
this prediction.

7 Conclusions

In this work we presented a comparison between different selection strategies
for evolutionary quantum circuit design: tournament selection for different pop-
ulation sizes, simple comma- and plus-strategies, the (1,10) selection strategy
combined with random selection or with step size adaptation. Our results were
based on two test problems, the Deutsch-Jozsa and the 1-SAT problem, for which
quantum algorithms already exist.

Depending on the population size, tournament selection can be very effective
on either test problem. Self-adaptation is similarly effective and enables comma-
selection to compete against tournament selection. Other parameter settings
may even improve the search speed for the 1-SAT problem.

The comma-strategy with random selection seems to be useful on complex
problems with rugged fitness landscapes, difficult for standard evolutionary se-
lection mechanisms. Under those circumstances it can be effective or for smaller
populations even better than tournament selection.

Further experiments on the influence of adding randomness for very difficult
fitness landscapes would help to judge, whether this is more than just a pleasant
side effect. Unfortunately there is only a small set of test problems available
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Fig. 2. Different selection strategies for the Deutsch-Jozsa problem with n=3: (a)
comma- and plus-strategies; (b) tournament selection for different population sizes; (c)
tournament selection, pure (1,10) selection, (1,10) selection with step size adaptation
(marked with *) and (1,10) selection plus 10% or 20% random selection respectively.
Note the logarithmic scaling on the x-axis.
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selection with step size adaptation (marked with *). Note the logarithmic scaling on
the x-axis.



and evolution of quantum circuits on larger state spaces is prohibitively time
consuming.
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