Genetic Programming using Genotype-Phenotype Mapping

from Linear Genomes into Linear Phenotypes

Robert E. Keller

Wolfgang Banzhaft

University of Dortmund
Department of Computer Science, LS11
D-44221 Dortmund, Germany
{keller,banzhaf}@Ils11.informatik.uni-dortmund.de

ABSTRACT

In common genetic programming
approaches, the space of genotypes,
that is the search space, is identical
to the space of phenotypes, that is
the solution space. Facts and the-
ories from molecular biology suggest
the introduction of non-identical ge-
nospaces and phenospaces, and a ge-
neric genotype-phenotype mapping
which maps unconstrained genotypes
into syntactically correct phenotypes.
Neutral variants come into effect due
to this mapping. They enhance ge-
netic diversity and allow for escap-
ing local optima in phenospace via
high-dimensional saddle surfaces in
genospace. We propose a concrete
mapping that maps linear binary ge-
notypes into linear phenotypes of an
arbitrary context-free programming
language. Empirical results are pre-
sented which show that the mapping
improves the performance of GP un-
der mutation and reproduction.

1 Introduction

Common GP approaches (e.g. “Koza (1992)”) do not
distinguish between a genotype, i.e. a point in search
space, and its phenotype, i.e. a point in solution space,
that is search space and solution space are identical.

Recently, however, a strict distinction between the
search space and the solution space as well as a geno-
type-phenotype mapping (GPM) from the search space
into the solution space have been suggested in “Banzhaf
(1994)”. In that contribution, the author extends the
common GP approach by a GPM and demonstrates the
practicability of this GP/GPM approach.

Note that a GPM in itself is not a special GP variant.
The principle behind a GPM 1is the distinction between
the search space and the solution space of an underlying

search process. The process locates points in the search
space as results of the search. However, a potential solu-
tion must be a point from the solution space. Thus, a
GPM is needed which maps an arbitrary search point
onto a solution point. This principle can be used with
every search process, like an arbitrary evolutionary al-
gorithm.

Finally, it is hypothesized in “Banzhaf (1994)” that
the GP/GPM approach enhances the performance of sys-
tems using evolutionary algorithms (EA).

The present paper focuses on a basic empirical in-
vestigation of this hypothesis with respect to the area
of GP. To that end, we compare the performance of
both approaches by applying them to the same non-toy
test problem. In order to do so, we use our Binary-
Genetic-Programming system, which incorporates both
approaches.

One starting point towards the GP/GPM approach
given in “Banzhaf (1994)” is Kimura’s neutral theory of
molecular evolution “Kimura (1968)” “Kimura (1983)”
which postulates that molecular evolution is essentially
driven by mutations almost neutral considering natural
selection. This includes different genotypes (neutral vari-
ants) coding for precisely the same phenotype. The phe-
nomenon of neutral mutations, according to Kimura, is
a major reason for the high genetic diversity in natural
populations. Note that this theory has been supported
by empirical results “Mukai (1985)”.

The motivation for applying this theory to the field of
evolutionary algorithms is that an EA solving a problem
often faces solving a constrained optimization problem.
Not only should the EA evolve one or more phenotypes
with highest possible quality (fitness), it is also forced
to evolve only such phenotypes which obey given restric-
tions.

Common GP approaches, for instance, face a hard
constraint given by the syntax of the underlying pro-
gramming language: all generated individuals must be
legal, that is syntactically correct. These approaches
handle this constraint like GAs handle hard constraints:
all operators modifying individuals, e.g. crossover, are



constrained such that they only generate legal individu-
als.

Thus, large regions of the search space - which equals
the solution space - are infeasible, thereby presenting
a twofold problem to common GP approaches. First,
the large potential of genetic diversity existing in the in-
feasible regions is not accessible. Second, on the search
for high-quality individuals, sequences of individuals get
generated. The larger the infeasible regions are, the
higher is the probability they include such individuals
which build short individual-sequences leading from the
individuals of the actual generation to high-quality in-
dividuals of the next generation. To put it vividly: GP
tries to wander from good to better individuals, and in-
feasible regions force it to detour.

This train of thought motivates the extension of a
common GP approach by a distinction of search space
and solution space, by unconstrained operators perform-
ing on the search space only, and by a GPM from search
space into solution space. The search space equals the
set of all genotypes, legal and illegal. A GPM maps each
genotype into a legal phenotype, thereby matching the
syntactical constraint.

By this extension, the problem of infeasible regions
does not exist any more: the complete search space has
become evolvable along short individual-sequences. Un-
der mutation as one of the search operators, this leads
to a random genetic drift in the population. In the ideal
case, this drift leads to a genotype distribution such that
for each legal phenotype p there exists a genotype ¢ in
the actual generation such that ¢ is very close to some
genotype h of p “Eigen (1992)”. “Close” means there
is a short individual-sequence leading from ¢ to h. This
enlarges the probability of finding p.

Especially, this enables evolution to “escape local op-
tima on saddle surfaces”, as it is put in “Banzhaf (1994)”.
If a population gets trapped in a suboptimum, there are
many neutral variants mapping into the trapped pheno-
types. Some of these variants will be close to neutral
variants of phenotypes representing better (sub)optima.
Thus, there is a high probability that evolution will find
these phenotypes. On the other hand, there is a high
probability that evolution will find worse phenotypes.
Due to the fitness-based performance of reproduction
and search operators, however, the corresponding worse
genotypes will have few chances to proliferate.

In order to keep the comparison of both approaches
transparent, certain restrictions will be imposed on the
evolutionary process. Since mutation is the major search
operator in Kimura’s theory, we will use mutation as
only search operator. Furthermore, the genotypes of the
GP/GPM approach will all feature the same fixed length.

Note that it is not intended to solve the problem.
The restrictions just mentioned will probably prevent the
finding of a perfect solution anyway.

2 Representations, GPM, operat-

ors

Concerning the GP/GPM approach, some thought must
be given to the representation of genotypes. In “Banzhaf
(1994)”, each genotype is identified with a binary string.
This provides for the simplest and most universal repre-
sentation of information, and it allows the use of simple
search operators, which could even be standard GA op-
erators. Additionally, it enables a sort of mapping such
that the generation of neutral variants is enhanced, as
will be shown subsequently. Finally, it provides exactly
one type of search space, a space of binary strings, which
is independent from the representation of phenotypes in
the actual solution space.

As GPM to be actually used, an instantiation of a
generic GPM “Banzhaf (1994)” motivated by molecu-
lar biology “Watson et al.(1987)”, is taken. The gen-
eric GPM is a metaphor of the biological process of pro-
tein synthesis. During this process, DNA (genotype) gets
transcribed into messenger RNA (mRNA), which is cor-
rected with respect to the functionality of the protein it
is coding for. The corrected mRNA then gets translated
into amino acid sequences, which fold into a protein (phe-
notype) that features a certain functionality (behavior)
with respect to the cell metabolism.

Protein synthesis is a very complex process. The
GPM to be actually used is a simplified metaphor of
this process. A binary string (genotype) gets transcribed
into a raw sequence of symbols (transcription). Each
such symbol is an element of either the function or the
terminal set which both underlie a genetic-programming
approach.

The raw sequence gets corrected, if necessary, accord-
ing to the syntax of the used programminglanguage, thus
yielding a legal symbol sequence (repairing).

Then, editing turns this sequence into an edited sym-
bol sequence by adding standard information, e.g. a main
program frame enclosing the repaired sequence.

Finally, the last phase of the mapping, which is com-
pilation of the edited symbol sequence, transforms this
sequence into a machine-language program that can be
executed in order to evaluate the fitness of the corres-
ponding individual. Alternatively, interpretation of the
edited symbol sequence can be used for fitness evalu-
ation.

There remains the question of the representation of
phenotypes in the GP/GPM approach. A legal sym-
bol sequence s is the abstract expression of the beha-
vior defined by that genotype that got mapped onto s.
Since editing and compilation or interpretation do not
add behavior-changing information to such a sequence,
it is logical to consider this sequence as a phenotype.
Thus, in the context of the GP/GPM approach, the solu-
tion space can be defined as the set of all legal symbol
sequences.



Note that, with respect to the employed GPM /protein
synthesis metaphor, a legal symbol sequence corresponds
to a protein. Since amino acids are the essential compon-
ents of a protein, an amino acid corresponds to a symbol.

We now detail the processes of transcription and re-
pairing used during the GP/GPM approach. To that
end, we introduce the notion of a codon. In molecular
biology, this is a triplet of nucleic acids which uniquely
encodes one amino acid, at most. Since an amino acid
corresponds to a symbol, a codon corresponds to the en-
coding of a symbol.

This puts forward the question for the nature of the
encoding to be used. At the beginning of this section,
an argumentation in favor of a binary representation of
a genotype has been given. This argumentation is also
valid with respect to a codon. Thus, for the GP/GPM
approach, a codon shall term a bit sequence of b bits
length which encodes a symbol. In order to provide for
the unique encoding of all symbols, b must be chosen
such that for each symbol there is at least one codon
which encodes this and only this symbol. For instance,
if there are 20 symbols, b > 5 is a proper value, since 2°
is greater than 20.

The idea of codons implies that a genotype, which
is a binary string by definition, consists of a sequence
of n codons. Let the codons of a genotype be identified
by positional numbers, starting with 0 and ending with
n— 1.

An arbitrary mapping M from the set of codons into
the set of symbols can now be defined. Thus, M defines
the encoding of symbols by codons. Transcription scans
a genotype, starting at codon 0, ending at codon n — 1.
Using M, transcription maps each encountered codon
onto the corresponding symbol, thereby creating a raw
symbol sequence from the genotype.

In molecular biology, the analogy to our mapping M
is called genetic code. The mapping M shall be termed
likewise.

The natural genetic code is the mapping from codons
into amino acids. It is important to note that this code is
highly redundant: there are many different codons which
encode the same amino acid. We will return to this point
later with respect to the design of an artificial genetic
code represented by some mapping M.

For later use, each codon of a certain artificial genetic
code shall be identified with an index. That could be, for
instance, the integer number represented by the codon.
For instance, the codon 0110 could be identified with 6.

In order to define repairing, we only consider context-
free LALR(1) (look-ahead-left-recursive, look ahead one
symbol) grammars “Aho et al. (1986)”. These grammars
have a nice property with respect to compiler construc-
tion. An essential phase of the compiling of a program,
that is a symbol sequence, is the parsing of this sequence
in order to verify the syntactical correctness of the pro-

gram. When parsing a symbol sequence according to a
LALR(1) grammar, it is always and efficiently possible
to compute the current legal symbol set with respect to
the actually scanned symbol s. Each symbol of this set is
syntactically correct in place of s. Especially, this set can
be computed by solely considering the symbol preceding
s.

Note that, since we only consider LALR(1) gram-
mars for the GP/GPM approach, a GP system using the
GP/GPM approach as described here can only evolve
programs in languages that are defined by such a gram-
mar. This, however, is no restriction with respect to the
practicability of the approach, since many practically re-
levant languages like C are LALR(1) languages.

A symbol that represents a syntax error shall be called
tllegal. When parsing a raw sequence, it is highly prob-
able that an illegal symbol s will be scanned. The legal
symbol set can be computed with respect to s. In such
a situation, a minimal-distance set can be defined. It is
a subset of the actual legal symbol set, and it contains
all those symbols whose codons are Hamming-closest to
the codon of the illegal symbol s. With respect to the
illegal symbol, such a symbol is called closest. Depend-
ing on the genetic code, there can be more than one such
symbol.

We can now define the repairing of a raw sequence.
The sequence gets parsed, and, in case an illegal symbol
is encountered, it will be replaced by its closest symbol.
If there are more than one closest symbol, that one will
be taken which is encoded by a codon with the lowest
index among all codons of closest symbols.

A common special case must be handled. Often, the
described type of repairing will produce a symbol se-
quence that terminates unfinished. For instance, this
sequence could be an unfinished arithmetical expression
like sin(a)*cos(b)+. In order to handle that case, we as-
sign a termination number to each symbol. This number
indicates how appropriate the symbol is for shortest pos-
sible termination of an unfinished sequence. In the above
expression, for instance, a variable would terminate the
sequence, while an operator symbol like sin would call
for at least three more symbols (°(°, variable, ’)’). By de-
finition, the termination number of a symbol shall equal
the number of these additionally needed symbols. Thus,
in the example, a variable-symbol like ’a’ has termina-
tion number 0, while a symbol like sin has termination
number 3.

Note that the number of symbols actually needed for
termination when using a certain symbol can be larger
than its termination number. For instance, there could
be open parantheses prior to the end of the unfinished se-
quence, which have to be closed. Such context-sensitive
circumstances shall not be reflected in a termination
number.

In case there are several symbols with equal minimal



termination numbers, that one shall be taken which is
encoded by a codon with the lowest index among all
codons of the symbols in question.

We give a simple example for the functioning of the
described GPM. The underlying syntax shall be that of
simple arithmetic expressions. Consider the redundant
genetic code 000 — a; 001 — b; 010 — +; 011 —
*; 100 — a; 101 — b; 110 — +; 111 — =*.

The genotype 000 001 011 gets transcribed into the
raw sequence abk. Repairing scans a as first and legal
symbol. It then scans b as an illegal symbol with 001
as its codon in the genotype. {+,*} is the legal symbol
set. The symbol closest to b is *. Thus, b gets replaced
by #, thereby terminating the repair of the syntax error.
The partially repaired raw sequence now equals a * .
Repairing continues, replacing the last symbol * with b.
The repaired sequence a*b is passed on to editing, which
adds, for instance, a function frame. The edited sequence

might look like
double fnc(double a, double b) {return a*xb;}.

This sequence could now, for example, be integrated,
together with other edited sequences, into a main pro-
gram which could be given to any ANSI-C compiler.

Some more examples illustrate how the existence of
many neutral variants for certain phenotypes can be ex-
plained out of the presented GPM. For instance, as shown
above, 000 001 011 gets mapped into the phenotype axb.
However, 010 011 101, 000 011 001 and 100 111 101 get
all mapped into a * b as well. When analyzing this phe-
nomenon, it becomes immediately clear that both the
redundancy of the genetic code and the repair mechan-
ism are responsible for this effect.

Note that the presented mapping mechanism indeed
defines a mapping from genospace into phenospace: each
genotype gets mapped always into exactly one pheno-
type. Otherwise, a genotype very likely would get as-
sociated with different phenotypes and thus with differ-
ent fitness values over time. This would not allow for a
proper fitness-related selection on genospace.

We now present the creation and mutation operators
separately for the GP/GPM approach and the common
GP approach. These operators perform selections on sets
of codons, of symbols and of bits. All of these selections
shall operate randomly and equally distributed.

For the GP/GPM approach, creation generates a ran-
dom individual as random binary string which consists
of n codons.

For the common GP approach, creation builds up a
syntactically legal random symbol sequence which con-
sists of at least n symbols. This is done by starting with
an empty symbol string. The first symbol is selected
from the set of symbols which are legal first symbols.
The following symbol is selected from the set of sym-
bols which are legal as follow-up symbols to the first

symbol. This method iterates until the n-th symbol has
been selected. The result is a legal sequence of n sym-
bols. However, the sequence may be unfinished. In that
case, it is terminated in the same way that has been de-
scribed for the case of repairing. Note that this leads to
individuals with varying length.

For the GP/GPM approach, two mutation operat-
ors shall be devised. The coupled mutation, applied to a
genotype, selects a codon. It then flips two randomly se-
lected different bits in that codon. This operator reflects
the fact that some mutations tend to change nucleic acids
in a coupled sort of way.

The unrestricted mutation selects a codon. In that
codon, it then flips one randomly selected bit with 0.5
probability, or two randomly selected different bits with
0.35 probability, or three randomly selected different bits
with 0.1 probability, or four randomly selected different
bits with 0.05 probability. The probability distribution
reflects the natural principle of variation: small changes
occur more often than big changes.

For the common GP approach, mutation selects a
symbol in the sequence. It then replaces this symbol by
another randomly selected symbol which is legal in the
respective position.

Note that this mutation operator does not produce
vast changes in the genotype by replacing complete syn-
tactical units as it is the case, for instance, with the
mutation operator presented in “Koza (1992)”. We feel
that the presented operator shows a behavior closer to
natural mutation and thus better matches the spirit of
artificial evolutionary processes.

Note that an individual of the common GP approach
is encoded as a symbol sequence, that is a string. It is
not represented in a tree-like form like it is often done
in work related to genetic programming. However, both
the string encoding and the tree encoding are equivalent
in the sense that each arithmetic expression represented
as a string can be encoded as expression tree and vice
versa.

Moreover, given corresponding mutation operators,
each mutation done on an expression tree can be per-
formed equivalently on the corresponding string and vice
versa. It is interesting to note that this is also true with
respect to crossover, although crossover is not used in
the current context.

We finally sketch our binary genetic-programming
system used for the empirical comparison of both ap-
proaches. The system incorporates the standard GP al-
gorithm, as it is presented in “Koza (1992)”, as kernel.
Tournament selection on two individuals is used in order
to select an individual for subsequent reproduction only
or, alternatively, for reproduction followed by mutation.
Both alternatives have 0.5 probability of getting applied
as next operation on a selected individual.

Adjusted fitness is used as fitness measure. The squa-



re-error sum produced by an individual i over all fitness
cases shall define i’s standardized-fitness value, which is
needed for the computation of ¢’s adjusted-fitness value
“Koza (1992)”. Thus, all possible fitness values exist in
[0,1]. A perfect individual has fitness value 1.

In case the system uses the GP/GPM approach, the
kernel calls the GPM between creation and fitness eval-
uation of the initial generation, and between the com-
pleted evolution of the actual generation and its fitness
evaluation, respectively. Dependent on the actually used
approach, the corresponding representations and operat-
ors are employed.

3 Method

The programming language to be used for the evolution
shall be ANSI-C. Thus, a phenotype will be a symbol se-
quence obeying ANSI-C syntax. The domain of the test
problem will suggest variables, unary and binary arith-
metic functions, and paranthesis operators as elements
of the terminal and function sets.

The test problem is a symbolic function regression
on a four-dimensional parameter space. The function in
question is

sin(m) - cos(v) \/% + tan(a).

All parameter values shall be real-valued.

In order to allow for protection against division-by-
zero, we devise the division function D(x) which returns
the reciprocal value of its single argument. If the argu-
ment is zero, the result equals 1. We supply a protected
square root function sqrt(x) which returns the square
root of the absolute value of its argument. Further-
more, an overflow-protected exponential function exp(x)
is provided which returns e€”. In case the value of z causes
an overflow, the returned value is 1.

As codons, we supply the numbers 0 up to 15 in their
binary representation, i.e. 0000,0001,..,1110,1111. In
this order, the codons get mapped into a set of 16 sym-
bols, featuring 14 different symbols:

+ * x Dmuwvga()sin costan sqrt exp ).

Note there is only little redundancy in this genetic
code, so that in case the theory of neutral variants works
at all, the GP/GPM approach will not have vastly more
power than the common GP approach.

For the GP/GPM approach, the genotype length shall
be 25, that is each genotype consists of 25 codons. Since
there are 16 different codons in the genetic code, the
search space contains 162° or approximately 1.3E30 ge-
notypes.

When using the unrestricted mutation operator which
can mutate each single bit independently the GP/GPM
approach faces 25 -4 = 100 degrees of freedom, since
each codon consists of 4 bit. In other words, in addi-

tion to the relatively large size of the search space, it is
high-dimensional, featuring 100 dimensions.

For the common GP approach, the individual’slength
shall be at least 25, too. Thus, each individual is a sym-
bol sequence of at least 25 symbols. Due to the above
described phenomenon of unfinished sequences, the ac-
tual length of individuals after repairing can surpass 25.
Imagine, for instance, the improbable case of an indi-
vidual looking like

D(D(D(D(D(D(D(D(D(D(D(D(D (a))))))))))))).

Prior to the spaces within the individual, there are 25
symbols. Shortest possible termination of the individual
still requires the appending of 15 more symbols, most of
them being ’)’, in order to close still open paranthesis
levels.

However, the search space in the common GP ap-
proach has a size of much less than 14%® or approximately
4 5E28 individuals. That is because the symbols appen-
ded have not been evolved but non-stochastically com-
puted, and because many symbol sequences are illegal.
By using the mutation operator, which can mutate each
of the 25 evolved symbols in a sequence independently,
the common GP approach faces 25 degrees of freedom.
Thus, the search space has only 25 dimensions.

Note that, for the GP/GPM approach, the maximal
length of a phenotype can surpass 25, too, for the same
reason that has been given above.

Due to the real-valued four-dimensional parameter
space, a fitness case consists of four real input values
and one real output value. We only supply 10 fitness
cases in order to further increase the difficulty of the
problem by lack of information. All experimental runs
use a population size of 500 individuals and run for 50
generations.

In order to compare both approaches with respect to
their performance, three series of experiments are run us-
ing the binary-genetic-programming system. Each series
consists of 19 runs. All runs of the same series shall be
indexed from 1 up to 19. All runs of the same series
run with different randomizer seeds. Runs with identical
indices, but from different series, run with the same ran-
domizer seed.

A run from series 1 is done with the common GP
approach. A run from series 2 features the GP/GPM
approach, using the coupled mutation operator. A run
from series 3 is done with the GP/GPM approach, using
the unrestricted mutation operator. In all other respects,
the runs perform under identical conditions, which have
been described above.

4 Results and discussion

Fig. 1 shows the mean average fitness over time for
all 3 series of runs. The graphs titled “GPM-coupled”
and “GPM-unrestricted” belong to the series featuring



the GP/GPM approaches with coupled and unrestricted
mutation. The graph titled “Common” belongs to the
series featuring the common GP approach.

0.0016 - GPM-urESTiced. .
o s CPMCoupled
/‘/ TN T Common -
0.0014

0.0012

mean average fitness
o
o
o
=

0.0008

0.0006

0.0004

0 5 10 15 20 25 30 35 40 45 50
generations

Figure 1 Mean average fitness of unrestricted,
coupled and common GP approach

Both the coupled and the common GP approach start
at generation 0 with practically identical fitness values,
indicating that there is no bias in the GPM-independent
initial conditions which might favor the GP/GPM ap-
proach.

Both graphs rise steeply until generation 5, with the
GPM-coupled graph showing a clearly higher increase
rate. At generation 5, the Common graph suffers a signi-
ficant decrease in its inclination, while the GPM-coupled
graph still rises strongly with only a light decrease in its
inclination. This indicates the effectiveness of neutral
variants helping to escape from local optima.

It is not until generation 9 that the inclination of the
GPM-coupled graph decreases significantly. The inclina-
tion of both graphs dwindles down to more or less 0 over
the next generations.

In the final generation, the coupled approach features
a 6 percent higher fitness relative to the common GP
approach. After generation 0, the fitness values of the
common GP approach never reached or surpassed those
of the coupled approach.

Both the coupled and the common GP approach get
significantly outperformed by the unrestricted approach.
As can be seen from the graphs, this approach behaves
very similar to the coupled approach, at first. Espe-
cially, it starts in generation 0 with approximately the
same fitness value as the other approaches. From ge-
neration 18 onward, however, the unrestricted approach

clearly leaves the other approaches behind. In the final
generation, the unrestricted approach features a 10 per-
cent higher fitness relative to the common GP approach.
After generation 1, the fitness values of the common GP
approach never reached or surpassed those of the unres-
tricted approach.

We offer a hypothesis for the superiority of the un-
restricted approach over the coupled approach. Given
some codon, coupled mutation cannot mutate this codon
into each other arbitrary codon, since it always flips 2
bits. For instance, no sequence of coupled mutations can
change 0011 into 0001.

This implies that, given some genotype g, the search
process cannot reach all genotypes. Thus, if the search
process gets stuck in a local optimum, it can only reach
certain other genotypes from there. If none of these ge-
notypes has a better fitness than those representing the
local optimum, the process cannot escape. Unrestric-
ted mutation, however, can change each codon into each
other codon, since it can flip one bit only. Thus, the
search process can potentially escape.

In the final generation, the mean best fitness of the
unrestricted and coupled approaches equal approx. 0.97
and 0.96 compared to approx. 0.93 for the common GP
approach. The mean best-fitness values of the common
GP approach never reached or surpassed those of the
GP/GPM approaches.

Note also that the mean best-fitness values of all three
approaches get rather close to the perfect fitness value
1.0, although no crossover operator has been used. This
indicates that mutation should deserve more attention
in GP instead of merely being considered a secondary
operator.

Note that the superior performance in mean and best
average fitness of both GP/GPM approaches compared
to the common GP approach occur though search space
size and dimensionality are significantly higher compared
to the common GP approach, and despite the fact the
used genetic code features not very much redundancy,
which restricts the chance for the generation of neutral
variants. This stresses the advantage of the GP/GPM
approach.

Note that the genetic code used for the runs is re-
dundant with respect to the multiplication and the clos-
ed-paranthesis operator. This might have positive and
negative effects on the performance.

For instance, the redundancy in the multiplication
operator could result in more such operators as parts of a
phenotype. This can be advantageous since the problem
function features two such operators.

On the other hand, the redundancy in the closed-
paranthesis operator could pose a handicap to evolution,
since it enlarges the probability that a needed long subex-
pression never emerges.



5 Conclusion

A first comparison of the common GP approach vs. the
GP/GPM approach has been the main focus of this con-
tribution. The presented empirical results argue in fa-
vor of the use of GPM, at least in GP systems where
mutation is employed as a search operator. Furthermore,
mutation appears to be a useful operator when applied
by both the common or the GP/GPM approach.

6 Further research

Clearly, the genetic code is a key issue in GPM. It is a
non-trivial task to determine the “optimal” code depend-
ent on the actual problem. To put it more formally, the
challenge is to define a GPM approach such that the res-
ulting search space topology allows for an efficient evol-
ution with respect to the underlying fitness landscape.
Real-world problems, however, usually present “terra-
incognita” landscapes.

Taking a closer look at Evolutionsstrategien “Schwefel
(1995)” and the important subject of self-adaptation of
parameters that control the search process suggests that
an individual genetic code as part of a genotype might
be beneficial for the search process as a whole. The indi-
vidual codes could evolve along with the other features
of the genotypes. This would be especially valuable in
cases when a GP system gets confronted with dynamic
fitness landscapes.

Furthermore, the results and their discussion suggest
the use of a truly unrestricted mutation operator which
flips between 1 to n bits under normal distribution, n be-
ing the number of all bits in the genotype. This operator
should lead to even better performance of a GP/GPM
approach than the presented unrestricted mutation op-
erator.

The role of crossover in a GP/GPM approach and
the relationship between crossover and mutation in that
context call for intense research.

Obviously, the phase of repairing an illegal raw se-
quence is essential to a GP/GPM approach. We have
presented a repairing type that replaces an illegal sym-
bol by a legal one.

However, repairing could also be done by inserting or
deleting symbols. For instance, the illegal raw sequence
a++b can be turned into, for example, a+a+b by inserting
a between the addition operators. On the other hand,
the sequence can be transformed into a+b by deleting an
addition operator.

Further research must go into potential connections
between convergence properties of a GP/GPM approach
and the type of employed repairing.

Finally, the GP/GPM approach and the common GP
approach must be compared on a large set of further hard

and diverse problems, using different genetic codes.

Bibliography

A.V. Aho et. al.: Compilers. Addison-Wesley. 1986.
W. Banzhaf: Genotype-Phenotype-Mapping and Neut-
ral Variation — A case study in Genetic Programming.
In: Y. Davidor et al. (eds.): Parallel Problem Solving
from Nature III. Berlin: Springer. 1994.

M. Eigen: Steps toward Life: a perspective on evolution.
Oxford: Oxford University Press. 1992.

M. Kimura: Evolutionary rate at the molecular level.
Nature 217, 624-626. 1968.

M. Kimura: The Neutral Theory of Molecular Evolution.
Cambridge: Cambridge University Press. 1983.

J.R. Koza: Genetic Programming. Cambridge (USA):
MIT Press. 1992

T. Mukai: Experimental Verification of the Neutral The-
ory. In: T. Ohta et. al. (eds.): Population Genetics and
Molecular Evolution. Berlin: Springer. 1985.

H.-P. Schwefel: Evolution And Optimum Seeking. New
York: Wiley. 1995.

J.D. Watson et al.: Molecular Biology of the Gene. Am-
sterdam: Benjamin / Cummings Publishing Company.

1987.



