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ABSTRACT
We propose an evolutionary feature creator (EFC) to ex-
plore a non-linear and offline method for generating features
in image recognition tasks. Our model aims at extracting
low-level features automatically when provided with an ar-
bitrary image database. In this work, we are concerned with
the addition of algorithmic depth to a genetic programming
(GP) system, hypothesizing that it will improve the capac-
ity for solving problems that require high-level, hierarchical
reasoning. For this we introduce a network superstructure
that co-evolves with our low-level GP representations. Two
approaches are described: the first uses our previously used
“shallow” GP system, the second presents a new “deep” GP
system that involves this network superstructure. We eval-
uate these models against a benchmark object recognition
database. Results show that the deep structure outperforms
the shallow one in generating features that support classifi-
cation, and does so without requiring significant additional
computational time. Further, high accuracy is achieved on
the standard ETH-80 classification task, also outperforming
many existing specialized techniques. We conclude that our
EFC is capable of data-driven extraction of useful features
from an object recognition database.

Categories and Subject Descriptors
I.5.4 [Computing Methodologies]: Pattern Recognition—
Computer Vision; 1.2.8 [Computing Methodologies]: Ar-
tificial Intelligence—Problem Solving, Control Methods, and
Search; I.2.2 [Artificial Intelligence]: Automatic Program-
ming—Program synthesis

General Terms
Algorithms, Design, Experimentation

Keywords
pattern recognition, computer vision, object, genetic pro-
gramming, TEF, deep learning
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1. INTRODUCTION
In order to achieve greater autonomy in pattern recogni-

tion, we need the ability to extract representations directly
from databases. This is especially true for computer vi-
sion, where large dimensionality is the norm, and sample
distributions tend to be dense and noisy. Operating directly
on the original, raw pixel space allows for the extraction of
useful low-level patterns and features not captured by tra-
ditional vision-based routines. This is now an active area
of research, with many strategies being explored, including
wavelets, histograms, and others [27, 26, 8, 35, 24].

Our present work concentrates on evolutionary computa-
tion (EC). There is a long history of the use of EC in image
processing tasks [1, 2, 11, 12, 15, 19, 34, 36, 32]. Genetic
programming (GP), in particular, is known to generate ver-
satile and self-adapting solution structures [29, 10]. Flexible,
rather than intuitive, representations are especially critical
in applications for which techniques inspired by human vi-
sion might be suboptimal, such as satellite, multispectral,
or medical imagery [30, 13, 31].

One approach to evolutionary image classification is our
design and use of transform-based evolvable features (TEFs),
the key ingredient in a larger evolutionary feature creator
(EFC). Here, a collection of genetic programs are evolved as
transformations on the space of images, which are evaluated
for their ability to create descriptions of the images. This
approach was first introduced in [17], then applied to various
challenges such as the recognition of artistic styles [18], or a
form of muscular dystrophy in biological cell images [16]. In
the latter case, our technique matched the state of the art.
The advantages of using TEFs are four-fold:

• the discovered transforms and their descriptions can
be computed in a single pass over the image;

• transforms are easily visualized and interpreted;
• transforms are represented as a simple mathematical

expressions, easily interrogated or modified;
• we can evolve any number of distinct features in a nat-

ural way.

Here we will apply our system to an object recognition
benchmark, the ETH-80 dataset [22]. Object recognition
involves learning to classify objects from any of several per-
spectives (for instance, an image of a mug from the top looks
like a circle, while from the side it looks like a cylinder with a
handle). As such, higher-level representations are generally
beneficial, allowing for more primitive features to be recom-
bined in non-linear ways. For this reason, object recognition
is a common target of deep learning systems [4], a branch of
neural computation often applied to computer vision. Neu-



ral networks are considered “deep” if there are more steps
between the inputs and outputs—implying a greater capac-
ity for abstraction—as opposed to“shallow” representations,
where a dictionary of sub-representations are combined sim-
ply (e.g. as in support vector machines, SVM). In deep learn-
ing, a network will implicitly create low-level and high-level
features simultaneously while learning, expressing them as
sub-networks. For a wide class of problems, deeper rep-
resentations are known to be exponentially more effective
than shallower representations, but are also known to con-
tain more local minima [5]. Deep representations have been
highly successful recently in vision problems [21, 7].

Here we consider a new, deep version of our evolutionary
system. In addition to our evolving sub-representations (the
TEFs), we also co-evolve a network superstructure connect-
ing those TEFs. This new superstructure will allow for the
re-use of existing TEFs as inputs to more specialized (i.e.
deeper) TEFs. We will contrast this new system against
our original, “shallow” setup. It is not obvious that this ad-
dition of depth to a shallow GP-based system will be useful:
GPs are more malleable than perceptrons or SVM kernels,
and are innately capable of representing hierarchical knowl-
edge. Yet, while GPs can theoretically recreate some depth
on their own, our intuition is that such a representation will
not be evolvable. Rather, our reasoning is that an imposed
two-level system will allow for more primitive features to
co-evolve with higher-level representations while retaining
interim information as a working output.

We are not the first to use a deep network representa-
tion for GP-based image processing. GP-based network
systems have already generated successful image segmen-
tation methods [33, 23], which are partial inspiration for
this work. There are several important differences with our
model, however: firstly, we aim for feature extraction for
classification; secondly, our system co-evolves both network
structure and the component sub-representations simultane-
ously; and thirdly, our system uses a classifier as a wrapper,
meaning that the extracted features need to support a clas-
sifier rather than solve the problem directly. This last point
allows for different, specialized classifiers to be swapped in
and out as desired—as we shall demonstrate—and for ex-
pertise to be located at a later stage.

2. THE DATA
The ETH-80 database, created by Leibe and Schiele [22],

is an object database composed of eight categories (typically
toys, mugs or fruits), each consisting of ten instances or “ob-
jects”, photographed from 41 views. This makes 8×10×41 =
3280 images in total. Figure 1 shows one particular view for
each object, all from the same angle (here we preprocess the
images by scaling them to 80 × 80 pixels and converting to
grayscale). A typical recognition task consists of predicting
the category of a previously unseen object.

For each run, we divide our data into three sets: a training
set, which is used to train a classifier; a validation set, used
by the fitness function to evaluate any particular classifier;
and a test set to evaluate the final result of the evolution-
ary process. Each set contains a certain number of objects,
where each object means a series of 41 images.

Initially (Section 4.1), we choose 24 objects as validation
objects (i.e., 24×41 = 984 images), and 8 objects as test ob-
jects (i.e., 8× 41 = 328 images). First, we evolve a good so-
lution using the validation data as a fitness function. Then,

�����������	��
����������
��������
���������	���

���
��������������	��
����������
���������������������

Figure 1: Samples from the ETH-80 database. There

are 8 categories of 10 objects each. Each image shows

a single view (from 41) of one object. One set of test

objects (column in dark red frame) and three sets of val-

idation objects (columns in light green frames) are high-

lighted. Each column contains a total of 8 × 41 views

(other 40 not shown).

we evaluate the highest fitness solution on the test data to
obtain our test accuracy.

Later (Section 4.2), we also choose 24 objects as validation
objects, leaving 8 test objects aside. Evolution proceeds as
above, using the validation set to compute fitness. However,
once evolution is complete and we have extracted our highest
fitness solution, we compute the test accuracy for each of
the 8 test objects separately. That is, for each test object,
we take the remaining 79 objects to create a new training
pool, and evaluate the accuracy on that test object. This
latter measure, called the leave-one-object-out accuracy, is
the traditional evaluation metric for the ETH-80 database.

3. THE MODEL
We begin with a high-level overview of our original model

(the interested reader should consult [16] for details). Next,
we discuss the new features.

Our model, the EFC, operates on a provided database of
images, divided into a finite number of classes. The ultimate
output of the system will be a collection of easily computed
features well-suited for classification of the database by some
particular classifier. The EFC consists of two parts: an
evolutionary algorithm, and a collection of feature-extracting
individuals or simply “individuals”.

An individual is a tuple: (n, T1, ..., Tk,M, σ) where n is a
neighbourhood size, Ti is a transform-based evolvable fea-
ture, M is a dimensionality-reducing function, and σ is a
classifier. When presented with an input image, an individ-
ual will process it as follows (Figure 2):

1. compute a collection of transformations of the image
using its TEFs Ti;

2. convert the transformed images to a feature vector via
the moment function M ;

3. feed the feature vector to classifier σ, which will return
a class label.
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Figure 2: Overview of a feature-extracting individual.

First, the original image is transformed by a collection of

TEFs Ti. Next, each transform is converted to numerical

values via the moment function M . Finally, the feature

vector of moments is classified.
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Figure 3: The neigh-

bourhood of a pixel,

VN-25, is mapped

to a prioritized one-

dimensional represen-

tation, which is fed to

a genetic program.

A TEF is a genetic program which operates on the pixel
space of the image as a sliding window. For each pixel in
the source image, a neighbourhood is collected and passed
to the TEF, which returns a real value in [0, 1]. This new
value is used to define the intensity of the corresponding out-
put image pixel. While neighbourhoods may vary (there is
evidence that the EFC can self-select an appropriate neigh-
bourhood size), here we simply use a neighbourhood of type
VN-25 (Figure 3).

We use a single dimensionality-reducing function M , the
first geometric moment. As in much previous work, informal
experimentation convinced us that this was the best choice.

Our present work diverges from previous versions of the
EFC in two ways: the chief modification is the inclusion of
a network superstructure organizing the relations between
TEFs. This allows for the generation of depth in the result-
ing transforms, as some TEFs can build upon the lower-level
results of previous TEFs. A second change is the usage of
Linear Genetic Programming (LGP) as the representation
of the TEFs.

3.1 LGP representation for TEFs
There are two main motivations for using LGP: first, LGP

is known to be naturally parsimonious, which is a desirable
trait for our transforms; second, LGP is very easily con-
verted to computer code—including, potentially, assembly
code—which allows for the easy conversion of an LGP pro-
gram to a compilable and fast machine-independent code
listing. For reasons of verification and export of results from
the system, this is also a desirable property.

Table 1: Pool of functions and actions on inputs (a, b).

func. action func. action

plus a+ b max max{a, b}
minus a− b min min{a, b}
times ab abs |a|
sqrt

√

|a| square a2

inv 1/a, or thresh 1 if a > b,

1 if |a| < 0.0001 0 otherwise

pow ab, if defined log log a, if defined

1 otherwise 1 otherwise

dist
√
a2 + b2

Our implementation of LGP closely follows [6]. An LGP
program consists of

• 25 initial registers, for the inputs from the VN-25 neigh-
bourhood

• 5 additional registers, initialized to genetically con-
trolled values in [0, 1]

• between 2 and 100 binary program statements
• a return statement, returning the contents of the first

register (if necessary, the return statement is forced
into the range [0, 1] by using the closest extreme value).

Our pool of functions is shown in Table 1.
We can mutate an LGP program through two forms: micro-

mutation and macro-mutation, where the former reinitializes
existing elements with probability pM , and the latter adds
or removes a program statement. When mutating an LGP
program, we choose macro-mutation with probability pmut,
otherwise we apply micro-mutation.

We will refer to the effective size of an LGP program as
the number of non-neutral program statements. Note that
this is an over-estimate of the complexity of a program, since
some non-neutral program statements might be ineffective
(e.g., a = a+0). The mean effective size of an individual is
the mean of the effective size of each of its transforms.

3.2 OrigEFC
We will refer to our original EFC system with LGP repre-

sentation as OrigEFC. Like previous version, this is a shallow
application of a series of transforms to the database.

As in previous work, we use four genetic operators: mu-
tation, crossover, merger, and pruning. All are identical to
previous work, except that intra-transform mutation now
mutates an LGP program.

3.3 DeepEFC
Our primary extension of the EFC model will be termed

DeepEFC, where we add a network structure to the original
EFC representation. In this case, we view each transform as
a linear list of functions, which is applied either to the raw
images or to the outputs of previous transforms.

Thus, a DeepEFC individual can be written as

I = (n, (t1, T1), ..., (tk, Tk),M, σ),

where n is a neighbourhood size, M is a statistical moment,
σ is a classifier, and (ti, Ti) is a target-TEF pair. The target
ti is a positive integer, interpreted either as the index of a
preceding TEF Tj (in which case ti = j) or as an indicator
of the original image.



Given an image, denoted by f , a DeepEFC individual:

• applies the first TEF directly to f , producing image
f1 = T1(f)

• for each subsequent target-TEF pair (ti, Ti):

– renormalizes the index: j = (ti mod i), so that it
points to a preceding TEF Tj , where j ∈ [0, i− 1]

– gets the source image fj to be used:

∗ if j = 0, fj is the original image f

∗ if j > 0, fj is as defined by previous iteration

– applies the TEF to the source image:

∗ fi = Ti(fj)
• computes the complete feature vector:

v = {M(f), M(f1), ..., M(fk)}
• returns the class label σ(v).

Thus, an individual now has its TEFs organized in a net-
work, where one TEF might operate on the output of a pre-
vious TEF. By chaining the computation of the TEFs, we
can compute a deep individual in the same amount of time
as a shallow individual, assuming an equivalent complexity
in terms of number and composition of TEFs.

A DeepEFC individual can be initialized in the same man-
ner as an OrigEFC individual, with a random, positive in-
teger chosen for each ti value. With probability 0.5 we set
ti = 0 under the assumption that the majority of represen-
tations should be shallow.

All genetic operators applied to a DeepEFC individual are
the same as for OrigEFC, where target-TEF pairs are always
treated as a single unit. Thus, the crossover operator will
swap target-TEF pairs between individuals, a merger will
create an individual with a large list of target-TEF pairs
from two source individuals, and pruning will delete a target-
TEF pair from an individual. We can mutate a DeepEFC
individual in the same manner as an OrigEFC individual,
except that we also have some chance of mutating each ti
value. In these cases, the ti value is reinitialized randomly.

3.4 Evolutionary Algorithm
Our system is driven by a steady-state evolutionary algo-

rithm. A population of npop individuals is initialized and
evaluated for fitness. Next, for neval − npop iterations, we

(a) select an individual via a tournament of two randomly
chosen individuals;

(b) select an operator from crossover, merger, or pruning,
with probability pcross, pmerge, and pprune respectively.
If none was selected, we choose mutation with strength
pmut (see [16] for operator definitions);

(c) in the case of crossover or merger, we select a second
individual via tournament;

(d) we replace the worst individual from the initial tour-
nament in (a) with the result of the operation.

Thus, we execute exactly neval evaluations in total.
The complexity of the training is linear in O(neval nim|f |),

where nim is the number of images in the training and vali-
dation sets, and |f | is the number of dimensions in an image.

The fitness F of an individual I is the generalized sensitivity-
specificity:

F (I, V ) =
∏

categories c

(1− FPR(I, V, c))

where V denotes the set of validation images, and FPR is
the False Positive Rate of the classifier over the images of
category c. We use this product—rather than, say, simple

classification accuracy—to discourage local minima when a
classifier learns to recognize a single category but not oth-
ers. To report results, however, we will use the classification
accuracy. The winner of a tournament between individuals
I1 and I2 is:

win(I1, I2) =







argmin
I

nT(I) ; if |F (I1)− F (I2)| < δpars

argmax
I

F (I) ; otherwise

where δpars is a parsimony threshold and nT(I) is the num-
ber of TEFs in individual I .

Following an informal parameter search of approximately
50 trial runs, we found the following parameter set to max-
imize the test fitness:

max number of initial TEFs 3 nbhd. VN-25

max number of TEFs 20 δpars 0.001

npop 800 neval 15 000

pmut 0.025 pcross 0.33

pmerge 0.01 pprune 0.025

Unless otherwise stated, these parameters will be used for
all following experiments. Note that this choice was made
based on the expected maximization of the OrigEFC model,
not the DeepEFC, and hence, if any advantage exists, we
expect it to favour the original technique.

4. RESULTS AND ANALYSIS

4.1 Model comparison
Initially, we compare the result from OrigEFC and Deep-

EFC on the ETH-80 database. For this section, we limited
the test set to include the objects indexed “1” in each cate-
gory (the second column in Figure 1), while the validation
objects were randomly picked for each run. Constraining
our choice of test objects to these particular ones is a set-
ting we believe to be of greater than average difficulty based
on the classifier accuracies that we computed in our early
explorations. We do so to limit the variance due to selection
of the test object and better see the stochasticity result-
ing from the use of an evolutionary algorithm. Note that
this implies lower test accuracies than is generally possible,
due to both the choice of test objects and less training data
(80− 8 = 72 left for training, instead of 79).

First, we looked at the performance of OrigEFC. The evo-
lution of the classification accuracies for one typical run is
shown in Figure 4. In general, evolution was successful, with
individuals steadily increasing in fitness over time. Over
about 15 independent runs, final test accuracies had a mean
of 0.809 (s.d. 0.033) using the original first nearest neigh-
bour (1-NN) classifier.

Generally speaking, test accuracy increased with training
fitness, although there were occasional exceptions. The sys-
tem did not, in general, overfit: on the contrary, generally
there was substantial underfitting, with test accuracy ap-
proximately 20% higher than training accuracy. This means
that our choice of validation technique (24 objects) was ro-
bust; it also suggests that running the experiments for more
time might generate better results.

Next, we performed identical experiments on DeepEFC,
using the same parameters as above, and again constraining
the choice of test objects. In this case, evolution followed
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Figure 5: Comparison of test accuracies for several inde-

pendent runs of OrigEFC (orange) and DeepEFC (blue)

using several classifiers.

a very similar course, that is, a steadily increasing fitness
over time, and substantial underfitting. The final mean test
accuracy for about 15 independent runs of the DeepEFC
system was 0.838 (s.d. 0.029) using the 1-NN classifier.

A comparison of the test accuracies achieved by OrigEFC
and DeepEFC can be seen in Figure 5. We also consider the
results re-evaluated via two additional classifiers: logistic
regression and a neural network. Both are implemented via
Weka [37] using default values. For all classifiers, a Welsch’s
two-value t-test confirms that the difference between mean
values is significant (p < 0.05 in all cases), therefore that
DeepEFC is an improvement over OrigEFC.

A second question we had was about the complexity of the
evolved LGP programs. The mean effective size of the most
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in our example OrigEFC run.

fit individuals for each run is shown in Figure 6. Our first
note is that our intuition regarding LGP was correct, the
programs are parsimonious with an average size of six or
seven program statements (see the appendix for samples):
programs of this size can easily be analyzed by a human.
This is a natural consequence of the use of LGP, as we did
not put any pressure toward small LGP programs like we
did toward a small number of TEFs.

A second note regarding the mean effective size is that
there is no substantial difference between the OrigEFC and
the DeepEFC program sizes. Indeed, with a mean program
length of approximately six or seven statements, it is highly
unlikely that the TEFs themselves are performing any com-
putation that might be reasonably considered “deep”. Thus
if either system is capable of hierarchical reasoning, it most
certainly comes from the network structure or the classifier.

A final note concerns the resulting size of the solutions.
Since each TEF must be computed for each image, more
TEFs imply greater computational complexity. We plot the
number of TEFs of the most fit individuals for both groups
in Figure 7. There seems to be some pressure toward larger
solutions for DeepEFC than for OrigEFC, but this differ-
ence is not obviously significant (p > 0.3 by a Welsch’s two-
value t-test). Complicating this picture, it appears that our
runs were constrained not by evolutionary pressure, but in-
stead by our artificially imposed maximum number of TEFs.
Figure 8 shows the evolution of the number of TEFs for our
example run with OrigEFC. In this case, it is evident that
evolution was pressing for larger solutions. Hence, it is dif-
ficult to predict what would happen if our solution size was
fully unconstrained. We conclude that in this particular
case, there was no significant additional computational cost
to running DeepEFC compared with OrigEFC, but note that
less restrained parameters might lead to different results.
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Figure 9: Illustration of part of the network comprising

our exemplar individual: transforms T6 and T16 show in-

creasingly specialized edge detectors; transform T1 gen-

erally serves to emphasize lighter areas of the image;

transform T3 reveals sharp diagonal transitions in the

already segmented lighter areas.

4.2 Evaluation of DeepEFC using all objects
Here we re-evaluate the DeepEFC technique using ran-

domly chosen test objects. As before, a collection of features
is created having kept eight randomly chosen objects as test
objects, one from each category. Once evolution is complete,
however, we use the resulting collection of features to clas-
sify one test object, having re-trained the classifier using the
other 79 test objects as training data. Thus, each run allows
us to evaluate eight of the 80 test objects.

Since our technique is stochastic, we launched 20 indepen-
dent runs (i.e. 160 evaluations in total, including at least
one of each object). All parameters were the same as above,
except for longer runs (neval = 20 000). As before, these tri-
als showed some underfitting, and generally increasing test
accuracies with time (again, it is possible that running the
algorithm for more time might yield better results). The
mean leave-one-object-out classification accuracy using the
original 1-NN classifier, a neural network, and logistic re-
gression, are:

classifier mean test accuracy s.d. test accuracy

1-NN 0.839 0.201

neural net 0.890 0.171

logist. reg. 0.902 0.168

It should be noted that the ETH-80 contains several par-
ticularly difficult objects, which bring down the mean values.
The median classification accuracy, using logistic regression
as a classifier, is 0.950.

4.3 Exemplar individual
Here we analyze one exemplar individual, drawn from one

DeepEFC after 15 000 evaluations. A full listing of the ex-
emplar individual’s genome is in the appendix.

It is clear that although depth is used, it is not extensively
used. No transform is more than two steps deep, and most
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Figure 10: Illustration of the spread of values for trans-

forms T1, T3. Best viewed in colour.

transforms operate on the original images. This is typical of
our DeepEFC runs.

Figure 9 shows a sub-network of the exemplar individual,
containing a couple of depth-two pathways. The benefits of
increased specialization via depth can be seen here.

For instance, T1 is a transform which (loosely) extracts the
light-coloured sections of an image. Doing so discriminates
between cups and apples on the one hand (the two bright-
est categories), and the remainder of the objects on other
hand. The deeper T3 transform highlights subregions from
the bright regions already extracted, marking sharp transi-
tions in the diagonal direction. This increased specialization
serves to discriminate objects without sharp transitions in
light-coloured regions, i.e. the fruits (Figure 10).

Similarly, T6 is a rather general edge detector. While it
has some discriminatory power, it does not favour any par-
ticular class. The deeper T16 transform, however, highlights
a subset of these edges, which is effective at distinguishing
between cars and pears.

As in our previous work with the EFC, TEFs range from
very general to very specific. Edge detectors are common, as
one would expect in an object recognition task. But some
TEFs are also highly specialized: for the ETH-80, distin-
guishing between horses, dogs, and cows is the most difficult
sub-problem. Our exemplar individual discovered a trans-
form, T10, which serves no other purpose than highlighting
the spots on certain cow objects (Figure 11).

5. COMPARISON TO PREVIOUS WORK
The ETH-80 is a well-studied benchmark database with

many results reported. Recent years, in particular, have
seen rapid improvements in accuracy. Table 2 displays a
subset of significant works on this database, including the
most recent and the best, and contextualize our results. In
all comparisons, however, it should be stressed that the EFC
is a general-purpose system, and thus our application to this
domain is rather naive. In particular, it should be remem-
bered that our results are emergent, i.e., our model includes
no preprogrammed low-level features or descriptors, no pre-
selection of features, and no cognitive model of 3D objects.
Our image sources were also constrained to grayscale.

Nilsback and Caputo utilized a multi-voting system under
a decision tree classifier [28]. Bajramovic et al. considered
several variants of nearest neighbour search in the context of
optimizing an accuracy/runtime trade-off [3]. Ling and Ja-
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� ������ � ������ Figure 11: “Cow-

spot detector”: (top)

spread of M(T10(f))

values by category;

(left) action of trans-

form on sample im-

ages.

Table 2: Comparison of reported category recognition

accuracies for the ETH-80 database by increasing values.

features (+ classifier) accuracy

LDA [20] 0.652

biased discriminant analysis [20] 0.741

texture histograms + dec. tree [22] 0.798

nearest-neighbour variants [3] 0.840

colour, contour + dec. tree [22] 0.864

morphological + LCDP [14] 0.880

inner-distance, textures + dec. tree [25] 0.881

DeepEFC + logist. reg. (this work) 0.902

active sampling, metric learning + 1-NN [9] 0.903

colour, contour + multi-cue dec. tree [22] 0.930

Multivoting + dec. tree [28] 0.971

Complex histograms + SVM [24] 0.977

cobs designed a measure of inner distance in shapes, extract-
ing a new means of representing the shape and augmenting
with a texture description [25]. Kwak and Oh apply sev-
eral forms of linear feature extraction techniques to PCA-
reduced features [20]. Hu et al. use several morphological
strategies to improve shape retrieval [14]. Ebert et al. rely
on a combination of active sampling and metric learning.
Their metric improves performance for many classifiers [9].
The best results to date come from Linde and Lindeberg,
who defined a collection of low-level descriptors, which led
to the definition of a multi-dimensional basis for histograms,
further reduced by PCA. These histogram descriptions were
then optimized via SVM [24].

6. CONCLUSIONS
In this paper, we applied a GP-based evolutionary feature

creator to a benchmark object recognition problem. Our re-
sults were less than state-of-the-art, yet higher than many
specialized techniques. Given that our system is a naively
applied, general purpose machine, and that our features are
entirely emergent from the original data source, we consider
this to be a striking demonstration of the capacity for arti-
ficial evolution to automatically extract features.

Further, we contrasted a “shallow” and “deep” approach,
showing that the latter generated improved results using the

same computational time and solution complexity. This sug-
gested that GP might benefit from deep representations in
the same way that neural networks do, promising applica-
bility to a wider range of problems.

In deep learning, however, it is well understood that in-
creasing the depth of a chain of representations can generate
more local optima. This problem almost certainly exists in
the present system. It is an intriguing and unexplored ques-
tion whether or not the solutions from the neural network
community (e.g., pretraining via auto-association or sparse
coding) could be applied to GP-based approaches as well.
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APPENDIX
Mathematical form of all target-TEF pairs from our ex-
emplar individual. Note that some redundancy has been
removed, including a redundant and an empty transform.
Transforms are listed in order of the information gain of the
resulting features.

TEF source expression

T13 orig. log (|i3 − 0.614| + i9)

T1 orig.
(1−i22)

(0.611−i22)

T17 T2 (i19)(i24)0.749

T5 orig. thresh
(

√

|i5|, i12

)

− (1 − i17) + log (i21)

T3 T1

(

i24
i0

− 0.958

)

i18

∅ – Id

T12 T3 i14 +
√

(i2)2 + (i16)2 · i1

T14 orig.
(

thresh
(

√

|i5|, i21

)

− (1 − i17) + log (i21)
)

T16 T6
log (log (i0))

(

|0.333+i21 |−log (0.333)·
i4
i7

)

T4 orig. min {i16, 0.595}

T9 orig. max {0.406 + |i3| , i13}

T6 orig.
min{i6,i9}

i23

T7 orig. |(1 − max {i2, i24})| − max {i3, i0}

T10 orig.

√

√

√

√

√

∣

∣

∣

∣

1 − 1
i23

∣

∣

∣

∣

+



log (i20)

1
i10





2

T2 orig. |min {i9, i19} − i10|i14

T15 T11

∣

∣

∣ min{i6, thresh (i16, i20)} −

min

{

min {log (i20), (i14 − i7)} ,

√

(i3)2 + (i19)2
}

∣

∣

∣


