
Evolving blackbox quantum algorithms using
genetic programming

RALF STADELHOFER,1 WOLFGANG BANZHAF,2 AND DIETER SUTER3

1Department of Computer Science, University of Dortmund, Dortmund, Germany
2Department of Computer Science, Memorial University of Newfoundland, St. John’s, Canada
3Department of Physics, University of Dortmund, Dortmund, Germany

(RECEIVED February 21, 2005; ACCEPTED June 29, 2007)

Abstract

Although it is known that quantum computers can solve certain computational problems exponentially faster than classical
computers, only a small number of quantum algorithms have been developed so far. Designing such algorithms is compli-
cated by the rather nonintuitive character of quantum physics. In this paper we present a genetic programming system that
uses some new techniques to develop and improve quantum algorithms. We have used this system to develop two formerly
unknown quantum algorithms. We also address a potential deficiency of the quantum decision tree model used to prove
lower bounds on the query complexity of the parity problem.
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1. INTRODUCTION

Recently, the concept of using quantum physical devices to
perform computation has received much attention caused
by the celebrated factoring algorithm proposed by Shor
(1994). This algorithm provides an exponential speed-up in
comparison to all known classical factoring algorithms.
Unfortunately, increased efforts following this promising re-
sult did not return any further developments as impressive.
More recent results have cooled expectations that proved to
be too optimistic (Bennett et al., 1997; Bernstein & Vazirani,
1997; Beals et al., 2001), and it still remains unclear whether
quantum computers (QCs) will provide an alternative super-
ior to classical computation.

Yet the concept of computational power provides a funda-
mentally new language for studying the relationship between
classical and quantum physics. Therefore, even modest
speed-ups of quantum algorithms (QAs) compared to classical
algorithms might provide further insight into the fundamental
differences between classical and quantum physics. This can
be helpful in estimating the computational benefit of QCs.

Unfortunately, the design and development of QAs is a
very cumbersome task, mainly because of the nonintuitive
character of quantum physics. Thus, it is reasonable to inves-

tigate automated algorithm design techniques in the develop-
ment of new QAs. The usage of genetic programming (GP)
was pioneered by Williams and Gray (1998), who used this
approach to decompose a given quantum transformation
into a sequence of elementary quantum gates. Another
approach, used by Spector et al. (1999), enabled the develop-
ment of quantum circuits without knowing the quantum
transformation in advance. Since then, several related strate-
gies using GP to aid the development of QAs have been
proposed and investigated by several authors (e.g., Leier &
Banzhaf, 2003a, 2003b; Massey et al., 2004).

Here we present our GP system that we used to develop two
formerly unknown better-than-classical QAs. We start with
an introduction to quantum computation by means of the
blackbox model of computation in Section 2. In Section 3
we present our GP system and discuss the conditions a fitness
function should fulfill to facilitate the development of QAs.
The QAs that we developed are presented in Section 4.
Section 5 concludes.

2. QUANTUM COMPUTATION AND THE
BLACKBOX MODEL OF COMPUTATION

An informative introduction to the complex topic of quantum
computation can be found in Rieffel and Polak (2000). For a
comprehensive overview we defer the reader to the book of
Nielsen and Chuang (2000).
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A large class of QAs can be formulated using the blackbox
model of computation (Beals et al., 2001). In this contribution
we restrict our investigations to blackbox problems only.

2.1. Blackbox model of computation

A blackbox X¼ (x0, x1, . . . , xN21), also referred to as an ora-
cle, consists of N Boolean variables xi with xi [ f0, 1g. On
input i, the oracle returns the Boolean variable xi. Usually
one wants to compute a Boolean property p(X ) of such a
blackbox using as few oracle queries as possible. The number
of these queries is also called query complexity, which is the
relevant complexity measure in this context.1 A classical algo-
rithm that computes property p(X ) of a blackbox X
can be represented by a decision tree with the kth query
depending on the outcome of the k 2 1 previous queries
(see Fig. 1).

Consider, for example, the parity problem: one wants to
know if a binary string xN21xN22 � � � x0 of length N contains
an even or an odd number of entries xi with xi ¼ 1.

As can be seen in Figure 1, a classical decision tree that
computes the parity of the blackbox X¼ (x0, x1) has to query
the two elements one after the other.

Before we introduce the notation and essential ideas of
quantum computing, we want to stress the main resource
used by QCs to reduce the number of oracle queries: it is the
exploitation of superpositions and interference of states that en-
ables QCs to query several blackbox elements simultaneously.

From now on we distinguish between single-issue QCs and
ensemble QCs. A single-issue QC denotes a single quantum
system like the ions of an ion trap that is used for computation.
An ensemble QC denotes a large number of quantum systems
that are used for computation. The NMR sample of a liquid
state NMR-QC, for example, contains ~1018 molecules,
each a valid QC.

2.2. Single-issue QCs

A bit is defined to be either in the state 0 or in the state 1,
whereas a quantum bit (qubit) can be in a superposition of
both states. In quantum physics a physical state j (here j
[ f0, 1g) is represented by a vector denoted by j jl. With
this notation the superposition jcl over both states represents

a qubit and looks as follows:

jcl ¼ aj0lþ bj1l with a, b [ C and jaj2 þ jbj2 ¼ 1:

The probability amplitudes a, b are used to calculate the
probabilities jaj2, jbj2 that a measurement returns the state
j0l, j1l, respectively. The probability to measure either state
j0l or state j1l has to be jaj2 þ jbj2 ¼ 1.

A quantum system composed of several qubits is called a
quantum register. The notation ji1i0l ; ji1lji0l ; ji1l � ji0l
with i0, i1 [ f0, 1g describes a two-qubit register; �
denotes the tensor product. This notation can easily be
extended to describe n-qubit registers. A state like
jcl ¼ 1=

ffiffiffi
2
p

(j00lþ j11l) that is not decomposable into a ten-
sor product of the subsystems’ states is called entangled:

jcl ¼ 1ffiffiffi
2
p (j00lþ j11l) = (a1j0lþ b1j1l)|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

qubit 1

� (a0j0lþ b0j1l)|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
qubit 0

,

where a1, a0, b1, b0 [ C. Entanglement is a resource
necessary to query blackbox elements in parallel using super-
positions and binary encoding (see Lloyd, 2000). The states
j00l, j01l, j10l and j11l define the computational basis for
the vector space of two-qubit states. With (1, 0, 0, 0)t ;
j00l, (0, 1, 0, 0)t ; j01l, and so forth, the state jcl above is
represented by the vector (1=

ffiffiffi
2
p

, 0, 0, 1=
ffiffiffi
2
p

)t .
It is well known that any arbitrary quantum operation (uni-

tary transformation) can be decomposed into a sequence of
unitary quantum operations on one and two qubits (Nielsen
& Chuang, 2000). This is somehow similar to the fact that
any Boolean function can be decomposed into a sequence
of elementary logic gates (e.g., NOT, AND, OR). Because
quantum gates are described by continuous parameters it is,
however, only possible to approximate such an operation
by a sequence of elementary one- and two-qubit gates, taken
from a discrete set, up to an error 1 (Nielsen & Chuang,
2000). The elementary one-qubit gates we used in our inves-
tigation are the Hadamard gate H and a discrete set of the
rotation gates Rx(ak) and Ry(ak). The discrete value ak is
calculated byak ¼2pþ k . 2p/j with k [ f1, . . . , jg, where
j [ N is chosen dependent on the desired accuracy of the ap-
proximation. With the Pauli matrices sx, sy, sz and the iden-
tity matrix I defined by

sx ¼
0 1

1 0

� �
, sy ¼

0 �{
{ 0

� �
,

sz ¼
1 0

0 �1

� �
, I ¼

1 0

0 1

� �
,

the one-qubit gates Rx(ak) and Ry(ak) are given by

Rx(ak) ¼ exp �{ak

2
sx

� �
¼ cos

ak

2

� �
I� { sin

ak

2

� �
sx:

Ry(ak) ¼ exp �{ak

2
sy

� �
¼ cos

ak

2

� �
I� { sin

ak

2

� �
sy:

Fig. 1. A classical decision tree that computes the parity p(X ) of the
blackbox.

1 The total number of gates is usually not considered.
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The Hadamard gate is defined by

H ¼ 1ffiffiffi
2
p 1 1

1 �1

� �
.

Hadamard gates are used by us only for convenience since
the one-qubit gates Rx(ak), and Ry(ak) would be already
sufficient to create any arbitrary one-qubit gate U via (see
Nielsen & Chuang, 2000):

U ¼ e{aRx(b)Ry(g)Rx(d) with a, b, g, d [ [0, 2p].

A single discrete two-qubit operation called CNOT-gate,
together with the discrete set of one-qubit gates defined above
is sufficient to provide a complete set of unitary operations
that is capable of approximating any arbitrary unitary opera-
tion up to the desired accuracy (Nielsen & Chuang, 2000).
The CNOT-gate is defined by its action on a two-qubit state:

CNOTjlljml ¼ jlljm � ll with l, m [ {0, 1}: (1)

Here, � denotes the XOR operation between the Boolean
variables l and m. Analogous to a Boolean circuit it is possible
to define a quantum circuit as a directed acyclic graph whose
nodes are labeled by elementary quantum gates like the ones
defined above. Because of reversibility of quantum opera-
tions and the no-cloning theorem (Nielsen & Chuang,
2000) any elementary quantum gate has as many inputs as
outputs. An example of such a quantum circuit on two qubits
together with the final measurements can be found in the
upper part of Figure 2.

2.3. Ensemble QCs

Up to now, we only considered single quantum systems
whose state is known. In this case, one usually speaks of a
pure state of the quantum system. Even in single-issue QCs,

unavoidable decoherence processes turn the initially pure
states into mixed states. Such states cannot be described by
a single quantum state. The appropriate formalism for their
description is the density operator that describes systems
where one only knows the probability pi that a certain pure
quantum state jcil occurs.

Before we can define this operator we have to introduce the
dual state kcj of a quantum state jcl. Using this notation the
scalar product of two quantum states jcl and jfl is given by
kcjfl. With jcl ¼ aj0l þ bj1l ; (a, b)t one gets kcj ;
a*k0j þ b*k1j; (*a*, b*). Using this notation the normali-
zation condition can be formulated as kcjcl¼ aa*þ bb*¼
1. Another necessary concept used in quantum physics is the
concept of the measurement operator, which usually can be re-
presented by a Hermitian matrix. The expectation value kMl
of a measurement described by the measurement operator
M for a quantum system in the pure state jcl is calculated by

kMl ¼ kcjMjcl ¼ tr{M � jclkcj} ¼ tr{Mr}, with r ¼ jclkcj:

Here r denotes the density operator of the pure quantum state
jcl. With jil denoting a basis state of the vector space of our
quantum system, the trace trfAg of an operator is defined by
trfAg ¼ P

ikijAjil with i [ f0, 1, . . . , 2n 2 1g where n de-
notes the number of qubits. A measurement can be described
by a projection operator P. Consider, for example, the state jcl
¼ aj00lþ bj01lþ gj11l. If one wants to know the probabil-
ity to measure the leftmost qubit to be in state j0l the corre-
sponding measurement operator looks as follows:

P0 ¼ j0lk0j � I ¼ 1 0
0 0

� �
� 1 0

0 1

� �
¼

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0
BB@

1
CCA.

Calculation of kP0l returns kP0l¼ jaj2 þ jbj2. This procedure
provides the formal framework to calculate measurement
probabilities for pure states. Nevertheless, as we only

Fig. 2. A quantum circuit is represented by a linear list (linear genome) of the quantum gates used. The sequence of quantum gates is
obtained by reading this linear list from left to right. H [1] denotes a Hadamard gate H that is applied to qubit 1. CNOT [0 1] denotes a
CNOT gate where qubit 0 is the control qubit and qubit 1 is the target qubit.
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consider measurements in the computational basis we added
the absolute squares of the probability amplitudes directly, as
it is obvious which probability amplitudes are involved with-
out using this time-consuming calculation scheme.

A mixed state that is in the state jcil with probability pi is
represented by r ¼

P
i pijcilkcij. The expectation value kMl

for a mixed state is calculated by

kMl ¼
X

i
pikcijMjcil ¼ tr{M � r}:

Let the unitary operator A describe a quantum computation
and let rinit describe the initial state of the quantum
register. The final quantum state rfin can be calculated by
rfin ¼ ArinitAþ, where Aþ is the transposed and complex
conjugate of the matrix A: (Aþ)ij ¼ (A21)ij ¼ A�ji . In our in-
vestigations concerning ensemble QCs we only considered
liquid-state NMR-QCs (an introduction to NMR-QCs can be
found in Nielsen & Chuang, 2000). Here, the initial state is
the thermal state

rth �
1
2n

(I�H) � 1
2n

I�
Xn�1

i¼0
viI(i)

z

 !
, (2)

where we have set h� =kBT ¼ 1 and invoked the high-tempera-
ture approximation. Here, H denotes the Hamiltonian of the
spin system, vi is the Larmor frequency of the ith spin (qubit),
and IðiÞz the corresponding spin operator:

I(i)
z ¼ I� � � � � I� sz

2|{z}
ith spin

� I� � � � � I:

In liquid-state NMR quantum computation one measures the
magnetization of the ith nuclear spin in the molecules of the
NMR sample along the x and y axis. We restricted ourselves
to measurements along the x axis, which are described by
measurement operators of the form

I(i)
x ¼ I� � � � � I� sx

2|{z}
ith spin

� I� � � � � I:

3. EVOLVING BLACKBOX QAs USING GP

In this section we take a closer look at the GP system in the
development of QAs that will be presented in Section
4. Our GP system was used to evolve quantum circuits for
small problem instances on a few qubits only. These circuits
were examined for scalability to find the corresponding uni-
form circuit family and thus the algorithm that solves the
problem. At first we describe how a quantum circuit is repre-
sented by our GP system. Then we present the different oracle
gates used. Because we evolved quantum circuits for single
issue QCs as well as for ensemble QCs the section about fit-
ness functions is divided into two parts.

3.1. Representation of quantum decision trees in our
GP system

As already mentioned in the last section, a computation of a
blackbox’s property can be visualized by a decision tree. Ac-
cording to Buhrman and de Wolf (2002) a quantum decision
tree is defined by a sequence of oracle gates O that represent
blackbox calls, alternating with unitary transformations Ui:

A ¼ UT �O � UT�1 �O � � � U1 �O � U0, with T [ N: (3)

Such a sequence can also be used to simulate classical
decision trees (see Buhrman & de Wolf, 2002). Consider a
single-issue QC; here, the sequence denoted by the unitary
transformation A is applied to the initial state jcinitl ¼ j0 . . .

0l. Measuring the readout-qubit of the final state jcfinall ¼
Ajcinitl returns a binary value. If this binary value equals
p(X ) for all blackboxes one says that the quantum decision
tree computes the property p(X ) of the blackbox encoded
by the oracle gate O.

It is adequate to represent quantum decision trees by quan-
tum circuits. To do that one needs a complete set of one-qubit
and two-qubit gates. In addition, one needs the set of oracle
gates O representing the blackboxes X. In principle, the mea-
surement of a readout qubit should be sufficient to decide the
property p(X ) of a blackbox X; nevertheless, algorithms like
the Deutsch–Jozsa (DJ) algorithm answer the problem by
measuring several qubits (Deutsch & Jozsa, 1992). This pro-
cedure makes it possible to dispense with the additional out-
put qubit and additional quantum operations necessary to en-
code the answer into this output qubit. Now that the answer to
the posed problem cannot be obtained any more by measur-
ing the state of a single qubit (output qubit), the QA has to re-
turn different measurement results for those blackboxes X that
differ in their property p(X ). How this can be realized is
shown in Section 3.3.1. We decided to perform all measure-
ments possible on the final state jcfinall to check if one of
these measurements returns different results for blackboxes
X that differ in their property p(X ).2 If the state jcinitl is en-
coded by n qubits we thus perform all n one-qubit measure-
ments, all n(n 21)/2 two-qubit measurements and so on.3

As in the work of Spector et al. (1999), we have chosen a
linear genome to represent quantum circuits in our GP system
(see Fig. 2). Because a quantum gate is specified by several
parameters like rotation angles, control-qubits, and so forth,
one has to decide where these additional data are to be stored
and how they are to be manipulated by the evolutionary pro-
cess. The most natural method is to consider a quantum gate
and these additional parameters as a unit, allowing the evolu-
tionary process to only modify the unit as a whole. Because
any QA starts with the initial state jcinitl and qubits to be mea-
sured are specified by a global variable, we did not encode

2 We only consider measurements in the computational basis.
3 This corresponds to a total of 2n measurements. This is done to evaluate

the quantum circuit, and therefore has no influence on the scalability of the
quantum circuit.
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these parameters into the genome. As stated in the caption of
Figure 2, the sequence of quantum gates is obtained by read-
ing the genome from left to right.

3.2. Oracle gates

To see if a quantum circuit correctly calculates the property
p(X ) of blackbox X one has to check this circuit for all black-
boxes. The blackboxes are encoded into a quantum system
via the oracle gates O, so these gates provide the fitness cases
the quantum circuit is to be tested with. Depending on the
property a quantum circuit has to compute, the number of
blackboxes (oracles) that are to be tested can grow superexpo-
nentially. Thus, not only the effort to simulate a quantum sys-
tem grows exponentially with the number of qubits, but also
the number of oracles that are to be tested increases quickly
rendering an investigation of quantum circuits with many qu-
bits impractical. One should, therefore, strive to reduce the
number of oracles to be tested.

One possibility to do that is to use an encoding of the black-
box values into a quantum state that enables a reduction in the
number of oracles to be tested. The DJ problem for a
single query qubit can be used to illustrate this procedure.4

Here, the constant blackboxes X1 ¼ (0, 0), X2 ¼ (1, 1) with
p(X1;2) ¼ 0 are to be distinguished from the balanced black-
boxes X3 ¼ (0, 1), X4 ¼ (1, 0) with p(X3;4) ¼ 1. If one em-
ploys the usual definition of the oracle gate

Ojklj0l ¼ jkljxkl, k, xk [ {0, 1}, (4)

one has to test each of the four different oracles. Because the
DJ problem can also be solved by using the following oracle
gate (Collins et al., 1998):

Ojkl ¼ (�1)xk jkl, (5)

it is possible to find a quantum circuit that solves this problem
by testing two oracles only. Using the latter definition returns
the same oracle, up to a global phase shift, for the two con-
stant blackboxes: O1;2 ¼ +I. For the two balanced black-
boxes one gets: O3;4 ¼ +sz. Because global phase shifts
are not measurable, it is not necessary to test all four different
oracles but only the oracle O1 ¼ I and O3 ¼ sz. A further ad-
vantage of this method is that one needs no additional output
register as would be the case with the definition in Eq. (4).

Nevertheless, it depends on the property p(X ) one is inter-
ested in, whether an encoding of the blackbox entry xk into
the phase (21)xk is possible. If, for instance, one wants to
calculate the property p(X1) ¼ 0 and p(X2) ¼ 1 with X1 ¼

(0, 0) and X2 ¼ (1, 1) it is impossible to encode the blackbox
entries into phase shifts, because then both cases become in-
distinguishable for a quantum system as they only differ by a
global phase shift. To see if an encoding into a local phase

shift via Eq. (5) is possible one thus has to check if for every
pair of blackboxes X ¼ (x0, x1, . . . , xn) and X̄ ¼ (x̄0, x̄1, . . . ,
x̄n) the condition p(X ) ¼ p(X̄ ) holds. Here, xk denotes the
negation of the binary variable xk.

Up to now we only considered blackboxes X whose entries
were binary values. In Simon’s problem (Simon, 1994) one
investigates blackboxes X ¼ (x0, x1, . . . , xN21) with xk [
f0, 1, . . . , l 2 1g and l [ N. If one applies the approach of
Eq. (4), one needs an output register size of log2(l) qubits.
Up to now, both, in simulation and in experiments, only a
few qubits are realizable, and thus this approach is not reason-
able for l� 1. Therefore, we used a combined approach
where the blackbox entries with l [ N are encoded partially
into a phase shift and partially into an m-qubit output register.
We write the decomposition xðphaseÞ

k of xk
ðXORÞ for blackbox

entry xk if it is decomposed into part xðphaseÞ
k encoded

into a phase shift, and part xk
ðXORÞ encoded into an output regis-

ter. Consider, for example, blackbox entries xk [ f0, . . . ,15g.
With two output qubits one only can encode four different
values. Therefore, one needs another four different phase
shifts to encode unambiguously. The value xk¼ 13 would thus
be decomposed into xðphaseÞ

k ¼ 3 and xk
ðXORÞ ¼ 01. This

decomposition follows from the binary representation of 13:
1101. The two rightmost values are the assignment for
xk
ðXORÞ, the integer represented by the two leftmost qubits is

the value of the phase shift.
In general, the oracle gate looks like:

Ojkljbl ¼ (z)x(phase)
k jkljb� xk

(XOR)l, z ¼ exp
2p {
l=2m

� �
, (6)

with k [ f0, 1, . . . , N 2 1g and b, xk [ f0, 1gm. Here, we
write b � xk

ðXORÞ to denote the bitwise XOR-operation
between the m-bit value b and the m-bit value xi

ðXORÞ. We
write k to denote the binary decomposition of the integer k.
For m ¼ 0, the blackbox entries are entirely encoded into
phase shifts, which saves log2(l ) qubits. Nevertheless, as
before, not every blackbox problem can be encoded using
this approach. For m ¼ log2(l ) the blackbox entries are
completely encoded into the output register.

In Section 4 we will present a QA that was evolved using
oracle gates as defined in Eq. (6).

3.3. Fitness functions

The definition of the fitness function is the most sensitive part
in setting up the GP system because here one has to make
assumptions that might turn out to be ill-suited for evolving
quantum circuits. The mathematical structure of quantum
physics allows to define a metric on the space of unitary op-
erators, that is, quantum circuits, enabling the assignment of a
step length to mutation and crossover operators. Small muta-
tions, according to this measure, lead to small changes in the
measured expectation values (see Nielsen & Chuang, 2000).
Because the fitness function has to depend on these expecta-
tion values it is desirable that it retains this property. We

4 The term query qubits denotes qubits that are used to address blackbox
elements.
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would like to emphasize, however, that all QAs presented
here were evolved using a fitness function that did not fully
obey this condition.

3.3.1. Fitness function for single issue QCs

We will motivate the definition of the fitness function by
means of the DJ problem for blackboxes with four elements.
Nevertheless, the problems we evolved QAs for that are pre-
sented in this article are the parity problem and a special case
of the hidden subgroup problem and not the DJ problem.
Both problems were treated by our GP system using fitness
functions similar to the one we now discuss.

For four blackbox elements the DJ problem is to distin-
guish between the constant blackboxes X1 ¼ (0, 0, 0, 0),
X2 ¼ �X1 ¼ (1, 1, 1, 1) with p(X1;2) ¼ 0 and the balanced
blackboxes:

X3¼ (0, 0, 1, 1), X4¼ (0, 1, 0, 1), X5¼ (0, 1, 1, 0)

X6¼ �X3¼ (1, 1, 0, 0), X7¼ �X4¼ (1, 0, 1, 0), X8¼ �X5¼ (1, 0, 0, 1),

with p(Xi	3) ¼ 1. According to Section 3.2 this problem can
be solved by encoding the blackbox entries into phase shifts
via the oracle gates defined by Eq. (5). Thus fitness depends
on the measurement results for the four blackboxes X1 ¼ (0,
0, 0, 0), X3¼ (0, 0, 1, 1), X4¼ (0, 1, 0, 1) and X5 ¼ (0, 1, 1, 0).
The oracle gates of the remaining blackboxes differ from the
oracle gates O1, O3, O4, and O5, which represent the four
blackboxes mentioned above by a global phase shift only
(see also Section 3.2).

Table 1 shows measurement probabilities for a fictive
quantum circuit applied to input state jcinitl ¼ j00l. How
well does this circuit decide between constant and balanced
blackboxes? We consider a quantum state ji1i0l to be measur-
able with a sufficient probability if prob(ji1i0l) . 1/N, where
N is the number of quantum states we want to distinguish
(here, N ¼ 4) and prob(ji1i0l) is the probability to measure
state ji1i0l. A binary variable bi1 i0 indicates whether quantum
state ji1i0l fulfills this condition (see Table 2).

Using bi1 i0 for each blackbox X, one has to check whether
bi1i0 ¼ 1 for constant and balanced blackboxes simultaneously.
In this case, the quantum circuit is not able to distinguish be-
tween the different blackboxes. If, on the other hand, there is
a difference in the outcome, we consider the circuit a promising
candidate for solving the problem and the error probability of

this circuit is calculated to check how well the circuit distin-
guishes between the two kinds of blackboxes.

According to Table 2, only the constant blackbox X1 is
mapped to state jcfinall¼ j00l. The quantum circuit is there-
fore able to distinguish between constant and balanced black-
boxes. However, as indicated in Table 1, there is a certain
probability that a blackbox, for instance X3 ¼ (0, 0, 1, 1),
could be classified as constant (with a probability of 15%).
Inspection of Table 1 shows further that the probability of
misclassifying the balanced blackboxes X4 ¼ (0, 1, 0, 1)
and X5 ¼ (0, 1, 1, 0) is 10% in both cases. It can also be
calculated that the error for a constant blackbox is 20%.

It is better, therefore, to have the fitness function depend on
at least two parameters. The first parameter is called clash,
and quantifies how often it is not possible to distinguish be-
tween constant and balanced blackboxes. Another parameter,
worst_error, denotes the highest probability of a misclas-
sification. In the example we have worst_error¼ 0.2, the
error probability that a constant blackbox is classified to be
balanced. As further parameters we used avg_error denot-
ing the average error, oracles to denote the number of ora-
cle gates, and length to denote the total number of quantum
gates used by the quantum circuit.

Similar to the approach used by Spector et al. (1999), these
parameters were used to create a lexicographic fitness func-
tion represented by a vector of the form

f

¼ (clash, worst error, avg error, oracles, length):

The position of the parameters in this vector represents their
priority, decreasing from left to right.

This fitness function is to be contrasted with that of Spector
et al. (1999), who measure the probability of the state of a sin-
gle qubit. The advantage of our approach is that an evolved
quantum circuit that solves the DJ problem has the possibility
to resemble the original one, which decides the property of a
blackbox with 2n elements by n measurements. Therefore,
we do not need additional quantum gates necessary to solve
the problem by the measurement of a single qubit, only. Such
additional quantum gates would make it difficult to extract the
functionality and thus the scalability of a quantum circuit.

3.3.2. Fitness function for ensemble QCs

A liquid-state NMR-QC realizes qubits by the spin states
of the molecule’s spin-1/2 nuclei. Because a liquid-state

Table 1. Measurement probabilities for a fictive quantum circuit

prob(j00l) prob(j01l) prob(j10l) prob(j11l)

X1 ¼ (0, 0, 0, 0) 0.8 0.05 0.05 0.1
X3 ¼ (0, 0, 1, 1) 0.15 0.25 0.25 0.35
X4 ¼ (0, 1, 0, 1) 0.1 0.15 0.15 0.6
X5 ¼ (0, 1, 1, 0) 0.1 0.5 0.3 0.1

prob(ji1i0l), the probability of measuring quantum state ji1i0l after
applying the quantum circuit to j00l.

Table 2. Results obtained from Table 1 by setting the binary
value bi1 i0 ¼ 1 if p(ji1i0l) . 1/4

b00 b01 b10 b11

X1 ¼ (0, 0, 0, 0) 1 0 0 0
X3 ¼ (0, 0, 1, 1) 0 0 0 1
X4 ¼ (0, 1, 0, 1) 0 0 0 1
X5 ¼ (0, 1, 1, 0) 0 1 1 0
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NMR-QC performs its computations on an ensemble of
molecules, the fitness function has to be derived from expec-
tation values kIðiÞx l of the measurement operator IðiÞx as de-
scribed in Section 2.3.

Consider, for example, a two-qubit system. Here, the initial
state is described by

rth ¼
1
4

v0I(0)
z þ v1I(1)

z

� 	
: (7)

In contrast to Eq. (2), we skipped the term proportional to the
identity matrix as it does not contribute to the expectation val-
ues kIðiÞx l.

A quantum circuit described by the unitary transformation
A maps this state to r¼ArthAþ. The measurement of the ith
spin’s magnetization along the x axis is calculated by

kI(i)
x l ¼ tr{I(i)

x r}: (8)

Analogous to the single-issue QC, all combinations of mea-
suring the spins’ magnetization are performed to check if
one of these returns different results for blackboxes X that dif-
fer in their property p(X ). In our example, one therefore has to
calculate kMl for M ¼ Ið0Þx , M ¼ Ið1Þx , and M ¼ Ið0Þx þ Ið1Þx .

To quantify how well a promising circuit solves the prob-
lem, we divided the interval [2jkMlj, . . . , jkMlj] of possible
measurement results in several disjoint subintervals.5 If the
measurement results for blackboxes with p(X ) ¼ 0 belong
to different subintervals than the measurement results for
blackboxes with p(X )¼ 1 we consider the circuit a promising
candidate for solving the problem. To decide how well this
circuit can distinguish between both types of blackboxes
we calculate the minimal distance between the corresponding
measurement results. The variable min_dist denotes this
minimal distance, whereas the variable avg_dist denotes
the average distance.

The fitness function is represented by the vector

f ¼ (clash, min dist, avg dist, orcales, length):

Analogous to the fitness function introduced in the last sec-
tion we used a lexicographic ordering of the vector compo-
nents with clash, the most significant one. Once again,
an optimal circuit would have minimal values in all compo-
nents of its fitness function.6 Nevertheless, we still have the
problem that the component clash does not respect the con-
tinuity of the expectation values in the step length of
mutation operators. When clash ¼ 0, the parameters
min_distance and avg_distance become significant,

and these parameters respect the continuity of the expectation
values in the step length of mutation operators.

4. QAS DEVELOPED BY GP

In this section we present two new better than classical QAs
that were developed with the help of our GP system using the
parameters shown in Table 3.

Both algorithms were found by applying the GP system to
the smallest instances of the corresponding problem. The cir-
cuits returned by the GP system were examined for scalability
to find the corresponding uniform circuit family and thus the
algorithm.

Figure 3 shows the length distribution of the best individ-
ual found in each generation for 60 independent runs of the
GP system for the n ¼ 3 qubit parity problem. This result in-
dicates that 50% of the runs find the optimal quantum circuit
after approximately 375 generations. The genome of an opti-
mal solution is

H[0] 0 Ry[1 95] 0 Rx[2 31] 0 Rx[1 95] 0 H[0]

A run (500 generations) takes about 27 min on a single core of
an AMD Opteron 870 processor. Here, Ry [1 95] denotes
that the one-qubit gate Ry(2 . a95) is applied to qubit 1, where
a95 ¼ p/2. The quantum circuit in the lower part of Figure 4
can be derived from this one by replacing Ry [1 95] with
Rx [1 95] and Rx [2 31] with Rx [2 95]. Nevertheless,
the functionality of the circuit is not altered by these
replacements; hence, the above genome represents an optimal
solution.

The optimal quantum circuit for the n ¼ 2 qubit
parity problem is found with almost certainty after 500
generations (running time ¼ 21 min). One in three runs
of the GP system returned the optimal quantum circuit

Table 3. Parameters of the GP system that evolved
the circuits in Section 4.1 and 4.2.

Population size 500
Max. no. of generations 500
Selection Tournament, elitist
Tournament size 16
Crossover probability 0.05
Creation probability 0.05
Mutation probabilities 0.90

Swap 0.30�0.90
Grow 0.30�0.90
Shrink 0.20�0.90
Shrink2 0.20�0.90

No. of rotation angles 128
Max. no. of gates 100
Max. no. of oracle gates 8
Gate set CNOT, Rx(2 . ak), Ry(2 . ak), H, O

Shrink2 mutation denotes a mutation operator that concatenates
quantum gates. The rotation angle is specified by the integer k [
f0, 1, . . . , 127g via ak ¼2p þ (k þ 1) . 2p/128.

5 By defining an operator norm via kMk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr{MþM}

p
and by applying

Cauchy–Schwarz’s inequality one gets jkMlj 
 jjMjj . jjrthjj. Thus, the inter-
val of possible measurement results can easily be calculated.

6 As the variables min distance and avg distance are to be max-
imized we used their negative values in the definition of the fitness function
to remain consistent with the condition that an optimal fitness function has
minimal values in all of its components.
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for the special case of the hidden subgroup problem (n¼ 3
qubits) when the population contains 2500 individuals
(running time ¼ ~7 min). For n ¼ 4 qubits, the optimal
quantum circuit was found in 3 of 100 runs (running
time¼ ~9 h).

4.1. A quantum algorithm that solves the parity
problem

When the parity problem is formulated as a blackbox prob-
lem, the desired property of parity can be written as the

Fig. 3. This graph shows the length distribution (first, second, and third quartiles) of the best individual in each generation for 60 inde-
pendent runs of the GP system for the n¼ 3 qubit parity problem. The optimal algorithm is presented in the lower part of Fig. 4. A horizontal
bar denotes the median (second quartile). The lower, upper end of each box indicates the first, third quartile, respectively.

Fig. 4. These two exact parity circuits for n¼ 2 qubits (top) and n¼ 3 (bottom) qubits found by the GP system were sufficient to extract the
general scaling mechanism for an arbitrary number of qubits (see Stadelhofer et al., 2005).
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Boolean function:

p(X) ¼ x0 � x1 � � � � xN�1: (9)

Here, � denotes the XOR operation (addition Modulo 2). A
classical computer has to call the oracle with each of the N
possible inputs i to determine p(X ), whereas Beals et al.
(2001) and Farhi et al. (1998) showed that a QC requires
only N/2 oracle calls.

We found an optimal QA in the sense of Beals et al. (2001)
and Farhi et al. (1998). This algorithm can be applied to pure
and mixed states. Variants also found by the GP system could
be optimized for application to ensemble QCs like liquid-state
NMR-QCs such that the number of oracle calls decreases ex-
ponentially relative to a single-issue QC provided the signal/
noise ratio is sufficiently high (Stadelhofer et al., 2005). The
gates used by the QA are Hadamard gate H, NOT gate sx ¼

ıRx(p) and oracle gate O. Queried by the basis state jil the
oracle O defined in Eq. (5) returns the binary value xi [ X en-
coded into a phase shift of the querying state.

By means of the circuit that solves the parity problem for
n¼ 2 query qubits in the upper part of Figure 4 we demon-
strate the functionality of our parity algorithm. With two
query qubits four different blackbox elements can be ad-
dressed; therefore, one only has to check the circuit for the 16 dif-
ferent blackboxes X ¼ (x0, x1, x2, x3) with xi [ f0, 1g. Be-
cause we use oracle gates that encode blackbox elements
into phase shifts it is sufficient to check the circuit for eight
different blackboxes (see also Section 3.2).

The computation starts with the initial state jcinitl¼ j00l that
is transformed into the superposition jcl ¼ 1=

ffiffiffi
2
p

(j00lþ j01l)
by the first Hadamard gate H. Thus, the oracle call queries
two blackbox elements in parallel. To query the remaining
two elements a NOT operation is applied to the remaining qu-
bit, then the oracle is called again. After a final Hadamard op-
eration the final state is given by

jcfinall ¼
(�1)x0�x2 þ (�1)x1�x3

2
j10l

þ (�1)x0�x2 � (�1)x1�x3

2
j11l, (10)

which is equivalent to

jcfinall ¼ (�1)x0�x2
1þ (�1) p(X)

2
j10lþ 1� (�1) p(X)

2
j11l

� �
:

(11)

Thus, one finds the rightmost qubit to be in state j0l if
p(X ) ¼ 0, and one measures this qubit in state j1l if
p(X ) ¼ 1. It follows that the parity of the four elements
of the blackbox can be computed by only two oracle calls
because, due to the superposition over two states, each
single call returns two blackbox elements.

As shown in Stadelhofer et al. (2005), this circuit can be
scaled up to an arbitrary number of qubits.

With our algorithm, parity is obtained by a single one-qubit
measurement compared to the 2n21 measurements necessary
by the parity algorithm proposed by Beals et al. (2001) or to
the n measurements used by the parity algorithm in Farhi
et al. (1998). The latter parity algorithm is somewhat similar
to ours though. Instead of a single NOT operation between
every two oracle calls an n-qubit gate is used, which itself
has to be decomposed into elementary quantum gates. There-
fore, our algorithm is more efficient with respect to the num-
ber of necessary gate operations other than oracle calls.

We also used our GP system to search QAs for ensemble
QCs (liquid-state NMR-QCs) and, indeed, were able to find
the quantum circuits presented in Figure 5 that need fewer
oracle calls than the circuits for single issue QCs presented
above.

These ensemble quantum circuits appear to violate the
lower bounds proven in (Farhi et al., 1998; Beals et al.,
2001). However, as illustrated in Appendix A, these proofs
seem not to apply to ensemble QCs.

4.2. A quantum algorithm that solves a special case
of the hidden subgroup problem

The first instance of the problem we consider in this section is
to distinguish between blackboxes X [ A with A ¼ f(a, a, a,
a)g and blackboxes X [ B with

B ¼ {(a, a, b, b), (a, b, a, b), (a, b, b, a)},

Fig. 5. Mixed-state parity circuits found by the GP system for n¼ 2 (top) and
n ¼ 3 (bottom) qubits. The (p/2)y-gate corresponds to the rotation Ry(p/2).
The measurement-gate symbolizes a measurement of the magnetization
along the x axis. In both cases one measures kIð0Þx l ¼ 0 if p(X ) ¼ 1 and
kIð0Þx l ¼+v0/4 if p(X ) ¼ 0.
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where a = b and a, b [ f0, 1, 2, 3g. To solve this problem we
first tried to encode the blackbox entries entirely into phase
shifts via the oracle gate Ojkl ¼ ({)xk jkl. This approach did
not return satisfactory results. Therefore, we tried the com-
bined approach defined in Eq. (6). As a blackbox call can re-
turn four different values xk [ f0, 1, 2, 3g for k [ f0, 1, 2, 3g
there is only the following possibility to use a combined en-
coding into a phase shift and an output register:

Ojkljbl ¼ (�1)xðphaseÞ
k jkljb� xðXORÞ

k l (12)

with b, xðphaseÞ
k , xðXORÞ

k [ f0, 1g and k [ f0, 1, 2, 3g. Here, the
blackbox entries are decomposed into the two binary values
xðphaseÞ

k and xðXORÞ
k . Consider, for example, the blackbox X

¼ (0, 3, 0, 3): decomposing the blackbox entries into two
binary values returns the alternative representation X0 ¼ (00,
11, 00, 11). One gets

x(phase)
0 x(XOR)

0 ¼ 00, x(phase)x(XOR)
1 ¼ 11,

x(phase)
2 x(XOR)

2 ¼ 00, x(phase)
3 x(XOR)

3 ¼ 11:

The oracle gate Oð0;3;0;3Þ, therefore, looks like

Oð0,3,0,3Þ ¼

1 0
0 1

0 �1
�1 0

1 0
0 1

0 �1
�1 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

The weakness of this approach is that it requires an additional
output qubit. Nevertheless, this still is an advantage over the
two additional qubits necessary for a traditional encoding of
the blackbox entries xk [ f0, 1, 2, 3g into an output register.
In addition, it is still possible to reduce the number of black-
boxes that are to be tested: if one uses the oracle defined in
Eq. (12), the blackbox X1 ¼ (0, 0, 1, 1) and the blackbox
X31 ¼ (2, 2, 3, 3) have the same oracle gate up to a global
phase shift. Therefore, it is sufficient to only test X1. It follows
that one only has to test two instead of the four blackboxes X

[ A and 18 instead of the 36 blackboxes X [ B. Thus, the
evaluation of a quantum circuit by the GP system is reduced
by a factor of 2�2 in comparison to the traditional encoding.
The quantum circuit returned by the GP system is shown in
Figure 6.

To see if this quantum circuit can be scaled up to an arbi-
trary number of qubits we tried to find a related problem for
blackboxes with eight elements (three query qubits). After
several attempts we found a problem for which the GP system
returned the quantum circuit shown in Figure 7. The problem
solved by this circuit is to distinguish between blackboxes X
[ A with A¼ (a, a, a, a, a, a, a, a) and blackboxes X [ B with

B ¼

(a, a, a, a, b, b, b, b), (a, b, a, b, a, b, a, b),
(a, a, b, b, a, a, b, b), (a, a, b, b, b, b, a, a),
(a, b, a, b, b, a, b, a), (a, b, b, a, a, b, b, a),
(a, b, b, a, b, a, a, b)

8>><
>>:

9>>=
>>;,

where a=b and a, b [ f0, 1, 2, 3g.
The two instances of the problem presented above were

sufficient to find the general structure of the problem that
can be stated as the following special case of the hidden sub-
group problem (i denotes the binary decomposition of the
integer i).

One is given the finite Abelian group G ¼ f0, 1gn of the
size jGj ¼ N ¼ 2n and a subgroup H , G. The group multi-
plication operation is the bitwise XOR operation (�). In addi-
tion, one is given a blackbox X¼ (x0, x1, . . . , xN21) with xi [
f0, 1, 2, 3g and i [ G. One is promised that either X [ A

Fig. 7. This circuit distinguishes between blackboxes X [ A and blackboxes X [ B by mapping the state jcinitl¼ j000l of the query register
to the final state jcfinl ¼ j000l if X [ A, otherwise, the state j000l of the query register has a probability amplitude of zero.

Fig. 6. This circuit distinguishes between blackboxes X [ A and blackboxes
X [ B by mapping the initial state jcinitl ¼ j00l of the query register to the
final state jcfinl ¼ j00l if X [ A, otherwise, the state j00l of the query
register has a probability amplitude of zero. The gate sy is realized by
Ry(p): sy ¼ {Ry(p).
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or X [ B, where X [ A denotes that only for H ¼ G there
exists an element g [ G such that xi ¼ xj , i, j [ g � H,
and X [ B denotes that only for H , G with jHj¼ jGj/2 there
exists an element g [ G with xi ¼ xj, i, j [ g�H. Here, we
used the notation g� H to denote the coset of H.7 In addition
to the usual definition of the hidden subgroup problem we re-
quired that xi [ f0, 1, 2, 3g and that the subgroups H to be
distinguished contain N or N/2 elements, respectively. In
the hidden subgroup problem (see Nielsen & Chuang,
2000) the group members need not be binary strings, and
thus the group multiplication operation can be of a different
type then the one used here. There, one is interested in the
generating set of a subgroup H [ G, where jHj can be of
any size. Knowing this generating set makes it possible to dis-
tinguish between subgroups H. Therefore, any algorithm
solving the hidden subgroup problem solves the special
case presented here as well.

Note that the problem this algorithm solves is not to distin-
guish between constant and balanced blackboxes, as in gen-
eral not every balanced blackbox belongs to set B.

The general structure of quantum circuits that solve our spe-
cial case of the hidden subgroup problem is shown in Figure 8.

This QA solves this problem exactly with two oracle calls
only. An exact classical algorithm that solves this problem
needs up to n þ 1 blackbox calls (here: jGj ¼ 2n), where n
denotes the number of query qubits.8 A probabilistic classical
algorithm can solve this problem using k . 1 calls with an
error probability of 22kþ1 (for jGj � 1).

As shown in Brassard and Høyer (1998), Simon’s QA can
be generalized to a broader class of problems called Simon’s
hidden subgroup problems that are a subset of hidden sub-

group problems. This generalized algorithm is probabilistic,
and can also be used to solve the problem presented here.
The error probability solving the problem decreases with
22kþ1 in the number k of repetitions of this algorithm. Be-
cause this generalized algorithm calls the oracle only once,
k repetitions of the algorithm correspond to k oracle calls.
In Brassard and Høyer (1998) the authors also present an ex-
act algorithm capable of solving Simon’s hidden subgroup
problem, which in our case has to call the oracle three times.

It follows that the QA found with the help of the GP system
is faster than any classical algorithm as well as the QAs
known to us.

5. CONCLUSION

The successful development of two formerly unknown QAs
presented in Section 4 demonstrates the usefulness of evolu-
tionary methods for generating new QAs. Despite the fact that
the fitness functions used did not fulfill the requirements we
discussed in the beginning of Section 3.3 in every aspect, the
results obtained are very promising.

We restricted our investigations to the blackbox model of
computation where the Boolean property p(X ) of a blackbox
X is to be computed with a minimal number of blackbox calls.
Our GP system only considers quantum decision trees that,
after a sequence of oracles and quantum gates, reveal the
property of the blackbox by a final measurement (see Section
3.1). This is similar to the approach used by Beals et al.
(2001) in proving lower bounds for the parity problem. Sur-
prisingly, the GP system returned quantum circuits that beat
this lower bound on ensemble QCs. The error probability of
these quantum circuits on a single issue QC is 1/2 (see
Appendix A); nevertheless, running such a circuit several
times on the same initial state makes it possible to solve the
parity problem with an error probability that decreases expo-
nentially in the number of repetitions.

Indeed, QAs like Simon’s algorithm also use several inde-
pendent runs of a QA to collect measurement results for a fur-
ther classical treatment. At the current stage our GP system
would not be able to evolve such hybrid algorithms for sin-
gle-issue QCs. To our knowledge, such hybrid algorithms

Fig. 8. Generalized circuit on (nþ 1) qubits. The upper n qubits encode i [ f0, 1, . . . , 2n 2 1g; S abbreviates the gate sequence CNOT0:1

2 CNOT1:2 2 � � �2 CNOTn22;n21 2 CNOTn21;0. CNOTl;m denotes a CNOT gate where qubit l is the control qubit and qubit m the target
qubit. This circuit distinguishes between blackboxes X [ A and blackboxes X [ B by mapping the initial n-qubit state jcinitl¼ j0 � � � 0l of
the query register to the final state jcfinl ¼ j0 � � � 0l if X [ A, otherwise, the state j0 � � � 0l of the n-qubit query register has a probability
amplitude of zero.

7 Let H , G denote a subgroup of G. To each g [ G one can define a set
g � H ¼ fg � h: h [ Hg, which is called a coset of H.

8 The definition of the problem shows that a deterministic classical algo-
rithm has to choose a subgroup H [ G with jHj¼ jGj/2. Then the algorithm
has to calculate a coset g� kHl of the generators kHl of H. The elements k [
g� kHl of this coset plus the neutral element 0 are used to query the blackbox
for the elements xk . If all elements are equal, the blackbox can still belong to
set B; thus, an additional element of a different coset has to be tested. If this
query also returns the same answer the blackbox belongs to set A, otherwise
to B. With jGj ¼ 2n one has k ¼ log2(jHj) ¼ log2(2n21) ¼ n 2 1 generators,
one thus has to call the blackbox (n + 1) times in the worst case.
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were not investigated by other authors (Spector et al., 1999;
Leier & Banzhaf, 2003a; Spector, 2004) who use GP to de-
sign QAs.
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APPENDIX A: A PROBABILISTIC PARITY
QUANTUM ALGORITHM

Usually (see, e.g., Farhi et al., 1998; Beals et al., 2001) one only
considers probabilistic algorithms that have an error probability of
1/2 2 1 with 0 , 1 
 1/2 because their error probability can be re-
duced further by running them several times (Nielsen & Chuang,
2000). Here we exemplify how a quantum decision tree with an error
rate of 1/2 can be used to solve the parity problem. To do so we in-
vestigate the behavior of a modified instance of the ensemble quan-
tum circuit shown in the upper part of Figure A.1 on a single issue

Fig. A.1. Modified instance of the ensemble quantum circuit, shown in the
upper part of Fig. 5, for a single issue QC. Measurement of the magnetization
is replaced by a measurement in the computational basis. As shown in [2, 17]
any exact or probabilistic QA would need N/2 oracle gates with N = 2n where
n denotes the number of query qubits. In our example this corresponds to 2
oracle gates instead of the single oracle gate used by our circuit.
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QC. For convenience, we added an additional qubit, a controlled gate
and two Hadamard gates to this instance, which makes it possible to
replace the measurement of the magnetization by a projective measure-
ment in the computational basis, as usual for single issue QCs (see
Fig. A.1). The original ensemble circuit returns kIð0Þx l¼ 0 for block-
boxes X with p(X )¼ 1 and kIð0Þx l¼+v0/4 if p(X )¼ 0. For the single-
issue QC this corresponds to the additional qubit’s final state jcl ¼
j0l or jcl ¼ j1l if p(X ) ¼ 0. If p(X ) ¼ 1, the additional qubit’s final
state is described by the superposition jcl ¼ 1=

ffiffiffi
2
p

(j0l + j1l).
It follows that for p(X ) ¼ 1 a measurement will return the state

j0l or j1l with equal probability, whereas for p(X ) ¼ 0, only one
of these two states will be measured with a nonzero probability.
Thus, a single run of the quantum circuit on a single issue QC
does not reveal any useful information. Nevertheless, if several
runs return different measurement results one knows that p(X ) ¼ 1.
If, in contrast, l [ N runs return equal results, one has an
error probability of 22lþ1 in claiming that p(X ) ¼ 0. Thus, the
quantum circuit in Figure A.1 provides a useful probabilistic quan-
tum circuit despite the fact that a single run does no better than
guessing.
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