Genetic Reasoning
Evolving Proofs with Genetic Search

Peter Nordin* Wolfgang Banzhaff
Fachbereich Informatik
Universitat Dortmund

44221 Dortmund, Germany

January 21, 1996

Abstract

Most automated reasoning systems relies on human knowledge or heurist-
ics to guide the reasoning or search for proofs. We have evaluated the use
of a powerful general search algorithm to search in the space of mathem-
atical proofs. In our approach automated reasoning is seen as an instance
of automated programming where the proof is seen as a program (of func-
tions corresponding to rules of inference) that transforms a statement into
an axiom. Genetic programming is a technique for automated program-
ming that evolves programs with a genetic algorithm. We show that such
a system can be used to evolve mathematical proofs in complex domains
i.e. arithmetics and program verification. The system is not restricted to
evaluations of classical two-valued logic but can be used with for instance
Kleene’s three valued logic in order to detect paradoxes that can occur in
real life reasoning applications.

*

1

email:nordin@Is11.informatik.uni-dortmund.de
email: banzhaf@ls11.informatik.uni-dortmund.de



1 Introduction

We present an approach to reasoning that uses a genetic search heuristic to
navigate and search in the space of true statements. An algorithm inspired by
natural selection and survival of the fittest is used to search for proofs.

To use a genetic process as the architecture for mentally related activities could,
at first, be considered awkward. As far as we know today, genetic information
processing is not directly involved in information processing in brains, though
the idea of genetics as a model of mental processes is not new. William James,
the father of American psychology, argued just 15 years after Darwin published
The Origin of Species, in 1874, that mental processes could operate in a Dar-
winian manner (William James 1890). He suggested that ideas ”compete” with
one another in the brain leaving only the best or fittest. Just as Darwinian
evolution shaped a better brain in a couple of million years, a similar Darwinian
process operating within the brain might shape intelligent solutions to problems
on the time scale of thought and action. This allows ”our thoughts to die in-
stead of ourselves”.

Evolutionary Algorithms mimic aspects of natural evolution, to optimize a solu-
tion towards a defined goal. Darwin’s principle of natural selection and survival
of the fittest, which is thought to be responsible for the evolution of all life forms
on earth, has been employed successfully on computers over the past 30 years.
Different research subfields have emerged such as , Evolution Strategies (Schwe-
fel 1975,1995), Genetic Algorithms (Holland 1975) and Evolutionary Program-
ming (Fogel, Owens & Walsh 1966), all mimicking various aspects of natural
evolution. In recent years, these methods have been applied successfully to a
spectrum of real-world and academic problem domains.

A mathematical function can for instance by optimized by a genetic algorithm
that keeps a population of solution candidates which are reproduced by selec-
tion, modified by mutation and recombination during evolution until a suffi-
ciently good solution is found.

A comparatively young research topic in this field is Genetic Programming (GP).
Genetic Programming uses the mechanisms behind natural selection for evolu-
tion of computer programs. The search space is here the space of all computer
programs. This contrasts other evolutionary algorithms which often optimizes
real numbers or vectors of real numbers. In GP the structures optimized is a
symbolic representation of a computer program. Instead of a human program-
mer programming the computer, the computer can modify, through genetic
operators, a population of programs in order to finally generate a program that
solves the defined problem. The GP technique, like other adaptive and learn-
ing techniques, has applications in problem domains where analytical solutions
are incomplete and insufficient to the human programmer or when there isn’t
enough time or resources available to allow for human programming.

Methods related to GP were suggested as far back as in the 1950s (Friedberg
1958). For various reasons these experiments never were a complete success even



if partial results were achieved (Cramer 1985). A breakthrough came when Koza
formulated his approach based on program individuals as tree structures repres-
ented by LISP S-expressions (Koza 1992). His hierarchical subtree exchanging
genetic crossover operator guaranteed syntactic closure during evolution.

GP differs from other Evolutionary techniques and other “soft-computing” tech-
niques in that it produces symbolic information (i.e. computer programs) as
output. It can also efficiently process symbolic information as input. Despite
this unique strength, has genetic programming mostly been applied in numerical
or boolean problem domains.

In this paper we exploit GP’s strength of processing purely symbolic informa-
tion by searching in the domain of proofs.

Genetic Programming is thus a method for automated programming. A formal
proof of a statement could be seen as a computer program and a theorem prover
as an application of automated programming. The proof program is a list of
inference functions transforming a statement to an axiom (or to a statement
known to be false, i.e. a contradiction). Rules of inference are here seen as
functions from theorems to theorems, like in for instance the programming lan-
guage ML. The inference rules are rules that matches a part of a formula and
rewrites it as something equivalent, or equally true. The formula X 4 0 could
for instance be replaced by X, as one of the axioms of Peano arithmetic tells
us. This rule describes a function from theorem to theorem. In the same way
the reverse is true and X could be replaced by X + 0, (but this is considered as
an other function.)

This simplest form of theorem prover systematically applies rules of inference
to construct all possible valid logical deductions. This was what the pioneer-
ing Al research tried in the 1950s. Most notably the Logic Theory Machine of
Alan Newell and Herbert Simon (Newell and Simon 1956). In practise can such a
method only find very short proofs. The combinatorial explosion will quickly ex-
haust any computer resources. Different more efficient variants of representation
and search methods has been introduced like the resolution method pioneered
by, for instance, Robinson in the early 1960s, (Robinson 1965), (Bundy 1983).
These methods were more adapted to machine reasoning then human reasoning
and were more efficient when implemented. Still they needed to by governed
by strategies and heuristics optimizing the order in which clauses were resolved
etc. Resolution theorem provers help against the combinatorial explosion but
they do not eliminate it. They can still only produce proofs of modest length.

The disappointment of some of the reasoning system lead to the conclusion that
more human knowledge needs to be put into the reasoning process, or as Bledsoe

put it (Bledsoe 1977):

The word “knowledge” is a key to much of this modern theorem-
proving. Somehow we want to use the knowledge accumulated by
humans over the last few thousand years, to help direct the search
for proofs



This knowledge is included as heuristics, weights and priorities in the theorem
prover. If it is an interactive theorem prover it can have its heuristics modified
by a human during execution. Regarding search algorithm most systems rely
on a hill-climbing algorithm, back-tracking or a best-first heuristic (Winker and
Wos 1978).

In our research we are investigating another approach. Instead of using expli-
citly added heuristics to guide the search we apply a more powerful and robust
general search algorithm. The hypothesis is that the robustness of genetic search
could free the reasoning system from some of the burdens of carrying specialized
heuristics. The search could then be more autonomous and act more “intelli-
gent” when it produces solution to problems with less a priori knowledge.

2 Genetic Programming

Genetic programming (Koza 1992) uses an evolutionary technique to breed pro-
grams. First a goal in the form of a goodness criteria is defined. This, so called,
fitness function could for instance be the error in a symbolic regression function.
The population — a set of solution candidates — is initialized with random con-
tents, (random programs). Each “generation” the most fit individual programs
are selected for reproduction. These highly fit individuals have offspring trough
recombination (crossover) and mutation. Various methods exists for selection
and reproduction but the idea is that the better individuals, and their offspring,
gradually replace the worse performing individuals *.

The individual solution candidate is represented as a tree (the genome). This
tree can be seen as the parse tree of the program in a programming language.
Recombination is normally performed by two parents which exchange subtrees
,see figure 1.

A typical application of GP is symbolic regression. Symbolic regression is
the procedure of inducing a symbolic equation, function or program which fits
given numerical data. Genetic programming is ideal for symbolic regression and
most GP applications could be reformulated as a variant of symbolic regression.
A GP system performing symbolic regression takes a number of numerical in-
put/output relations, called fitness cases, and produces a function or program
that is consistent with these fitness cases. Consider for example the following
fitness cases:

£(2) = 86
£(4) = 20
£(5) = 30
£(7) = 56

1 Genetic programming has some similarities with, “beam search” (Lowerre and Reddy
1980), (Rosenbloom 1987), if the population is regarded as the memory buffer and the fitness
as a stochastically assigned priority.



Hierarchical GP

Parents
(tree)

®
PN N

/ @ ~® ®

VR NSN _

\\\ @ /@\ \\ r: @{C’D\@)
\\ ® @ ) - -

N . //
S Children .~
~__ //\\ z
_ N -
N7 ®
e
////5(\\\ / \

® ® T
= N

VAN

® @

@

Figure 1: hierarchical crossover in Genetic programming.

One of the infinite number of perfect solutions would be f(z) = 2% + z. The
fitness function would, for instance, be the sum of difference between an indi-
vidual’s (function’s) actual output and the output specified by the fitness cases.
The function set, or the function primitives could in this case be the arithmetic
primitives +, —, -, /, as also seen in figure 1.

The two most important decisions to make before training a genetic program-
ming system is to choose a good fitness function and to choose the right function
set.

The fitness function should allow for a gradual improvement during evolution
and it should, like other objective functions, give meaningful feedback to the
GP induction system.

The function set should contain relevant primitives to the problem domain. Each
function in the function set should also be syntactically closed — they should be
able to gracefully accept all possible inputs in the problem domain.

3 Genetic Reasoning

In order to apply GP to reasoning and automated theorem proving (ATP) we
need to design the appropriate fitness function, function set and choose a the-
orem representation. Our goal is to handle statements about arithmetics in a



logic as powerful as first order logic.
The function set is made up of function representing rules of inference. Such a
function could for instance be the rule X + O can be replaced by X. All function
we use are unary-functions — they take one statement as input and produce
another equivalent statement. This means that the tree representation of the
individuals in GP collapses into a linear list representation? and that recombin-
ation will exchange linear segments of the individual genome, see figure 2.

The actual statement that should be proven true or false is represented by a

Genetic Reasoning
linear genome

Parents

Figure 2: Crossover in Genetic Reasoning.

tree. Universal quantification is indicated by leaving variables free. Existential
quantification is represented by a Skolem function, as common in several ap-
proaches to ATP. The natural numbers are built into our system in the form of
the zero (0) symbol and the successor function. Figure 3 shows how the (false)
statement 3 = 2 4+ 0 would be represented.

The inference functions in the genome are then applied in turn to this structure.

?Note that in this application the genome structure is linear while the fitness case input is
a tree structure. This is sometimes the other way around in other GP applications.



P

Figure 3: Representation of the statement 3 = 2 4 0.

When all inference function have been applied — when the individual “program”
has terminated — then we have another tree structure representing an equival-
ent statement. Let us say that we call the rule X 4+ O can be replaced by X,
funcy. If this function is part of the genome it will try to match a subtree in
the statement and, if it finds a match, replace it with X, see figure 4.

In figure 4 the function matches a sub-tree in the statement and the statement

func_1

e N

Figure 4: Application of funci to the statement 3 =2 + 0.

can be transformed. With this transformation the size of the statement struc-
ture is reduced, but there exists an equal number of functions in the function
set that increase the size of the structure. If a function does not match any
sub-tree in the statement then the structure is left untouched. This procedure
provides syntactic closure and does also give the opportunity to temporary store



unused material in the genome. The phenomena of unused genetic material is
called introns in biology and may play an important role in the efficiency of a
genetic search, see (Nordin, Francone and Banzhaf 1995b), (Nordin and Banzhaf
1995a).

3.1 The Fitness Function

The fitness function is very simple in our genetic reasoning system. It is just
the number of nodes in the statement structure (figure 3). The two simplest
and shortest statements are the Boolean constants t and f, each represented by
only one node. These truth values are short hand for an axiom respectively a
contradiction. The genetic system will thus try to simplify any expression down
to the statement of either true or false, represented by the nodes t and f.
Genetic search has been proven to perform well and robustly in a wide variety of
highly multi-modal search domains were local optima easily can trap a more hill
climbing related approach. So, the pressure towards simplifying the statement
does not mean that the system will try to constantly shorten the structure. The
concept of a population of solution candidates helps the search to avoid local
optima. The selection criteria from generation to generation does not mono-
tonically select the best individuals but probabilistically reproduces individual
with a large variation in fitness.

4 The Logic of Genetic Reasoning

The logic of the genetic reasoning system is similar to the one of the automated
reasoning system Nqgthm (Boyer and More 1979). It is a quantifier free first
order logic with equality. The rules of inference are from propositional logic
and the equality. Mathematical induction is an important part of the system.
This principle 1s added explicitly as it cannot be expressed efficiently in first
order logic.

Functions defining all boolean arithmetic operations are built-in (A,V ;= ,—).
The boolean constants t and f representing an axiom respectively a contradic-
tion are also built-in. There are if-then-else functions as well as equality.

The natural numbers and arithmetics are defined by the peano axioms and the
symmetry relation.

The deduction theorem is also predefined.

It is possible to add functions defining abstract data types and lemmas to sup-
port a specific application. In the register machine example below axioms de-
scribing this fictional processor are added.



4.1 The Evolutionary Algorithm and its Implementation

It is in principle possible to use any variant of GP as the basis for genetic reas-
oning. We have used a steady-state algorithm with tournament selection. The
size of the population has been between 100 — 1000 individuals.

The GP system is implemented on a SUN-20 in PROLOG. The built-in features
of PROLOG, such as pattern matching and list handling, simplifies implement-
ation significantly

5 Results

Our reasoning system has so far been applied to two different domains: proving
simple statement in arithmetics and reasoning about, for instance, halting of
machine code programs. Both these applications relies to a great extent on
mathematical induction as the proof method. All examples are such that the
proof could not be obtained by simplification only. The system could not just
hill-climb towards a solution, instead various steps of expansions needed on
the way, to be able to finally reach a constant false or true statement. These
expansions where not defined by a lemma or heuristic but were the result of the
genetic search process.

5.1 Arithmetic Problems

The arithmetic problems that we started our evaluation with were selected using
two criteria. The statement should be hard to prove without induction and it
should be impossible to prove by just transformations to shorter statements.
The induction principle might in it self require proofs that cannot be obtained
by monotonic transformations and reductions. A typical statement used 1is:

There is no natural number bigger than three, that when added two to it, is
equal to four. This statement is represented by the genome (tree structure) in
figure 5.

This kind of statement can be proven (false) with a few hundred generation
equivalents and a population size of 200 individuals. This calculation takes
about 10 minutes on our SPARC-20.

5.2 Termination Proofs of a Program for a Register Ma-
chine

A register machine is a machine that operates with instructions that manipu-
lates a limited set of registers. All CPUs in commercial computers are register
machines. The instructions of a register machine might looks as: a = b + 12
which should be interpreted as: add 12 to the content of register b and place
the result in register a. The processor also contains instructions for control of
program flow, for instance jumps as well as conditional instructions. The axioms



Figure 5: An example statement representation.

defining the processor and the current processor program is added to the sys-
tem. We then use the genetic reasoning system to determine the correctness of
the machine code programs, which often means the proof of termination. This
approach demonstrates one of the strengths of the genetic reasoning system as
termination proofs almost exclusively requires induction to be part of the sys-
tem.

The machine code application is slightly more complex than the purely arith-
metic statements and the verification of a short program, 2-10 instructions,
takes about one hour with a population size of 1000 individuals.

The correctness proofs of programs has many applications, data security, high
robustness in programs (i.e. satellite technology), simplification of machine code
programs, (Boyer and Yu 1992). GP is often accused of producing non-robust
solutions. A reasoning system could judge evolved solutions to prove if they are
complete or not. Much like a human programmer that first almost by intuition
might put a program solution together and when it works he (hopefully) studies
it and reasons in his mind to see if it will really hold for all input and if it
is safe, if it can be simplified etc. The termination proofs could also be used
with a normal GP system to detect infinite loops in individual programs during
evolution. Normally a few hundred generation equivalents has been needed to
reach the true and false constants in our program verification experiments.

10



5.3 Multi-valued Logic

Other reasoning techniques, such as resolution, relies in a classical two valued
logic. Most of these systems search for a contradiction to disprove a statement
and to conclude its negation. Genetic reasoning on the other hand can be used
with any logic. It is just a matter of defining the right transformation functions
in the function set. We have implemented Kleene’s three valued logic (Kleene
1950) in the system to better deal with paradoxes. In Kleene’s tree valued logic
a formula is either true false or a paradox (catch-22). With this logic our system
can answer statement of paradoxical character. We have for instance included
the definition of the genetic reasoning system as a primitive in the computer
language we are reasoning about. This can give rise to true paradoxes that are
hard to resolve in classic logic. We have also tried the use of a fourth truth
value which is needed in the case when the genetic reasoning system does not
find a proof of the statement. This fourth truth value represents a n ”unknown”
truth.

6 Future Work

In our experiments we have so far been concentrated on the problem of proving
a theorem. We are, however, convinced that the genetic reasoning method
has application is less rigid areas of reasoning and machine learning, such as
planning in robotics. We plan to continue and extend our robot experiments on
the Khepera robot platform with the application of genetic reasoning (Nordin
and Banzhaf 1995c¢).

We also plan to port the system to C which will give an acceleration of as much
as 100 times. This would allow us to try more difficult problems using large
population sizes.

7 Summary and Conclusions

We have demonstrated that automated reasoning could be seen as an instance of
automated programming. In this spirit we a have evaluated the use of a robust
genetic search algorithm to search the spaces of proofs. The system has been
able to avoid local minima in its search and found proofs of statements from
complex domains such as arithmetics and program verification. The system
uses no heuristic or human knowledge to guide its search, instead it relies on
the performance of the search algorithm. We believe that this technique can
have applications in many automated reasoning, and machine learning domains
for instance robot planning.

11



Acknowledgement

Thanks to Steffo Weber for invaluable advise in the process of writing this paper.
We would also like to thank Tom Haynes for giving us pointers to his exper-
iments with GP and theorem proving (Knight and Haynes 1994). One of us
(P.N.) acknowledges support by a grant from the Ministerium fiir Wissenschaft
und Forschung des Landes Nordrhein-Westfalen under contract I-A-4-6037-1

References

(1]

James W. (1890) The principles of psychology Vol.1. Originally published:
Henry Holt, New York1890.

Schwefel, H.-P. (1995) Evolution and Optimum Seeking, Wiley,New York

Holland, J. (1975) Adaption in Natural and Artificial Systems, Ann Arbor,
MI: The University of Michigan Press.

Fogel, L.J., Owens, A.J., Walsh, M.J.,(1966) Artificial Intelligence through
Simulated Evolution. Wiley, New York

Friedberg, R.M. (1958) A Learning Machine - Part I,IBM Journal of Re-
search and Development IBM, USA 2(1), 2-11.

Cramer, N.L. (1985). A representation for adaptive generation of simple
sequential programs. In Proceedings of an International Conference on Ge-
netic Algorithms and Their Applications, pp183-187

Koza, J. (1992) Genetic Programming, MIT Press, Cambridge, MA

Newell, A., Shaw J.C., and Simon H. (1957) Empirical Explorations of
the Logic Theorem Machine: A case study in Heuristic, in Proceedings of
Western Joint Computer Conference Vol. 15.

Robinson J.A., (1965) A Machine Oriented Logic Based on the Resolution
Principle, In J . ACM, Vol. 12, No. 1, pp. 23-41.

Bundy A., (1983) The Computer Modeling of Mathematical Reasoning,
Academic Press, London, pp. 74-77.

Bledsoe W. W., (1977) Non-Resolution Theorem Proving, In Artificial In-
telligence, Vol. 9, pp 2-3.

Winker S., Wos L.,, (1978) Automated Generation of Models and Counter-
examples and its application to Open Questions in Ternary Boolean Al-
gebra, In Proceedings of 8th international symposium Multiple-Valued Lo-
gic, Rosemont, Ill., IEEE and ACM, pp. 251-256, New York

12



[13]

[18]

[19]

Lowerre, B.T., and Reddy, R.D. (1980) The Harpy Speech Understanding
System. In Trends in Speech Recognition. Lea, W.A. (Ed.) Englewood Cliffs,
Prentice-Hall, New York.

Rosenblom, P. (1987) Best First Search. In Encyclopedia of Artificial In-
telligence, Shapiro, S. (Ed) Vol. 2, Wiley, New York.

Nordin, J.P. ; Banzhaf W.(1995¢) Controlling an Autonomous Robot with
Genetic Programming. In proceedings of: 1996 AAAI fall symposium on
Genetic Programming, Cambridge, USA.

Nordin, J.P. ,F. Francone, Banzhaf W. (1995) Explicitly Defined Introns in
Genetic Programming. In Advances in Genetic Programming II,(In press)
Kim Kinnear, Peter Angeline (Eds.) , MIT Press USA.

Nordin J.P. and Banzhaf W. (1995a) Complexity Compression and Evol-
ution, in Proceedings of Sizth International Conference of Genetic Al-
gorithms, Pittsburgh, 1995, L. Eshelman (ed.), Morgan Kaufmann, San
Mateo, CA

Boyer R.S., and Moore J.S. (1979) Proving Teorems about LISP-Functions,
In JJACM, Vol. 22, pp 129-144.

Boyer R.S. and Yu Y. (1992) Automated Correctness Proofs of Machine
Code Programs for a Commercial Microprocessor, In Automated Deduction

- CADE-11 Kapur D. (Ed), pp. 416-430.

Kleene, S.C. (1950) Introduction to Metamathematics, Van Nostrand, New
York.

Nordin, J.P. ; Banzhaf W.(1995¢) Controlling an Autonomous Robot with
Genetic Programming. In proceedings of: AAAT fall symposium of Genetic
Programming, Cambridge, USA.

Knight L., Haynes T. (1994) A GP Theorem Prover, technical report CS
7213, University of Tulsa

13



