Chapter 1

Hierarchical Genetic
Programming using Local

Modules

Wolfgang Banzhaf

Dept. of Computer Science, University of Dortmund, Germany
Dirk Banscherus

Quantum GmbH, Dortmund, Germany

and Peter Dittrich

Dept. of Computer Science, University of Dortmund, Germany

This paper presents a new modular approach to Genetic Programming, hierarchical
GP (hGP) based on the introduction of local modules. A module in a hGP program is
context-dependent and should not be expected to improve all programs of a population
but rather a very specific subset providing the same context. This new modular ap-
proach allows for a natural recursiveness in that local modules themselves may define
local sub-modules.

1.1 Introduction

Genetic Programming is the development of computer programs by evolutionary
means [9, 5]. A population of randomly generated programs is subjected to
mechanisms of variation and selection in order to arrive at behavior specified
by an explicit or implicit fitness function. Over the course of the development,
programs are generated that more and more approach the desired behavior.
The mechanisms used to vary and select computer programs are similar to
those in other areas of evolutionary computation [6], and employ stochastic

2 Hierarchical Genetic Programming

events as the main driving force for innovation. Mutation and crossover are
operators used for variation, proportional or tournament selection are frequently
used as selection operators to direct the search process.

As in other fields of evolutionary computation, the representation of the
problem is an important aspect of its solution. Genetic Programming originally
started with the tree representation of computer programs. Program trees are
easy to manipulate by mutation and crossover, and until today they are the most
frequently used representation in GP.

Genetic Programming is able to solve an impressive variety of problems from
different problem domains [5]. However, it is well known that there are perfor-
mance problems with Genetic Programming when tasks grow complex. In such
a case, human programmers would rely on a modularization technique allowing
them to decompose the task into sub-tasks which are subsequently solved in-
dependently, to arrive at a solution by recomposing the solutions of sub-tasks.
Some modularization techniques have been proposed for Genetic Programming.
Koza has suggested automatically defined functions [4], recently augmented by
architecture altering operations [11]. Angeline and Pollack suggest libraries of
functions [2], Rosca and Ballard adaptive representations [17]. Tt seems, how-
ever, that the real break-through for modular Genetic Programming is not yet
made.

This paper presents a new modular approach to Genetic Programming (hGP -
standing for hierarchical GP) which is based on the introduction of local modules.
In contrast to other approaches, our notion of a module in a program is that the
context of the module in the calling program is of great importance. A module
should not be expected to improve all programs of a population but rather a
very specific subset providing the same context. At the same time, our modular
approach allows for a natural hierarchy in that local modules themselves may
define local sub-modules.

Modules are allowed to evolve at a much slower rate than programs reflecting
the need of programs to rely on their modules for improving their function. We
discuss this principle which seems to be at work in other natural and artificial
modular systems.

Results are presented on a set of discrete and continuous problems, including
comparison with regular Genetic Programming. More details can be found in

[4].

1.2 Modular Concepts in Genetic Programming

1.2.1 The Problem

One of the important issues in Genetic Programming is whether GP is able to
scale up. Although there are a number of interesting applications of GP already
(see [5], chapter 12), real world applications suffer from a complexity threshold.
It seems that programs of small size may be readily evolvable, but as soon as

Hierarchical Genetic Programming 3

one gets into hundreds or even thousands of nodes!, GP becomes less and less
effective as a means to generate the targeted function.

A natural method to improve GP performance is therefore the introduction of
sub-programs. Partitioning of a problem into sub-problems which can be solved
independently is one of the most powerful and general approaches to problem
solving that we have developed [1]. In Computer Science in particular, where
problems of large complexity are solved daily, modularization is a key enabling
technology for progress. Many of the biggest steps in software and hardware
development over the last decades may be traced back to the introduction of
modularization / hierarchization techniques.

Thus, one of the big challenges for genetic programming may be formulated
as this: Is it possible for a Genetic Programming system to evolve modular
solutions to problems automatically? Note the emphasis on ”automatically “. Tt
is clear that a manual specification of sub-problems will work, provided the sub-
problem complexity is sufficiently small to be treated by regular GP. However,
will it be possible to delegate the structuring of the problem to an automatic
process like GP?

1.2.2 Existing Approaches

Mainly three approaches have been proposed in the course of the last decade to
solve the problem of modularization by Genetic Programming: ”automatically
defined functions“ (ADFs) [10], evolutionary module acquisition [2] and adaptive
representation [17]. A more detailed discussion can be found in [5, 4]

1.2.3 Local, context-sensitive modules: hGP

We introduce another general method for specifying modules. The idea of local
and context-sensitive modules is motivated by the success of Gruau’s work on
cellular encoding [8]. At the surface, cellular encoding is about making graphs
available for use with genetic programming. Gruau develops neural networks,
other researchers develop other graph-like applications, e.g. electric circuits [12].

The aspect interesting here, however, is that of hierarchical evolution. We use
a number of hierarchical levels of evolution, with a population on each of them.
On the highest level, individuals of the population evolve their functionality. On
the lower levels, modules of level 1 ... n evolve through the same mechanisms
of variation and selection. Figure 1.1 depicts the situation. Modules on higher
levels (including the individuals on the highest level) are able to call modules of
the next lower level as subprograms. Each level has its own set of terminals and
functions.

As in ADFs, the newly defined modules are local to an individual. They are
not available to the population as a whole but only to the one individual which
has called them. Thus, an individual has to evolve a good choice of modules
completely for itself, only taking help through crossover of material from other

Lthree nodes in a tree usually correspond to one line of code

4 Hierarchical Genetic Programming

Figure 1.1: Example of three hierarchical levels of evolution in hGP. Modules on each
level evolve in their own level and are called from the next higher level.

individuals having defined modules at the same level. Much as an entire GP
system has global convergence to a solution, so do the local modules have a
tendency to converge, even without being able to be accessed by all individuals.

Arbitrary crossover of material is forbidden in this method. Rather, modules
at the same level of description are able to exchange material. Koza has called
this method structure-preserving crossover [9]. ADFs make use of this method,
too, since the two types of branches in an ADF are only allowed to be crossed
over with their kin.

Apart from the potential difference in terminal and function sets, what is the
difference, then, between modules on different levels? An important difference
lies in the fact that modules on different levels evolve with different speed. Sim-
ilar to the compress operation in module acquisition, which explicitly forbids
further evolution of material that has been compressed, speed of evolution is the
key difference. The radical step of freezing the compressed material completely
is substituted, however, by a less radical, but more general step: to decrease the
speed of evolution. The lower in the hierarchy a module is located, the slower 1t
is allowed to evolve. Although this is somewhat counter-intuitive at first glance,
it is indeed the method which Nature used when evolving modules. The more
fundamental the modules are the less evolution Nature allows at that level. The
appearance of the genetic code is a typical example of this phenomenon [14],
the development of repair mechanisms in the replication of genetic material is
another [7].

Thus, our method to evolve modules at different levels will be to adjust the
speed of evolution. The lower in the hierarchy, the less crossover and mutation

Hierarchical Genetic Programming)

events will hit them. In a nutshell, higher level modules can be discerned from
lower level modules by their larger speed of evolution. Interestingly if we turn
this argument around, another observation in Nature seems to fit in very well
with this picture: Higher level modules, 1.e. modules commanding higher com-
plexity must be faster in evolution if there is no way to reduce evolution speed
in lower levels, 1.e. to stabilize developments there.

The generation of a lower level module in hGP is done during the evolution
of the higher level individual: After crossover, modules are identified in the best
individuals of a population only. Modules are formed by search for valuable
sub-trees in these individuals. The general method for finding valuable subtrees
is to compute the differential fitness [16, 18] with and without the subtree under
discussion. Ranking selection is then applied to identify the best subtrees and
to generate a module for the next lower level. Various parameters determine
this procedure, like e.g. maximum number of modules per individual, maximal
depth for computation of differential fitness, etc.

Since on the lower level evolution should progress, too, a fitness must be
assigned to each of the newly created modules. In hGP, the fitness of a module
is exactly the same as the fitness of the individual which is calling it in the next
higher level. Thus, a good program will automatically transfer its high fitness
to the module used by it.

Crossover and mutation on lower module levels work similar as on higher
levels. hGP also allows different variants, e.g. based on homology and quality
of subtrees. hGP was implemented as an extension of gpc++0.4.

In pseudo code the algorithm executed for each generation in hGP reads:

FOR level := 0 TO maxLevel DO
DO popSize(popl[level])*evolutionSpeed[level] TIMES
(mum, dad, child) := Selection(pop[levell])
Crossover(mum, dad, child)
Mutate(child, mutationStrength[levell)
IF level < maxLevel - 1
ModuleList := searchModules(child)
AddModules(pop[level], Modulelist)
FI
0D
0D

1.3 First Results with Hierarchical Genetic Pro-
gramming (hGP)

For the following experiments hGP has been substantially restricted. Two vari-
ants referred to as hGPminor and hGP are tested with the following restrictions:

e Number of modular levels: Only level 1 modules allowed

e Number of modules per calling individual: Only 1 module allowed

6 Hierarchical Genetic Programming

e Mutation only on highest level allowed

In hGPminor evolution on module level is not allowed. In this case the
generation of modules works mainly as a protection of valuable code agains
mutation and crossover. In hGP evolution on the module level is allowed. The
settings for the evolution on the module level are:

e Crossover variant: replace a bad subtree by a randomly selected subtree

e Crossover probability on module level: 33% (i.e., evolution speed on mod-

ule level is 1/3).

Surprisingly, the crossover variant ”replace a bad subtree by a good subtree®
has led to significantly worse results. Experiments have also confirmed that hGP
is robust concerning the setting of the crossover probability on module level (up
to 50 %).

We studied six test problems that have been used to compare the perfor-
mance of hGP with standard GP: 4 continuous problems from function regres-
sion and two instances of the discrete even-N-parity problem [9] with N = 5 and
N = 7. The time measurement performance was based on the number of node
evaluations, not on the number of individuals or generations evaluated (see [4]).

| Problem | Type | Symbol | Regression function |
1 continuous f randomly selected y-values
2 continuous fa steps
3 continuous f3 ° —4x® — 32t F 427 — 227 —x 4+ 4
. 23 —x?— 243
4 continuous fa T
5 discrete even-bH-parity
6 discrete even-T-parity

Even-5-parity, even-T-parity and regression on f4 have been used during the
development process of hGP and extensive experiments have been carried out
based on these problems [3]. Regression problems on fi, fo, and f3 are used
after development of hGP for validation. Table 1.1 gives the run parameters.
Due to a lack of space we report here only on the even-7-parity problem. The
reader may compare [4] for the performance on other problems.

We compared standard GP, i.e. Genetic Programming without modules,
and hGP, without (hGPminor) and with evolution on the module level. In
preliminary experiments a reduction of evolution speed to about 1/3 that at
the level of individuals turned out to be efficient, although different applications
shall require different module evolution speed. In another application, we were
successful with a speed of 1/10 of that of the higher level programs [13]

1.4 Discussion and Conclusion

Figures 1.2-1.5 show the performance of standard GP, hGPminor and hGP for
the test problems 6 (even-7 parity). In addition to best, average, and worst fit-

Hierarchical Genetic Programming

Parameter Setting
population size 3 000
selection (10,1)-tournament
generation equivalents 100
crossover-frequency on top level 100 %
crossover-frequency on module level 0 % (hGPminor)
33 % (hGP)
mutation-frequency on top level 2 %
maximum tree depth 17
maximum initial tree depth 6

initialization

ramping half and half

maximum number of modules
per individual

1

problem

even-N-parity, N = 7

raw fitness

¢ = 100% (number of mismatches)

parsimony term

10
100 - (1 = yopmrasy

terminal set

T ={Do,D1,...,Dn}

function set

F={AND,OR,NAND,NOR}

termination-criterion

exceeding the maximum
number of generations

-~

Table 1.1: The Koza tableau of parameter settings for the even-N-parity problem in
hGP. Comparison with standard GP containing no modules. &(a;) is the expanded
structural complexity of the individual a; [15].

9000

8000

7000

FITNESS

6000

5000

\JTM

BEST
AVERAGE

20 3 4 50 6 70 80 9 100

GENERATION

1,500,000

1000000 —

NODE EVALUATIONS

500000 |

0 1 220 3 4 50 & 70

GENERATION

Figure 1.2: Even-7-parity Standard GP. Left: Best, average and worst fitness over
time. Right: Number of node evaluations accumulated over time. Average of 50 runs.

8 Hierarchical Genetic Programming

10000

%000 —f BEST

i AVERAGE

8000 —f

FITNESS

7000 —

7WWMWJMJ\/\/M/

5000 T T T T T T T
0 10 2 2 4 s 6 W 80 % 100

GENERATION

4.000.000

3.000.000

2.000.000

NODE EVALUATIONS

1.000.000

WITHOUT MODULE SEARCH

T T T T T T T T T
0 20 . 4 s 6 70 8 @ 100

GENERATION

Figure 1.3: Even-7-parity hGP minor. 50 runs. Left: best, average, and worst fitness
over time (measured in generation). Right: node evaluations per generation. Lower
curve shows the node evaluation needed only for fitness evaluation. The upper curve
shows the node evaluation needed for fitness evaluation and module search. The area
between the upper and the lower curve represents the additional effort which is spent

for searching good modules.

12000

000 BEST
10000

i AVERAGE
%000 —
8000 —
7000

WORST

£ 7%

5000 T T T T T T T
o 1 2 W 4 s s 70 8 0 100

FITNESS

GENERATION

Figure 1.4: Even-7-parity hGP. 50 runs.

T L T T T T

NODE EVALUATIONS

5,000,000

4000000 —

3000000 o

2000000

NODE EVALUATIONS

1000000

MODULE CROSSOVER

MODULE SEARCH

STANDARD GP

10 20 s 4 s e 70 8 90 100

GENERATION

Same as above.

7 o

7 3 o

Figure 1.5: Even-7-Parity, GP vs hGP. 30 runs each. Left: Fitness progress over
number of node evaluations. Right: Memory consumption compared between standard

GP and hGP.

Hierarchical Genetic Programming 9

ness the nodes evaluated per generation is depicted in the right figures. It can be
seen that hGPminor outperforms standard GP and hGP outperforms hGPmi-
nor. The number of nodes evaluated per generation increases which reflects the
fact that average individual length is growing. The growing process is bounded
because a parsimony pressure is activated. Note, that the pasimony pressure
is very weak. For the parity problem it has only an effect if two individuals
represent exactly the same function.

For a fair comparison of convergence speed in Fig. 1.5 time is now measured
in node evaluations. For all 6 test problems (5 not shown here) hGP outperforms
standard GP [4]. The performance gain depends on the problem. Figure 1.5
compares also the memory consumption of standard GP vs. hGP. In general,
hGP does not consume significantly more memory than standard GP. In many
cases i1ts memory consumption is even considerably smaller. Even-7 parity is an
exception from this rule.

hGP shows good performance even when a more detailed time model —
number of node evaluation — is applied. The performance gain is based on
efficient module search techniques which are based on the differential fitness
calculated by replacing the designated module by a neutral structure. Whether
a larger number of levels increases the performance of hGP is still an open
question and should be a subjects for future investigations.

ACKNOWLEDGMENT

Support has been provided by the Deutsche Forschungsgemeinschaft within
the Sonderforschungsbereich 531, project B2.

Bibliography

[1] ABELSON, A., and G. SUSSMANN, Structure and Interpretation of Com-
puter Programs, MIT Press Cambridge, MA (1985).

[2] ANGELINE, P. J., and J. B. PoLrAcK, “The evolutionary induction of
subroutines”, Proceedings of the Fourteenth Annual Conference of the
Cognitive Science Society, Lawrence Erlbaum (1992).

[3] BANSCHERUS, D., “Hierarchische Genetische Programmierung mit lokalen
Modulen” (1998), Diploma Thesis.

[4] BanzHAF, W., D. BANSCHERUS, and P. DITTRICH, “Hierarchical genetic
programming using local modules”, Technical Report 50/98, University
of Dortmund, Dortmund, Germany (1998).

[5] BanzHar, W., P. NorpIN, R KELLER, and F. FRANCONE, Genetic
Programming — An Introduction, dpunkt/Morgan Kaufmann Heidel-
berg/San Francisco (1998).

[6] FoGEL, D., Evolutionary Computation, IEEE Press Piscataway, NY (1995).

[13]

[18]

Hierarchical Genetic Programming

FRIEDBERG, E., G. WALKER, and W. SIEDE, DNA Repair and Mutagen-
esis, ASM Press New York (1995).

GRruAu, F., “Genetic synthesis of modular neural networks”, Proceedings
of the 5th International Conference on Genetic Algorithms, ICGA-93
(University of Tllinois at Urbana-Champaign,) (S. FORREST ed.), Mor-
gan Kaufmann (17-21 July 1993), 318-325.

Koza, J., Genetic Programming — On the Programming of Computers by
Means of Natural Selection, MIT Press Cambridge, MA (1992).

Koza, J., Genetic Programming II, MIT Press Cambridge, MA (1994).

Koza, J., D. ANDRE, F. BENNETT, and A. KEANE, Genetic Programming
ITI, Morgan Kaufmann San Francisco, CA (1999).

Koza, J., F. BENNETT ITI, D. ANDRE, M. KEANE, and F. DUNLAP, “Au-
tomated synthesis of analog electrical circuits by means of genetic pro-
gramming”, IEEE Transactions on Evolutionary Computation1, 2 (July

1997), 109-128.

OLMER, M., W. BANZHAF, and P. NORDIN, “Evolving real-time behavior
modules for a real robot with genetic programming”, Proceedings of the
international symposium on robotics and manufacturing (Montpellier,

France,), (May 1996).

Osawa, S., Evolution of the Genetic Code, Oxford University Press Oxford
(1995).

Rosca, J., “An analysis of hierarchical genetic programming”, Technical

Report 566, University of Rochester, Rochester, NY, USA (1995).

Rosca, J., and D. H. BALLARD, “Evolution-based discovery of hierarchi-
cal behaviors”, Proceedings of the Thirteenth National Conference on

Artificial Intelligence (AAAI-96), AAAT / The MIT Press (1996).

Rosca, J. P, and D. H. BALLARD, “Learning by adapting representa-
tions in genetic programming”, Proceedings of the 1994 IEEE World
Congress on Computational Intelligence, Orlando, Florida, USA (Or-
lando, Florida, USA,), TEEE Press (27-29 June 1994).

RosEN, R., Life Itself, Columbia University Press New York (1995).

