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Abstract

The standard learning algorithm for self-organizing
maps (SOM) involves the two steps of a search for the
best matching neuron and of an update of its weight
vectors in the neighborhood of this neuron. In the dy-
namical implementation discussed here, a competitive
dynamics of laterally coupled neurons with diffusive
interaction is used to find the best-matching neuron.
The resulting neuronal excitation bubbles are used to
drive a Hebbian learning algorithm that s similar to
the one Kohonen uses. Convergence of the SOM s
achieved here by relating time (or number of train-
ing steps) to the strength of the diffusive coupling. A
standard application of the SOM is used to demon-
strate the feasibility of the approach.

1 Introduction

One of the strengths of neural networks is their ca-
pability of distributed processing of information. Nu-
merous authors have been stressing this point over the
years [1, 2]. Many arguments have been brought for-
ward against localized representation of information
in so-called grandmother cell neurons which would
take with them, if destroyed, all the knowledge they
have accumulated over extended periods of training.
As long as neural networks are simulated using tradi-
tional computers, however, there is basically no need
to require the degree of fault-tolerance brought about
by a distributed representation. Indeed, a distributed
representation might even be less efficient in applica-
tions, since it requires the use of many neurons —
and therefore simulation cpu-cycles — to represent
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a pattern. It is only in hardware-based neural net-
works and reality-based brains that implementation
of a distributed representations becomes evidently ad-
vantageous.

One example of a distributed representation for in-
formation is the topological feature map proposed
by Kohonen [3] - [5] for the projection of high-
dimensional pattern data into a low-dimensional fea-
ture space. Kohonen’s algorithm is able to gen-
erate an ordered projection of patterns in a low-
dimensional space during training by updating a
neighborhood of the best-matching cell of a topo-
logically organized lattice of artificial neurons. The
process of ordering an initially random map is called
self-organization. Its convergence has been shown to
depend on the specific updating rule used. Once the
map has been formed, a destruction of cells does not
seriously perturb the behaviour of the network. Every
incoming pattern may evoke a response in the entire
neighborhood that was trained for it. Thus, even if
the main motivation behind the self-organizing map
(SOM) is the topological ordering of pattern projec-
tions, fault-tolerance is one of its immediate benefits.

The synergetic computer advocated by Haken [6] -
[8], on the other hand, takes a classical task of pattern
recognition into the realm of dynamical systems: If
we represent patterns by real valued feature vectors,
then their translation into a symbol stating their class
membership is accomplished by a competitive dynam-
ics between ”grandmother cell neurons” that become
responsible for a group of similar patterns, i.e. for a
class. The dynamics was derived from natural com-
petitive systems and was implemented by a specific
interaction between cells as a winner-take-all (WTA)
network. This dynamics has a natural time scale,
characterized by the time needed to relax into one of
N equilibrium states. If one sets up a competitive
learning process using this kind of network, another
time scale emerges, namely that of the competitive
learning dynamics [9]. The existence of intrinsic time
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scales here is in remarkable contrast to most of the
static learning algorithms employed in the literature
and constitutes, in the oppinion of the authors, one
of the main strengths of dynamical WTA networks, a
strength one should build upon.

Conventional competitive learning proceeds by
waiting for the relaxation state of the network to ap-
pear before updating connections. It is, however, in-
teresting to observe the network learning successfully
even when an unrelaxed state is used during update of
connections. It is this parameter region that we have
called non-equilibrium learning [9] where flexibility
and performance are at their best. In the present
contribution we shall apply the competitive dynam-
ics introduced by Haken to the formation of a SOM,
by adding an appropriate extension to the original
dynamics. In a recent paper we have introduced this
concept as a diffusive Haken dynamics [10].

The standard learning algorithm for self-organizing
maps (SOM) involves two steps: a) a search for the
feature neuron whose weight vector shows best match
with the presented pattern; b) an update of all weight
vectors in its neighborhood in the direction given by
the presented pattern. Stabilization of weight vec-
tors is achieved by decreasing a parameter specifying
the neighborhood size. Then, during the recognition
phase, only step a) is used.

In the dynamical implementation discussed here, a
competitive dynamics of laterally coupled neurons is
used to find the best-matching neuron. The essen-
tial extension to Haken’s original model is the sub-
stitution of its point-like relaxation states by excita-
tion bubbles around the winning neuron. It has been
shown that such a dynamics can be implemented by
adding a diffusive interaction to the winner-take-all
dynamics of the Haken-model. Step b) above is real-
ized by a Hebbian learning rule similar to the one
Kohonen [4] uses. In the current implementation,
convergence is achieved by controlling the strength
of the diffusive coupling with a quantity related to
elapsed training time or number of training steps.

Section 2 will provide a short summary of the re-
sults of previous work concerning the diffusive Haken
model, with special emphasis on practically relevant
results. Section 3 then discusses the application of
the diffusive Haken model to implement Kohonen’s
SOM. There, we shall discuss an appropriate learn-
ing rule and demonstrate its performance in Section

4.

2 The diffusive Haken model

Inspired by the analogy between pattern formation
in synergetic systems and pattern recognition, Haken
[6] has formulated a prototype dynamics for the im-
plementation of the winner-take-all function. In this
model, the states q € R of the system are driven by
a potential V(1)

q=-vV(q) (1)
with ) ) )
m_ _ 1 tp2_ 2 4
1% SD+5D° -5 Zq (2)

D=3 df. (3)

In exact terms, the equations of motion
gi(t) = (1= 2D(t))qi(t) + ¢} (t) (4)

may be interpreted as the dynamics of the excitation
qi(t) of a network of N cells.

It can be shown that aside from a finite set of 2V —
N non-attracting stationary states, each initial state
q(to) € RY = {q € R" | ¢; > 0} will end up in one of
N attractors which coincide with the corners of the
unit hypercube (1,0, ...,0),(0,1,...,0),(0,0,...,1). In
more detail, an initial state q(tg) with its maximal
excitation in component g, (¢i,(0) > ¢izi,(t0)) ends
up in the attractor with ¢;; = 1, ¢;#;, = 0 (for the
results of a simulation see Figure 1 a,b).

In this way, the Haken model performs a dynamical
parallel search for the maximum in a set of data. In
agreement with the very aims of the construction,
the result is given in form of a strictly localized state
where only a single cell (degree of freedom) is excited.

The winner-take-all function is an essential step for
decision making in many pattern recognition applica-
tions. There are some applications, however, where
the competition should lead to a bubble of excitation
centered around the maximum of the input data (see
Figure 1 ¢,d). As it is shown in more detail in [10]
such behaviour can be achieved by adding a diffusive
term to the potential V(1)(q) of the Haken model:

1 n -
V(@) = o) (e —4)™, (5)
<i7-j)

where n and a > 0 are the order and coupling con-
stant of the diffusive interaction. The bracket in-
dicates summation over pairs of nearest neighbors.
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Figure 1: Original Haken model, (a) Initial distribution of cell

Z

activities, (b) ground state (relaxation state of the network).
Modified model with additional diffusive interaction, ground
state (relaxation state of the network) in one-dimensional
topology, (c) standard diffusive interaction (n = 1), (d) non-

standard diffusive interaction (n = 2).

Hence, the diffusive Haken model is defined in terms
of the potential

V(a) = V¥(a) + V*(a) (6)
which reduces to the original Haken model for o = 0.

Whereas in the original model the numbering of
cells is completely irrelevant, the definition of a short-
range interaction of the form of equ. (5) predeter-
mines a topological ordering of cells. A natural choice
for the topology is a square lattice in d dimensions
with periodic boundary conditions. As a result, the
diffusive interaction brings into play aspects of topol-
ogy and dimension. Together with the additional pa-
rameters « and n the model now obtains a rich struc-
ture and cannot any more be treated in a straightfor-
ward analytical manner.

Because of the numerous parameters, an analysis
of the of ground states (relaxation states) of the net-
work by means of numerical simulation has to be re-
stricted to a few typical cases. Of foremost interest is
the study of standard and second order non-standard
diffusive interaction (n = 1,2) in one and two di-
mensions (d = 1,2). For a given set of parameters,
the attractor state (unique up to translations) may
be obtained as the asymptotic state evolving from a
randomly chosen initial state. Figure 1 and 2 show
examples for d = 1 and d = 2.

A systematic examination yields the following re-
sults:
(i) d =1: As anticipated, the diffusive interactions
with n = 1,2 have a broadening effect on the ground
states which becomes more and more pronounced the
more « is increasing. We interpret this behavior as
striking a balance between the localizing force of the
Haken potential V(1)(q) and the delocalizing force of
the diffusion V(?)(q) which can be tuned by the cou-
pling «. Experiments show that the delocalization
brought about by n = 1 diffusion is much larger than
that brought about by n = 2 diffusion.
(ii) d = 2: In two dimensions even an arbitarily weak
standard diffusive interaction delocalizes the ground
state completely (see Figure 2b). In contrast, second
order diffusive interaction still allows ground states
of tunable size similar to the situation in d = 1.

A major obstacle to an analytic treatment of the
model is its discrete nature. The situation becomes
much more favorable when we replace the discrete
cells by an excitable continuous medium, thus mak-
ing the model accessible for the application of various
field-theoretical methods.

Proceeding along these lines, the instanton tech-
nique gives the exact form of the ground states in
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Figure 2: Modified model with additional diffusive interac-
tion, ground state (relaxation state of the network) in two-
dimensional topology. (a) Initial distribution of cell activities,
(b) standard diffusive interaction (rn = 1), (c) non-standard

diffusive interaction (n = 2).

one dimension for n = 1 and n = 2. Furthermore, it
turns out that important ground state properties can
be determined astonishingly well by a simple varia-
tional calculation based on Gaussian test functions.

In summary, we obtain simple analytical expres-
sions from the application of field theory. Character-
istic quantities of ground states that depend on the
coupling strength « such as their amplitude and half-
width have been examined and given in [10] for all
cases of interest. These expressions have been found
to be reasonable approximations for the behavior of
the discrete model as well, except for a small range of
parameters near = 0, where the analogy between
field theory and the discrete model breaks down.

3 Application of the diffusive
Haken model

The Kohonen algorithm for the formation of topo-
logical maps is a competitive learning algorithm on a
layer of neurons connected on a grid. It is a mem-
ber of the class of vector quantization algorithms
where patterns x = (21, ..., £p) from pattern space
RM distributed according to the probability distribu-
tion P(x) stimulate artificial neurons. Each neuron
1, 1t = 1,..., N, with activity or excitation ¢; possesses
a reference vector w; € RM that determines its re-
sponse to input stimulation.

Initially, N random reference vectors w;(0), i =
1,..., N, are assigned to neurons. Self-organization is
achieved by updating connections during a training
phase at discrete times ¢t = 0, 1,2, ... with

wilt + 1) = wi(t) + c(Dh(i, i) (x — wi(1)  (7)

with €(t) being a time dependent learning parameter
which has to fulfill certain criteria in order to lead
to convergence and h(i, i.) the so-called neighborhood
function, usually taken to be Gaussian
(i —i.)?
—_— 8

L) ®)
around the exitation peak at neuron ¢.. o is the width
of the neighborhood and i, is the index of that neu-

ron whose reference vector matches x best, therefore
carrying the highest activity.

h(i,i.) = expl—

Thus, the first step in the reference vector updat-
ing is always determination of the best matching cell.
This is done by applying a predefined distance func-
tion d; = d;(x, w;) whose minimum

d;. = iel;nmN d;(x, w;) (9)

yeeey
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then forms the center of h(i, ;).

d; could be related to a similarity measure for pat-
terns like the scalar product, or it could be a distance
measure like the Eucledian distance we use here

d(x,wi) = Y (z; — wij)”. (10)

j

The update equation (7) may be considered a discrete
version of a continuous weight dynamics

wi(t) = T24i()(x — wi(t)) (11)

lasting for a time 7' = 1. Here, ¢;(t) lumps together
temporal and spatial influence

qi(t) = e()h(i, i;). (12)

With the diffusive Haken model, a dynamical im-
plementation of Kohonen’s algorithm is now straight-
forward: The sequential processes of best-match
search and neighborhood updating are realized via
parallel dynamics derived from equ. (6). To this end,
the time-derivative of the potential is used

. ov
g = —Tlﬁ (13)

with a shorter time scale 7 < 7.

In each training step, a pattern is fed into the neu-
ral grid, and the diffusive Haken dynamics of equ.
(13) is initialized with excitations

Qi(to) = 1/dl(x,wl) (14)

If L < 1 we can assume the shorter (¢-)dynamics
to have relaxed into its equilibrium state of a local-
ized bubble of excitation before updating of reference
vectors according to (11) occurs. Note that g¢;(¢) in
(11) is now identified with the excitation of neuron i
and no longer needs to be defined by external param-
eters. To be more exact, the updating process also
occurs during relaxation of q(t), but the influence of
the relaxed state on the updating is overwhelming.

If, on the other hand, :—; < 1, non-equilibrium
learning occurs, that is learning takes place mostly
during the relaxation process of q(t).

By using a Hebb-like learning rule such as in equ.
(11) we can emboss the relaxation state appearance
to the neural network. In the present case, the relax-
ation state is a local bubble of excitation, inducing
the formation of topological order in the network.

The decrease of neighborhood size often used in
Kohonen-type algorithms for enforcement of stabil-
ity and order can be mimicked by chosing a time-
dependent diffusive coupling constant . A simple
ansatz is

B 1
a 1—|—t/7’3

a(t) (15)

with 73 > ™.

4 Implementation of SOMs

We have simulated the formation of one-dimensional
ordered maps using the standard example of stim-
ulus distribution on a triangle [5]. It was confirmed
that using equations (11) and (13) in connection with
equs. (14) and (15), a dynamical formation of SOMs
is achievable.

Figure 4 shows an initial state of a network of
N = 20 neurons with one-dimensional neighborhood
connections for diffusive distribution of signals. Here
and in the following, we show the triangle with the
placement of network cells that are originally located
randomly. Also shown is a stimulus, together with
the reponse of the cells before and after a defined
number of steps in 71-units.

1
q; (0) q;(M

il M

Stimulus %‘

fteration 1

Figure 4: Diffusive Haken model with standard diffusion in
d=1. N =20,0(0) = 1,75 = 1000071, 73 = 100072. Initial
distribution of cells and reponse to first stimulus before and

after competitive dynamics (13).

In Figure 5, taken after 1000 training steps, an
ordered network state has already appeared. Even
before the competitive dynamics, the distribution of
cells and their response is regular.
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1
a; (0) q;(T)
0 mﬂﬂjﬂmﬂm Jﬂﬂﬂ
Stimulus
fteration 1000

Figure 5: As before, after the first 1000 training steps (iter-

ations) have passed.

Figure 6 shows the final state of the network (after
convergence).

1
q; (0) g; (T)
0

/

Stimulus

fteration 10000

Figure 6: As before, after the network has stabilized within
10000 training steps.

For reference, we give the final distribution of cells
if we apply 10000 stimuli to a network with non-
standard diffusive interaction. The tendency towards
more localized relaxation states (i.e. less width of the
distribution) is obvious.

As mentioned before, it is not necessary to wait for
the competitive dynumics to have approached the re-
laxation state before updating connections. Feasibil-

q; (0) g; (T)

e

Stimulus

fteration 2000

Figure 7: Diffusive Haken model with non-standard diffusion
ind =1 N = 20,a(0) = 50,72 = 1000071, 73 = 50073.
Final distribution and reponse to stimulus before and after

competitive dynamics.

ity of this non-equilibrium case for learning is demon-
strated with the next figures.

Figure 8 shows again the initial stimulus to a net-
work of N = 20 cells. This time, learning took place
on a much faster time-scale, with an acceleration fac-
tor of 10000 for standard diffusion and of 1000 for the
non-standard diffusion. The decay of «a was larger by
a factor 10, with the bulk of the accelaration coming
from using only very few iterations through the com-
petitive dynamics (13). We can see that an ordered
state has barely arrived before updating connections.

In Figure 9, the network is already in an ordered
state. Stimuli are more or less adjusted through the
competitive dynamics. Slowly, a better distribution
of cells is achieved.

After 10000 training steps the network has stabi-
lized. Distribution is not as good as in the equilibrium
case, but the solution was generated within 1/10000
of the time on a serial machine.

For reference, we give in a last Figure 11 the final
state for a non-standard diffusion model after 20000
training steps.

5 Conclusions

It has been shown that a dynamical implementa-
tion of SOMs by using a modified version of Haken’s
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q; (0) a; (M
Stimulus

2

fteration 1

Figure 8: Diffusive Haken model with standard diffusion in
d=1. N = 20,a(0) = 1,72 = 1071,73 = 10072. Initial dis-
tribution of cells and reponse to first stimulus before and after

competitive dynamics for a very small number of iterations.

q; (0) ai (M

il il

Stimulus

fteration 500

Figure 9: As before, intermediate status after 500 training

steps (iterations) have passed.

q; (0) ai (M

Stimulus

fteration 10000

Figure 10: As before, final state after 10000 training steps.

q; (0) ai (M

Stimulus

fteration 20000

Figure 11: Diffusive Haken model with non-standard diffu-
sionin d = 1. N = 20,a(0) = 50,72 = 10071,73 = 1007;.
Final distribution and reponse to stimulus before and after

competitive dynamics.
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winner-take-all dynamics is possible. Analytical and
numerical results for this modified model show that,
depending on the particular order of diffusive interac-
tions added to the original dynamics and depending
on the dimension of the topology, either localized or
de-localized relaxation states result. At present, only
localized states have been used for SOM implemen-
tation.

The simulations shown above only comprise the
case of a one-dimensional topology. There is no
doubt, however, that in two dimensions with a cor-
rect choice of parameters, the model is able to im-
plement SOMs. It is also suspected that models with
de-localized relaxation states are useful for the forma-
tion of SOMs, especially in the non-equilibrium region
of learning. Due to the diffusive interaction, ordered
states are at least transients in the competitive dy-
namics. Since non-equilibrium learning makes use of
transients anyway to arrive at ordered networks, also
de-localizing diffusive interactions might be used.

Recently, Kohonen has pointed out [11] that his
model can be imagined an algorithmic idealization of
interactions in the brain. He considers non-synaptic
interactions between neurons, mainly due to chemical
messengers that diffuse over a neighborhood of cells,
as serious candidates for an implementation of his
algorithm. Again, diffusive interactions are necessary
in order to arrive at the ordered state of the network.
In brains, the topology would then be given by the
three-dimensional spatial arrangement of neurons.

Over the last years, we have been examining some
other extensions of Haken’s dynamical winner-take-
all network. A discussion of their features, as well as
a more detailed account of the model presented here,
has to be deferred to a later time.
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