
Chapter 15

ACCELERATING GENETIC PROGRAMMING

THROUGH GRAPHICS PROCESSING UNITS

Wolfgang Banzhaf1, Simon Harding1, William B. Langdon 2 and Garnett Wil-
son 1

1Dept. of Computer Science, Memorial University of Newfoundland, St. John’s, NL, Canada;
2Dept. of Mathematical Sciences, Essex University, UK.

Abstract Graphics Processing Units (GPUs) are in the process of becoming a major source
of computational power for numerical applications. Originally designed for ap-
plication of time-consuming graphics operations, GPUs are stream processors
that implement the SIMD paradigm. The true degree of parallelism of GPUs is
often hidden from the user, making programming even more flexible and conve-
nient. In this chapter we survey Genetic Programming methods currently ported
to GPUs.
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1. Introduction

There is a notorious drag on Genetic Programming. Program search spaces
are huge, and often difficult to navigate (Banzhaf et al., 1998; Langdon and
Poli, 2002). Statistical measures for performance frequently require a large
number of runs of GP systems in order to arrive at significantly safe statements.
Finally, even running a single program might cause grief, due to the potentially
large number of fitness cases required for a GP system to evolve a reasonable
model of the underlying problem. In the extreme case, fitness cases have to
be drawn from a probability distribution, and there will never be the same
fitness case shown to the system again. To make things worse, measurements
or simulations used to provide the data for a single fitness case evaluation might
run from microseconds to days.

A simple calculation can easily demonstrate the amount of processing power
required. Suppose we use a standard tree GP system, with each node being
evaluated within 10−6s. If we assume that the problem is realistically difficult
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for individual programs to regularly reach a depth limit of 17 using binary
function nodes, an individual program will evaluate in approximately 0.131 s.
Taking part of that size (not every program will be of maximum depth), 105

nodes, and multiplying with standard parameters for a GP run (number of
fitness cases 103, population size 103, generations until end of run 103, and
number of runs for statistical purposes 102), we end up with a runtime of
1010s, or 317 yrs. Even going to a billion node evaluations per second, which
is certainly on the optimistic side, will require us to run the experiment for
116 days. So realistically, only experiments which can knock off a factor of
103 can reasonably be expected to be done.

Clearly, these types of considerations lead to restrictions on the types of prob-
lems presently being subjected to Genetic Programming, as well as to evaluation
limitations in terms of number of fitness samples, or length of programs. This,
in turn, will change the evolvability and quality of solution, or, in the former
case, even prohibit certain problems from being addressed by GP.

With GPUs, the situation is bound to change fundamentally. “As of 2007,
the fastest PC processors perform over 30 GFLOPS. GPUs in PCs are consid-
erably more powerful in pure FLOPS. For example, in the GeForce 8 Series
the NVIDIA 8800 Ultra performs around 576 GFLOPS on 128 processing el-
ements. This equates to around 4.5 GFLOPS per element, compared with 2.75
per core for the Blue Gene/L supercomputer. It should be noted that the 8800
series performs only single precision calculations, and that while GPUs are
highly efficient at calculations they are not as flexible as a general purpose
CPU.” (Wikipedia, 2008) With the advent of that kind of processing power,
more problems become accessible, and now it is feasible for researchers to
try a whole set of problems of a real-world application - rather than 1 or 2
demonstrations.

2. Various Sources of Speed-up for Genetic Programming

Problems of resource demand have always been with GP, but it appears as
if the GP community has been pretty successful in circumventing the worst
obstacles. It is clear that GP is very amenable to speedup through various
methods. Here we’ll just shortly outline a few of the sources for this potential.

First, there clearly are some factors that allow independent decomposition
of tasks which lend themselves easily to parallelization:

1) Individual programs are evaluated using multiple independent fitness
cases;

2) Populations consist of individuals which could be evaluated on indepen-
dent hardware in parallel;

3) Repeated (independent) runs for producing appropriate statistical confi-
dence levels can be executed simultaneously on different hardware.
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Other factors do not lend themselves to easy parallelization because they
require dependence, yet may also be exploited:

4) Evolutionary generations which build on each other
5) Program execution which usually requires a sequence of execution steps

to be performed
6) Evaluation of single nodes which might be highly complex and serial pro-

cesses
We think the above mentioned parallelization potential corresponds to the fol-
lowing causes:

1) Difficulty of the problem;
2) Population size chosen;
3) Statistical significance of results;
4) Speed of evolution with a given representation;
5) Size of the search space;
6) Complexity of the problem domain.

Issues (1) to (3) are more easy to address in a parallel computing environment
while issues (4) to (6) are more difficult, but not impossible, to address.

There is probably no generic solution to problem (6), but accelerating the
evaluation of single nodes is certainly possible, either directly (see below in
the case of image filters) or indirectly by using proxy evaluation (Ziegler and
Banzhaf, 2003). It is more difficult to address the dependency problems of
(4) and (5), although attempts have been made to relax the sequentiality of
programs, see, e.g. (Banzhaf and Lasarczyk, 2004). As for 4), an entire area
of research has sprung up around more efficient and more easily evolvable
representations, which has a bearing on the speed of evolution. But a radical
approach like dissolving the sequence of generations is not possible, given the
very nature of evolution, although some inroads can be made in dissolving the
dependency, e.g. the success of steady-state algorithms or evaluation queueing.

In general, it can be expected that the hardware landscape is now sufficiently
heterogeneous that each case will have another optimum for the expoitation of
parallel resources. It remains to be seen how adaptive algorithms (forthcoming
2008) will be able to take advantage of these resources.

3. Classical Parallelization

Early work on parallelization of Genetic Programming already includes
SIMD architecture approaches (Juille and Pollack, 1995) and a GP system
written in FORTRAN running on a Cray super computer (Turton et al., 1996).
Even earlier was work porting classifier systems / GAs to Thinking Machines
SIMD architecture of the Connection Machine (CM) back in the 1980s (Robert-
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son and Riolo, 1988) which even preceded the coevolution of parallel sorters
by Hillis (Hillis, 1990).

Applications were the driving force for parallel approaches to GP (Ous-
saidene et al., 1996; Stoffel and Spector, 1996), no wonder given the restrictions
on single runs discussed earlier. Koza at al. (Andre and Koza, 1996; Bennett III
et al., 1999) popularised the use of transputer boards and later Beowulf worksta-
tion clusters where the population is split into separately evolving demes with
limited emigration between compute nodes or workstations (Page et al., 1999).
Multipopulation models were more systematically studied by (Fernández et al.,
2003). New techniques became also available through progress with parallel
hardware (Folino et al., 2003b; Folino et al., 2003a).

A number of groups demonstrated the use of the Internet for parallel GP,
e.g., (Chong and Langdon, 1999; Gross et al., 2002; Folino et al., 2006). In
these approaches the GP population can be literally spread over the globe.
Alternatively JavaScript has been used to move interactive fitness evaluation to
the user’s own home but retain elements of a centralised population (Langdon,
2004). In recent times, cloud computing has been added to the options.

Others have used special purpose hardware. For example, (Eklund, 2003)
used a simulator and was able to show how a linear machine code GP can be
run very quickly on a field programmable gate array under VHDL to model
sun spot data. FPGA were used already early on as acceleration tools for
fitness evaluation (Koza et al., 1997). Martin employed a special C-compiler
for FPGAs to run a GP system (Martin, 2001). However, FPGA architectures
are intrinsically cumbersome to handle for an average programmer, and should
be considered tools for the specialist, in contrast to Genetic Programming on
GPUs.

One important consideration with every sort of parallel approach is the price
one pays for hardware to accelerate computation. Manufacturers have exploited
the need of scientists for computation for a long time. Cray and other parallel
computers, including recent machines like IBM’s BlueGene/L, carry a high
pricetag.

Computing clusters, on the other hand, consist of commodity hardware and
are therefore much cheaper. However, they also have high and continued op-
erating costs, just as commercial parallel machines. Over the lifetime of even
a small cluster, the operating costs can become several times that of the initial
hardware investment (Feng et al., 2002). The costs come from a variety of
sources, such as system adminstration, power, cooling and space. Being able
to use a single desktop machine mitigates most of these costs.

In recent years, it has become recognized that GPUs provide much more
economical means of achieving extremely parallel computation. To provide
some indicative statistics, in mid-2007 the latest Intel CPU, the Core 2 Extreme
QX6800, was capable of over 37 GFLOPS (INTEL, 2008). The CPU also had
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a suggested retail price of $999 US at release, providing the consumer with a
cost of approximately $27/GFLOP.

One of the latest benchmarked PC NVIDIA graphic cards, on the other hand,
the GeForce 8800 GTX, provides 520 GFLOPS (NVIDIA, 2006) at an initial
retail price of US $599 for $1.15/GFLOP. The NVIDIA 8800 has been used in
much of the research presented in this chapter.

As one of the largest drivers of GPU power, computer gaming has emerged.
Video game consoles are often sold at a loss in terms of hardware at product
launch. This makes them a very economical choice for parallel power for
parallel computation research. For instance, as early as 2005, the MS Xbox
360 claimed to provide 1 TFLOP (overall system performance, using both
CPU and GPU computation) (XBOX, 2008). The most economical Xbox 360
package at that time sold for $299 US, providing a cost of $0.29/GFLOP. In this
chapter, we describe how the Xbox 360 can be used to perform both general
purpose computation, and GP.

4. The GPU platform and its potential

Graphics Processing Units are specialized stream processors, useful for ren-
dering graphics applications. Typically, a GPU is able to perform graphics
manipulations at a much higher speed than a general purpose CPU, since the
graphics processor is specifically designed to handle certain primitive opera-
tions which occur frequently in graphics (game) applications. Internally, the
GPU contains a number of small processors (see Figure 15-1) that are used
to perform calculations on 3D vertex information and textures. A texture is a
collection of pixels, in the form of a 2D image.

GPUs are constructed so that the simple vertex and shader processors work in
parallel and in a pipeline fashion. The vertex processors calculate the 3D view,
then the shader processors paint the model before it is displayed. Depending
on the power of a GPU, the amount of parallel processors currently runs from
2 to 64 on both the vertex and the shader level. The fact that GPUs have the
ability to perform restricted parallel processing has elicited considerable interest
among researchers with applications requiring intensive parallel computation.
Although the type of parallel processing used by GPUs, SIMD, is not the most
general model of parallel computing, the sheer amount of raw processor power
and the comparable low cost on graphics cards make it an attractive choice for
a large number of applications, e.g. in scientific computing.

A GPU processes textures and outputs a vector of four floating point numbers
for each texture element (texel) processed, traditionally corresponding to RGBA
(red, green, blue, and alpha, for transparency) channels of a color. The two
components of a GPU architecture that a user can control are the set of vertex
processors and the set of pixel (or fragment) processors. An effect file, which
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is a program to control the GPU, is divided into two parts corresponding to the
architecture: a pixel shader and a vertex shader. The vertex shader program
transforms input vertices based on camera position, and then each set of three
resulting vertices computes a triangle from which pixel (fragment) output is
generated and sent to the pixel processors. The shader program instructs the
pixel shaders (processors) to ”shade” each pixel in parallel and produce the
final pixel with associated RGBA values for final output. Even though the latest
GPUs (such as all those used this paper) use unified architectures, where the
shader processors can handle vertex or pixel commands, the two functionalities
are still separated when composing effect files.

While early GPUs tended to be severely restricted in the type and number of
instructions they could execute, newer GPU architectures foresee the tendency
to make freer use of the processing resources offered. Today, the number of
instructions executable on a shader processor is not limited any more, and the
type of instructions is broad, like all floating-point operations, instead of narrow.
General purpose applications of GPUs (GPGPU) tend to take advantage of pixel
shader programming rather than using the vertex processors, mainly because
there are typically more pixel- than vertex-shaders on a GPU and the output
of the pixel shaders is fed directly to memory (Harris, 2005). In terms of
traditional data structures and execution, GPU textures are analogous to arrays,
the shader program is like a Kernel program, and rendering effectively executes
the program on array elements in parallel.

Programming a GPU

In this section we provide a brief overview of some of the general purpose
computation toolkits for GPUs that are available. This is not an exhaustive
list, but is intended to act as a guide to others. Generally speaking, the field is
quickly advancing and readers are advised to carefully check the internet for
the newest resources.

Sh and RapidMind: Sh is an open source project for accessing the GPU
under C++ (RapidMind, 2008; LibSh Wiki, 2008). Many graphics cards are
supported, and the system is platform independent. Many low level features
can be accessed using Sh, however these require knowledge of the mechanisms
used by the shaders. The Sh libraries provide typical matrix and vector manipu-
lations, such as dot products and addition-multiplication operators. Sh has now
been developed into a commercial product called RapidMind. A key benefit
of the RapidMind toolkit is the ability to target other multicore platforms, such
as the Cell/BE processor which is found in Playstation3. The usefulness of
RapidMind for genetic programming has already been demonstrated for paral-
lel evaluation of entire populations with more than 1 million individuals, all run
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Figure 15-1. General sketch of GPU architecture and a GP implementation. Two sets of parallel
stream processors are used to accelerate computation, vertex processors and pixel shaders. Only
the second set of processors is used in these implementations.

in parallel (Langdon and Banzhaf, 2008), and we briefly mention its application
here to Bioinformatics problems in Section 5.0.

Accelerator: Microsoft also has a prototype .Net assembly called Accel-
erator that provides access to the GPU via the DirectX interface (Tarditi et al.,
2006). The system is completely abstracted from the GPU, and presents the end
user with only arrays that can be operated on in parallel. Unfortunately, the sys-
tem is only available for the Windows platform due to its reliance on DirectX.
However, the assembly can be used from any .Net programming language.

Accelerator shares with RapidMind the design feature that operations are
not performed on the data until the evaluated result is requested. This enables
a certain degree of real time optimization, and reduces the computational load
on the GPU. In particular, optimisation of common sub expressions will reduce
the creation of temporary shaders and textures. The movement of data to and
from the GPU can also be efficiently optimized, which reduces the impact of the
relatively slow transfer of data out of the GPU. The compilation to the shader
model occurs at run time, and hence can automatically make use of the different
features available on the supported graphics cards.

We have previously used Accelerator for several different genetic program-
ming tasks (Harding and Banzhaf, 2007a; Harding and Banzhaf, 2007b; Hard-
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ing, 2008). In Section 5.0 of this paper we demonstrate the evolution of image
filters using this toolkit.

CUDA and Cg: The GPU manufacturer NVIDIA also provides two toolk-
its for GPU programming. The Cg (C for graphics) toolkit allows one to develop
shader programs for OpenGL or DirectX (NVIDIA, 2008; Mark et al., 2003).
Cg provides extensions to the C language (such as data types) to make it suit-
able for GPU programming. It was designed to simplify shader programming,
which was typically performed at the assembly language level. By interpretting
textures and other graphics primitives as general purpose arrays, it is possible
to implement general purpose programs. Regression and classification prob-
lems, using genetic programming, have already been successfully demonstrated
(Chitty, 2007).

CUDA ("Compute Unified Device Architecture") is an NVIDIA hardware
specific language for programming their more recent stream processors. Again,
it is based on the C programming language and allows the user to write shader
programs at a high level. CUDA also supports multiple GPU devices - and
allows for different programs/data on each device. The toolkit provides fine
grained control of how the GPU is utilised - potentially allowing for highly
efficient use.

HLSL: Microsoft’s High Level Shader Language (HLSL) is similar to Cg
and CUDA. It is also a C-style language that can give some direct programmabil-
ity of the shaders, but with the design tradeoff that they are used in conjunction
with (rather than coded as part of) the source files in the higher level languages
like C# and C++. With the current version of HLSL it is no longer necessary to
use assembly-type instructions to access the shader functionality, and the lan-
guage features C-like data, vector, and matrix types. Programs can be divided
into C-like functions, and HLSL flow control includes both static and dynamic
branching and looping. HLSL can be used to develop shader programs for
DirectX that can work on both the Windows and XBox platforms. This has
allowed Linear Genetic Programming to be implemented on the XBox and to
benefit from the GPU (Wilson and Banzhaf, 2008).

It is interesting to note that Moore’s Law is also valid for the growth of GPU
performance over recent years, however with a different doubling parameter:
While the doubling time for CPU performance is on the order of 18 months,
doubling time for GPU performance is around 9-12 months. Thus, over time,
the advantage of applications programmed for GPUs have over their CPU coun-
terparts is bound to grow even faster.

The newest development on the hardware market are multiple GPU solutions.
This is the next iteration of hardware improvement. For instance, the latest
NVIDIA cards are essentially 2 of last years GPUs on one board. When coding
for multiple devices, CUDA allows for completely different processes to run
on each device.
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5. Applications

At present most publications on using genetic programming with graphics
hardware have been more concerned with proof of principle or demonstration
of practical technology and algorithms rather than applying GPUs.

Large datasets are available in many different communities. For the demon-
strations presented here, we chose one from the intrusion detection system
community which was published for a competition in connection with the KDD
conference 1999. We also discuss an image processing application, and a bioin-
formatics application. We finally demonstrate the feasibility of GPU computing
on a gaming console.

The KDD 1999 IDS dataset

The full KDD Cup 1999 data set contains over four million entries. The data
mining task was to find a network intrustion detector, that could discriminate
between different types of network behaviour. The data itself has been critized,
but we feel that the size of the dataset presents some challenges to conventional
implementations. Because of memory restrictions on our current graphics card,
we restrict ourselves to a subset of 10%, which contains 494,021 entries, each
with 42 values. All input types were converted to floating point numbers (map-
ping string tokens to unique numbers). The dataset requires approximately 80
Mb of memory once in RAM.

Benchmark tests were performed using the RapidMind development plat-
form, under Windows XP (Athlon 5200 CPU, 2 Gb RAM with a NVIDIA 8800
GTX, 768 Mb). We implemented Cartesian GP (CGP) (Miller and Thomson,
2000) for both the RapidMind GPU backend, and a straight C++ version. This
allows us to easily compare timing for both a parallel and a conventional im-
plementation. The CPU implementation uses only a single core. We chose
not to use the RapidMind C++ backend as the overhead of invoking the native
compiler is excessive - the system is better suited to situations where the parallel
parts of the code only need to be compiled once.

For both the CPU and GPU, we used the function set of Table 15-1. We pe-
formed evolutionary runs using both the GPU and CPU implementations, and
recorded the number of Genetic Programming Operations Per Second (GPOps).
Each run consited of evaluating 9005 individuals (200 generations, 50 indiv-
diduals with 5 elite individuals per population). We performed 10 runs of each
implementation, and computed the timings based on statistics collected for each
generation of each run.

For the GPU, peak performance was 694 million GPOps and an average of
388 million GPOps. In contrast, the CPU implementation peaked at 92 million
GPOps with an average of 41 million GPOps.



238 GENETIC PROGRAMMING THEORY AND PRACTICE VI

On the GPU an individual took an average of 5.86 ms to evaluate, compared
to 43.54 ms on the CPU – a speed up of 7.4 times on average. These timings
include any overhead for data transfer and compilation of shader programs.

Image Filters

The evolution of image filters using Genetic Programming is a relatively
unexplored task (but see (Poli, 1996)). This is most likely due to the high
computational cost of evaluating the evolved programs. We have used a GPU
implementation to tackle the challenge of reverse engineering image filters, i.e.
to find the mapping between an image and the output of a filter applied to it. The
filters we investigate in this paper are from the open source image processing
program GIMP (GNU, 2008). To perform reverse engineering, again CGP is
used to evolve programs acting as filters. These programs take a pixel and its
neighbourhood from an image, and compute the next value of this central pixel.
The convolution kernel is run on each pixel in an image producing a new image.

For much of the previous work on this problem a single, low resolution (256 x
256 pixel) image is used in the evaluation stage. This approach can be expected
to result in over-fitting to a particular image. Thanks to the acceleration through
the use of a GPU we were able to employ more images to help overcome such
issues; here 16 different images (Figure 15-2) were used largely taken from the
USC-SIPI image repository (12 used for fitness evaluation, and 4 for validation).
This allows us to be confident that evolved filters will generalise well. As we
are employing the GPU for acceleration, it is possible to test all images at the
same time and obtain both the fitness and validation score simultaneously.

The original input images were combined together to form a larger image.
A filter was applied using GIMP. We then employed the evolutionary algorithm
to find the mapping between the input image and the output images. The fitness
function attempts to minimize the error between the desired output (the GIMP
processed image) and the output from the evolved filters.

Table 15-1 lists the available functions. A simple evolutionary algorithm
with population of size 25, tournament selection (size 3) and elitism (best 3
individual) was used. We allowed evolution to run for 50,000 evaluations.

With this technique it was possible to evolve many different types of filters,
such as erode, dilate, emboss and various edge detectors (see (Harding and
Banzhaf, 2008) for more examples). Here we will illustrate the process with
the Sobel filter, which is a type of directionless edge detector. Figure 15-3
shows how the evolved filter compares to the GIMP implementation.

Calculating the Genetic Programming Operations Per Second (GPOps) for
our test system (NVIDIA 8800 GTX, AMD Athlon 3500+, Microsoft Accel-
erator API) a peak performance of 292 million GPOps and an average of 194
million GPOps was reached. Different operations appear to take different times
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Table 15-1. CGP Function set used in the different applications. ”x” means a particular instruc-
tion was used. The constants refer to the respective node’s parameter.

Function Description KDD Filters

ITERATION Return the current iteration index x
ADD Add the two inputs x x
SUB Subtract the second input from the first x x
MULT Multiply the two inputs x x
DIV Divide the first input by the second x x
ADD CONST Add a constant to the first input x x
MULT CONST Multiply the first input by a constant x x
SUB CONST Subtract a constant from the first input x x
DIV CONST Divide the first input by a constant x x
SQRT Return the square root of the first input x x
POW Raise first input to the power of second x x
COS Return the cosine of the first input x
SIN Return the sin of the first input x
NOP No operation - return the first input x
CONST Return a constant x
ABS Return the absolute value of first input x x
MIN Return the smaller of the two inputs x
MAX Return the larger of the two inputs x
CEILING Round up the first input x x
FLOOR Round down the first input x x
FRAC Return the fractional part of number x
LOG2 Log (base 2) of the first input x
RECIPRICAL Return 1/firstinput x
RSQRT Return 1/

√
firstinput x x

CROOT Return the cube root of first input x
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Figure 15-2. The training and validation image set. All images are presented simultaneously
to the GPU. The first column of images is used to compute the validation fitness, the remaining
twelve for the training fitness. Each image is 256 by 256 pixels, with the entire image containing
1024 by 1024 pixels.

to execute. Across all the image filters we evolved, the peak performance was
324 Million GPOps, with an average of 145 GPOps. Using a CPU implemented
reference driver, we were able to run the same experiments on the CPU. Exe-
cution yielded only 1.2 million GPOps, i.e. a factor of 100 times slower than
the GPU. Considering the difference in performance, it would be impractical
to run these experiments on the CPU with this size of image set.

A Bioinformatics Application

The applications from Bioinformatics are using the GPU primarily to speed
up the fitness evaluation. In (Langdon and Harrison, 2008) GP was used to find
a small set of GeneChip probes which indicated long term (10 or more years)
survival of Breast Cancer.

From 1987 to 1989 during breast surgery tumour samples were saved and
subsequently analysed using two GeneChips (HG-U133A and HG-U133B).
These two chips together collect more than a million expression values for 251
patients (Miller, 2005). A major part of the data mining exercise was simply
to use evolution to decide which of these are useful at predicting the patients
future. GP was run multiple times in a series of passes to winnow the useful data
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Figure 15-3. Evolving a Sobel edge detector. The left image shows the output from the evolved
filter. The right image is the output from the GIMP filter. The two outputs are visually very
similar.

from the remaining chaff (Langdon and Buxton, 2004). This involved running
the GP system with a population of five million programs hundreds of times on
hundreds of megabytes of training data. The final predictor was a non-linear
function of only a handful of the million initial variables.

A second study (Langdon, 2008) also involved the use of GeneChips. How-
ever, GP was used here to locate problems with Affymetrix technology it-
self rather than looking at the medical results of applying that technology.
Affymetrix Chips provide many (typically 22) separate readings for each hu-
man gene. If the GeneChip was well designed, all the readings should be well
correlated. However our measurements of the correlation found thousands of
cases where this was not true (Upton et al., 2008). GP was used to find patterns
in the data to indicate which readings were unreliable. This has led to discussion
about the underlying physics of the GeneChip, what may cause the problems
and how they might be avoided in future designs (Upton et al., 2008).

XBOX Application

We have used the GPU processing power of a video game console, namely
of the Xbox 360 (Andrews and Baker, 2006) for general computation. In late
2006, Microsoft launched XNA Game Studio Express, which integrated with
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C# Studio Express, and thus became the first video game console to provide its
users with access to its GPU. By using XNA with HLSL, we designed GPGPU
applications and ported them to an Xbox 360 for execution. The application
itself was a Linear GP program, which implemented both fitness evaluation and
mutation using the GPU. Production with the XNA framework targeted to the
Xbox 360 presented interesting design challenges.

An XNA project interface mandates that initialization (Initialize), update
of program logic (Update), and rendering of graphics (Draw) methods be im-
plemented. The program runs by repeatedly updating the Update and Draw
methods — it is designed to be a video game that is constantly checking its
logic status and updating the graphics on the screen. The Draw method is thus
the main component of our GPGPU implementation, as this is where the shader
programs on the GPU are called from. Rather than use a typical loop construct
for LGP tournament execution, the repeated execution of the Draw method is
harnessed to conduct generational tournaments over numerous trials.

The Draw method, as appropriate, would process the textures using HLSL
programs loaded at compile-time or otherwise conduct CPU-side GP tourna-
ment processes. The population of LGP individuals is represented as multiple
textures. In particular, two textures represent the content of the instructions, and
another texture represents the registers. Multiple passes are used to examine
the instruction in the first two textures and place subresults in the third register
texture. A single large texture represents the fitness cases. Mutation was im-
plemented with a texture of randomly chosen probabilities and a corresponding
texture of potential chromosome replacements. The work (Wilson and Banzhaf,
2008) established, for the first time, how to use a video game console GPU for
general computation in any capacity, and how to use a console in general (both
CPU and GPU) for genetic programming. GPU implementations on the XBox
360 were found to be moderately faster than their CPU equivalents, but this
is likely indicative of the tightly integrated nature of the CPU and GPU in the
Xbox 360 architecture. Practically speaking, the results demonstrate that future
GPGPU programmers of the Xbox 360 need not be as focused on performance
consequences of placing functionality with the GPU as opposed to the CPU.

6. Perspective

In this chapter we have motivated the use of GPUs for Genetic Programming
through the excessive computational demands GP poses on every system. We
have explained the general approach to using a GPU, given an overview of cur-
rently usable software systems, and demonstrated by way of example a number
of interesting applications of GP on GPUs. Our work succeeded in porting
various aspects of linear, tree and graph GP systems onto GPU platforms.
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It is too early to predict which types of parallelization of GP using GPUs
will in the end be the most effective. For example, it would be helpful to
identify categories of fitness functions that may and may not be suitable for
implementation on GPUs. It appears that at first glance, many GP problems
are easily mappable onto the GPU hardware. Since it can be expected that in
the future the APIs will hide even more functionality implementations should
become easier to acheive.

We hope that this chapter motivates many more researchers to turn their
attention to this new platform that promises to revolutionize how Genetic Pro-
gramming is performed.
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