
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2021) 22:573–605
https://doi.org/10.1007/s10710-021-09418-4

1 3

Evolving hierarchical memory‑prediction machines
in multi‑task reinforcement learning

Stephen Kelly1 · Tatiana Voegerl1 · Wolfgang Banzhaf1 · Cedric Gondro1

Published online: 9 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
A fundamental aspect of intelligent agent behaviour is the ability to encode sali-
ent features of experience in memory and use these memories, in combination with
current sensory information, to predict the best action for each situation such that
long-term objectives are maximized. The world is highly dynamic, and behavioural
agents must generalize across a variety of environments and objectives over time.
This scenario can be modeled as a partially-observable multi-task reinforcement
learning problem. We use genetic programming to evolve highly-generalized agents
capable of operating in six unique environments from the control literature, includ-
ing OpenAI’s entire Classic Control suite. This requires the agent to support discrete
and continuous actions simultaneously. No task-identification sensor inputs are pro-
vided, thus agents must identify tasks from the dynamics of state variables alone
and define control policies for each task. We show that emergent hierarchical struc-
ture in the evolving programs leads to multi-task agents that succeed by performing
a temporal decomposition and encoding of the problem environments in memory.
The resulting agents are competitive with task-specific agents in all six environ-
ments. Furthermore, the hierarchical structure of programs allows for dynamic run-
time complexity, which results in relatively efficient operation.

Keywords Genetic programming · Reinforcement learning · Temporal memory ·
Multi-task

 * Stephen Kelly
 kellys27@msu.edu

 Tatiana Voegerl
 voegerlt@msu.edu

 Wolfgang Banzhaf
 banzhafw@msu.edu

 Cedric Gondro
 gondroce@msu.edu

1 BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing,
MI, USA

http://orcid.org/0000-0002-6071-4705
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-021-09418-4&domain=pdf

574 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

1 Introduction

Life is full of new situations and challenges that pose a high degree of uncertainty
for organisms. In many cases, this uncertainty can only be mitigated through trial-
and-error interaction with the environment. For example, the challenge of learning
to walk or ride a bike cannot be solved by studying a dataset of examples for how
one should map sensory inputs to muscle movements in every possible situation.
No such dataset, or model of behaviour, exists. Reinforcement Learning (RL) is a
general process through which living organisms and computational machines can
manage this type of uncertainty through trial-and-error interaction with the problem
environment over time [32, 43]. In machine RL, the learning agent is represented by
a Virtual Machine (VM), and time is divided into discrete steps. At each timestep,
the agent observes its environment through sensor inputs, takes an action that
changes the state of the environment, and receives a feedback signal that describes
the desirability of its current situation. The goal is to develop agent behaviours that
map observations to actions such that the summed feedback, or reward, over all
timesteps is maximized, see Figure 1f.

1.1 Multi‑task reinforcement learning environment

The unique Multi-Task Reinforcement Learning (MTRL) environment formulated in
this work includes partially-observable versions of the following 6 widely-used RL
benchmarks from the literature [43]: CartPole, Acrobot, CartCentering, Pendulum,
MountainCar, and MountainCarContinuous, Figs. 1(a) to 1(e). These are dynamic
control problems with between 2 and 4 state variables and a mix of discrete and con-
tinuous action spaces. For example, in the CartPole task (Fig. 1a), a pole is attached
by an un-actuated joint to a cart, which moves Left or Right along a frictionless
track. The state of the system at each timestep, s⃗(t) , is described for 4 variables
including the cart position (x), cart velocity (ẋ), pole angle (�), and pole velocity at
the tip (�̇�). The system is controlled by applying a force of +1 or -1 to the cart. The
pole starts nearly upright, and the goal is to prevent it from falling over. A reward of
+1 is provided for every timestep that the pole remains upright. The episode ends
when the pole is more than 15 degrees from vertical, or the cart moves more than
2.4 units from the center. Complete details about all tasks and implementations used
in this work can be found in OpenAI Gym’s Classic Control Suite [7].

Critical characteristics of these RL problems can be summarized as the following:

Episodic interactions Agent-environment interactions are episodic. Each interac-
tion begins in an initial state of the environment (often a stochastic sampling of the
state variables, s⃗) and continues until a terminal state is reached or a time constraint
is exceeded. The quality of an agent’s behaviour can be characterized by the sum
total of rewards received over the course of an episode.

The temporal credit assignment problem Credit assignment is the mechanism
used to modify agent behaviour relative to information obtained through the

575

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605

reward signal. In sequential decision-making problems, the task environment may
provide the agent with a non-zero reward in response to each action taken. How-
ever, it is often difficult to determine which specific decision(s) led to ultimate
success or failure. For example, even actions with a neutral or negative step-wise
reward may ultimately contribute to a successful outcome. This is known as the
temporal credit assignment problem [17, 42]. The problem is addressed differ-
ently by methods that perform a learning update relative to each decision and
the immediate reward within the temporal sequence, or ontogenetic learning (e.g
Temporal Difference learning, TD(�) [42]), and cases such as Genetic Program-
ming (GP), in which an agent’s decision-making policy is evaluated as a whole

(a) (b)

(e)

(c)

(f)

(d)

Fig. 1 Classic control task environments used in this work. For complete details on each task, see [7]

576 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

based on the final episode outcome only, or phylogenetic learning. In effect, deci-
sion-level credit in GP is applied implicitly, since agents that make better deci-
sions will receive higher fitness and produce more offspring. Thus, evolution
manages the temporal credit assignment problem by directing the search in favour
of agents that make decisions that contribute to a positive overall outcome. In
the context of model building with GP, each learning update effectively creates
a new model (e.g. by selection and variation operators in the Genetic Algorithm
(GA)), and thus the search process is performed over the space of possible mod-
els (decision-making policies) within a particular representation. Under RL tasks
this approach is known as policy search.

The relative merits of ontogenetic and phylogenetic learning for sequential deci-
sion making tasks has been the subject of debate [3], and which method is superior
for a particular problem remains an open question, with arguments supporting the
advantages of both phylogenetic [30] and ontogenetic [42, 43] methods. While no
argument is made one way or the other here, this work can be seen as an empirical
example of the strengths of phylogenetic, evolutionary RL.

Mixed discrete and continuous actions Depending on the problem, actions may
be discrete valued, continuous, or both. For example, in the CartPole task described
above, the agent controls the system with a bang-bang force by selecting from 2
discrete actions (1 or -1). By contrast, in the Pendulum task the agent must swing
a pendulum upright and balance it by supplying a continuous torque value applied
to the joint. Other examples include learning to play Atari video games, where the
agent must select from a set of 18 discrete actions corresponding to joystick posi-
tions [29]. In the challenging RL benchmark of RoboCup soccer, the agent may be
required to select which teammate to kick the ball to and provide a continuous value
describing how hard to kick [11]. Continuous action spaces introduce non-trivial
design choices for the RL practitioner [27, 34, 35]. For example, continuous control
problems cannot be solved by simply discretizing the action space due to the expo-
nentially large number of bins over which policies would have to be learned [28].

Partial observability The agent observes its environment at each timestep t
through a sensory interface that provides a set of state variables, s⃗(t) . In many cases,
these observations do not contain all the information required to determine the best
action, i.e. the environment is only partially-observable. For example, consider a
maze navigation task in which s⃗(t) does not contain a global map of the maze, or
an environment that contains entities in motion but does not provide their velocity,
which is the case for all the control problems considered in this work. In partially-
observable environments, the agent is required to identify and store salient features
of s⃗ in memory over time, encoding a representation of the environment that cap-
tures temporal properties of the current state [12]. Thus, part of the agent’s behav-
iour must be dedicated to active perception [33]: constructing and managing a rep-
resentation of the environment in memory. This is an example of a model based
RL agent [43], which is a distinct approach from purely reactive, model free agents.
In the later case, the agent defines a direct mapping from state to action without
any internal representation of state, and thus no temporal integration of experience
is possible. Finally, RL agents are also active in the sense that their action choices
influence the state of the system and hence their experience of the environment.

577

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605

Therefore they must balance exploration vs. exploitation: exploring enough of the
environment to gain a breadth of experience (and possibly build an internal model),
while also selecting actions that optimize their objective.

Non-stationary, multi-task environments The environment defines a transi-
tion function that maps the state of the system at time t, s⃗(t) , and the action pro-
vided by the agent, a(t), to the next state and reward, s⃗(t + 1) and r(t + 1) . The
real world is highly dynamic, and realistic machine RL can model this by design-
ing non-stationary benchmark environments in which the transition function and/
or the reward function changes over time. Video games are a prime example of
non-stationary tasks: as the player interacts with the game, new “levels” of play
are encountered and the physics of the simulation change (e.g. entities react dif-
ferently and move faster) such that gameplay becomes increasingly challenging
[51]. The agent should be able to adapt to environmental changes without for-
getting behaviours that are intermittently important over time. Managing multi-
ple modes of behaviour is the central focus of MTRL. More broadly, the goal of
MTRL is to build generalized agents capable of operating in multiple environ-
ments without requiring an oracle to identify which situation is currently being
experienced. That is, s⃗(t) does not contain information which would explicitly
identify the task. At any point in time, the agent must infer which task environ-
ment it is interacting with by observing how the state variables change over time,
and then behave in a manner that satisfies the objective of the task [21, 44].

In this MTRL study, the goal is to build a single agent that can learn to solve
all tasks in Figs. 1a–e through direct interaction with the environment. Table 1
describes a common agent-environment interface used for all tasks. Notice that
the state of each system is described by the position and velocity of different
entities (Table 1). In this work, the agent is blind to velocity variables, implying
that all tasks are partially-observable. In order to solve these problems, agents

Table 1 Agent-Environment interface, see Figure 1f

The observable state at time t, s⃗(t) , contains state variables 0 and 1. The agent cannot observe variables
that describe temporal properties of the system (i.e. velocities in bold italic). To maintain a common
2-input interface for all tasks, in certain cases the second state variable is replaced by a random number
in [0,1]. Disc. Act and Cont. Act describe how discrete and continuous actions are interpreted by each
task. prev indicates the previous action is repeated. Blank cells indicate the action is ignored. Reward
functions for each task appear in Table 2

Task State variables Disc. Act a
d
∈ {0, 1, 2} Cont. act a

c
∈ ℝ

Mapping to force

0 1 2 3 0 1 2

CartPole x � ẋ �̇� 1 Prev −1

Acrobot �1 �2 �̇�
1

�̇�
2

Torque = ac

CartCentering x Rand ẋ 1 Prev −1

Pendulum � Rand �̇� Torque = ac

MountainCar x Rand ẋ 1 0 −1

MountainCarC. x Rand ẋ Force = ac

578 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

will need to predict the system velocities by integrating the observable varia-
bles over time. The state observation, s⃗(t) , contains 2 state variables. Note that
neither variable explicitly identifies the task. The observable state variables are
normalized to the range [−1, 1] to ensure that their magnitude cannot be used to
identify the task. The agent will need to infer which task it is currently inter-
acting with by observing how the state variables change over time. Finally, the
agent must produce 1 discrete action and 1 continuous action at each timestep.
CartPole, CartCentering, and MountainCar will respond to the discrete action,
while the remaining tasks will respond to the continuous action. This MTRL
challenge is exceptionally difficult. However, the individual tasks are well-
known, tractable RL benchmarks. Thus, with this methodology we establish the
minimum essential properties for a new MTRL testbed. Algorithms evaluated
in this testbed will need to address the following primary challenges of MTRL
[44]:

1. Scalability Jointly learning N tasks should not take N times as long as learning
each task individually, and the resulting multi-task agent should not be N times
as complex.

2. Distraction dilemma The magnitude of each task’s reward signal may be differ-
ent, causing certain tasks to appear more salient than others.

3. Catastrophic forgetting When learning multiple tasks in sequence, the agent
must have a mechanism to avoid unlearning task-specific behaviours that are
intermittently important over time.

4. Negative transfer If the environments and objectives are similar, then simultane-
ously learning multiple tasks might improve the learning/search process through
positive inter-task transfer. Conversely, jointly learning multiple dissimilar tasks
is likely to make MTRL more difficult than approaching each task individually.

Table 2 Definition of task rewards, provided to the agent when an episode ends due to success, failure, or
a time constraint

tend is the timestep at which an episode ended, while tmax is the max timesteps per episode. In the Pen-
dulum task, � is a function to normalize the pole angle: �(�) = ((� + �) mod (2 × �)) − � . Complete
simulation details for all tasks are available in source code [19]

Task Episode reward t
max

CartPole ∑tend
t=1

1.0 300

Acrobot ∑tend
t=1

−1.0 200

CartCentering −
(|||

x

xmax

||| +
|||

ẋ

ẋmax

||| × 0.5 +
tend

tmax
× 0.1

)
500

Pendulum ∑tmax
t=1

−(𝜙(𝜃)2 + 0.1 × �̇�2 + 0.001 × Torque2) 300

MountainCar ∑tend
t=1

−1.0 200

MountainCarC. ∑t
end

t=1

�
100 if x ≥ 0.45 ∧ ẋ ≥ 0

−(Force2 × 0.1), otherwise

200

579

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605

1.2 Tangled program graphs and emergent modularity

Tangled Program Graph (TPG) is a GP framework which incrementally builds com-
putational organisms from multiple subsystems which were initially developed inde-
pendently, akin to compositional evolution [47]. In doing so, TPG automates two
critical properties of such a system: 1) The identification of stable building blocks,
or subsystems; and 2) Establishing the nature of the interaction among subsystems
within a hierarchical organism, or module interdependence.

With respect to the first property to be automated, i.e. discovery of stable build-
ing blocks, Herbert Simon [38] suggests that the presence of stable intermediate
structures speeds up evolution by providing building blocks from which increas-
ingly complex hierarchies may be constructed. Put simply, Simon points out that if a
complex system is built from structurally modular building blocks, its development
is less likely to require a restart from scratch should an error be introduced during
construction (see Simon’s famous Watchmaker’s Parable for an illustrative example
of this concept). In other words, modularity helps promote stability in an evolving
organism, preventing a particular genome from being a “House of Cards” [24] in
which a single variation might bring it tumbling down. Ultimately, Simon’s sugges-
tion is that modular systems are more evolvable, that is, more capable of continu-
ously discovering new organisms with higher fitness than their parents. This theory
has been investigated widely among evolutionary biologists [31, 45, 48].

As for the second property to be automated, module interdependence, Watson
et al. [47] demonstrate that structural modularity (i.e. structural complexity encap-
sulated such that dependencies between subsystems are weaker than dependencies
within subsystems) does not imply independence of subsystems. Specifically, func-
tional interdependence among subsystems is critical for hierarchies in which all lev-
els of organization are meaningful. Simply accumulating multiple building blocks
into an aggregate set does not capture the full potential of modularity. Module inter-
dependence is essential for emergence because without meaningful interdepend-
ence, a hierarchy of subsystems is nothing more than the sum of its parts. Watson
argues that systems with strong module interdependence are evolvable under certain
conditions, namely compositional evolution.

TPG has leveraged emergent modularity in hierarchical model building to make a
variety of contributions in the context of visual Reinforcement Learning (RL). In the
Atari video game testbed, TPG evolved game-playing agents that match the qual-
ity of solutions from a variety of deep learning methods [22]. More importantly,
TPG agents were less computationally demanding and required fewer calculations
per decision than any of the other methods. This efficiency is possible because 1) the
hierarchical complexity of each organism is a property that emerges through inter-
action with the problem environment, rather than being fixed a priori, as was the
case for deep learning, e.g. [29]; and 2) subsystems within a TPG organism typically
specialize on different parts of the visual input space, thus only subsets of the overall
organism require execution at any given point in time.

Modularity and specialization also allow TPG to support transfer learning in dif-
ficult RL problems [21]. In this case, solutions initially evolved for simple subtasks
can be reused within hierarchical organisms in order to improve learning in a more

580 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

complex task. The resulting agents achieve state-of-the-art levels of play in Robo-
Cup Half-Field Offense and surpass scores previously reported in the Ms. Pac-Man
literature while employing less domain knowledge during training. Again, the highly
modular organisms are shown to be significantly more efficient than state-of-the-art
solutions in both domains.

Finally, modularity and specialization are also useful in dynamic environments
where the distribution in sensory inputs may change drastically over time. When
forced to switch randomly between multiple Atari game titles throughout evolution,
TPG can evolve solutions to multiple titles simultaneously with no additional com-
putational cost [22]. In this case, modularity is critical to avoid unlearning or cata-
strophic forgetting [25] of behaviours that are intermittently important over time.

1.3 Modular memory models

All the work outlined in Sect. 1.2 was conducted using an early version of TPG
in which organisms were stateless. That is, even though agents operated in epi-
sodic, sequential decision-making environments involving hundreds or thousands of
timesteps, the agents were purely reactive. They had no temporal memory mecha-
nism to enable the integration of experience over time. This is a serious limitation in
partially-observable tasks in which it is impossible to retrieve complete information
about the state of the environment from a single observation. More recently, mul-
tiple models have been proposed which support temporal memory sharing among
subsystems within TPG organisms, allowing agents to operate in sequential deci-
sion-making environments with partial observability at multiple time scales [20,
40, 41]. Examples from the deep learning community have also demonstrated that
modularity and specialization lead to improved generalization in dynamic tasks that
require temporal reasoning [2, 13].

2 Research objectives

Section 1.2 described the capabilities of TPG for evolving hierarchical/modu-
lar agents in high-dimensional (e.g. visual) RL environments with discrete action
spaces. The approach has recently been extended to incorporate temporal memory
mechanisms that enable operation in environments with partial-observability at mul-
tiple time scales. The work herein is an extension of our study published at GECCO
2020 [23]. The first objective of our initial study was to propose a highly-modu-
lar memory structure that manages the temporal properties of a task and enables
operation in problems with continuous action spaces. This significantly broadens the
scope of real-world applications for TPGs, from symbolic regression to time series
forecasting.

TPG’s success in high-dimensional RL is due in part to its capacity to adap-
tively decompose the input space such that individual subsystems within an
organism could specialize their role relative to small subsets of the input space,
or spatial decomposition [22]. The second objective of our initial study was to

581

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605

examine how the modular memory mechanism allows organisms to achieve a
temporal problem decomposition. This is significant because temporal problem
decomposition is likely beneficial in dynamic, non-stationary environments.
Examples of this include MTRL, as well as time series forecasting or streaming
data classification tasks when the underlying process generating the data stream
changes significantly over time [1, 16].

Putting these developments together, the overall goal of this work is to dem-
onstrate how TPG can be used to build hierarchical memory-prediction machines
that address the MTRL challenges outlined in Sect. 1.1. First, we test the hypoth-
esis that TPG’s shared memory framework [20, 23] can be further extended to
support continuous and discrete action spaces and temporal memory manage-
ment simultaneously. Next, we propose that a fundamental property of a success-
ful multi-task behavior is its ability to hierarchically decompose the problem. In
support of this proposal, we show that TPG can evolve hierarchical multi-task
behaviors by combining several agents which were initially adapted indepen-
dently. Over time, a collective behavior emerges that builds on the individual
specializations of multiple agents. Finally, we evaluate TPG’s ability to manage
partial-observability in multi-task environments. Specifically, we examine how
TPG’s modular memory mechanism [20, 23] allows agents within a hierarchical
VM to share temporal information and collectively build a shared representation
of environmental state. Critically, both hierarchical problem decomposition and
shared memory management are emergent properties of an open-ended evolution-
ary system.

The remainder of this paper is organized as follows: Sect. 3 reviews recent
work in MTRL. Section 4 provides a detailed description of the extended TPG
algorithm. An empirical evaluation is provided in Sect. 5. We evaluate TPG in
the context of learning 6 unique environments from the control literature. This
requires the agent to support discrete and continuous actions simultaneously.
No task-identification inputs are provided, thus agents must identify tasks from
the dynamics of state variables alone and define control policies for each task.
We show that emergent hierarchical structure in the evolving programs leads to
multi-task agents that succeed by performing a temporal decomposition/encod-
ing of the problem environments in memory. The resulting agents are competitive
with task-specific deep learning agents in all 6 environments. Furthermore, their
model simplicity and dynamic run-time complexity results in relatively efficient
operation. Section 7 concludes the paper and provides an outlook to future work.

3 Related work in deep learning

Two broad research questions are explored in the MTRL literature: 1) How to
support knowledge sharing across multiple related tasks; and 2) How to support
multiple unrelated or competing tasks by decomposing the overall problem and
problem solver (agent).

582 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

3.1 Shared representations and manual decomposition

In deep learning, support for shared knowledge primarily takes the form of learning
shared feature representations. That is, how networks can be developed such that
weight parameters are general enough to model features relevant to multiple tasks.
D’Eramo et. al [8] recently formulated proofs that this approach can lead to gains in
performance and sample efficiency when compared to single-task learning. How-
ever, only part of the network was shared among tasks. The multi-task problem is
manually decomposed in order to design a network with task-specific input and out-
put layers for each task. Knowledge of which task the network is currently interact-
ing with is required to select which task-specific network components to activate
at any timestep. Furthermore, a separate replay memory is required for each task,
incurring a significant memory overhead compared to single-task learning.

Policy distillation [36] is another deep learning approach to developing shared
representations for MTRL. In this case, multiple pre-trained, single-task Deep
Q Network (DQN) agents [29], called teachers, are used to generate a multi-task
replay memory (i.e. a dataset) of example < state, action > pairs. A student network
is then trained from the replay memory using supervised learning. The student can
effectively model the behaviour of multiple DQN agents. Furthermore, the student
is typically a simpler network, thus policy distillation can result in a scaled-down,
faster MTRL agent with performance comparable to multiple DQN teachers. How-
ever, pretraining a single-task DQN teacher for each task incurs a significant com-
putational cost. Furthermore, multi-task decomposition is pre-configured manually:
the student network included a separate output layer trained for each task, once again
implying that a task label is required during model deployment to select the correct
output layer at each timestep.

IMPALA and PopArt [15] are deep learning methods that leverage a distributed
actor-learner architecture to propose a scalable method of learning shared represen-
tations in MTRL. In short, a centralized learner network acts as a shared parameter
server from which multiple actor networks can copy parameters before going off
to interact with multiple unique task environments in parallel. Each actor’s experi-
ence (< state, action > pairs) is periodically (asynchronously) integrated back into
the learner’s shared representation. PopArt included a method of normalizing the
rewards over the entire task set, thus improving over IMPALA by avoiding the dis-
traction dilemma. The entire network architecture is shared among all tasks, imply-
ing that the power of these methods lies in their ability to learn generalized fea-
ture representations that captured salient properties of all tasks. That is, there is an
underlying assumption that all of the tasks have something in common, and there-
fore problem decomposition is not given significant attention. However, no task
label is required to switch between task-specific modules. The network input con-
sisted solely of the 96 × 72 pixel matrix (i.e. the game screen), implying that the net-
work could infer the task without access to a label. Finally, the network architecture
included a Long Short-Term Memory (LSTM) [14] module. As such, the method
could be applied to partially-observable environments such as the first-person 3D
DeepMind Lab benchmark suite [5]. However, no ablation study was performed to
confirm the significance of the LSTM.

583

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605

3.2 Shared representations and automatic decomposition

Methods that attempt automatic problem decomposition typically incorporate some
form of modularity to build prediction machines with diverse structural components
that specialize on subsets of the overall problem. Soft Modularization [50] is one
such approach. In this case, a base policy network, which maps s⃗(t) to an action, is
trained together with a routing network. At each timestep, the routing network is
given a 1-hot task embedding (i.e. task label) and selects a route through the the base
policy network. In effect, the routing network dynamically selects which modules in
the base policy network should be active for the task at hand. The architecture for
both networks is predefined, thus the nature of the modularity is not emergent. How-
ever, the base policy design provides a modular template such that the routing net-
work can effectively learn how to decompose the multi-task problem within special-
ized structural modules which are dynamically switched in and out of the execution
path at run-time. This improves positive inter-task transfer compared to networks
with fixed routing because modules that specialize at specific aspects of the prob-
lem can be switched in when they are required and switched out when their (over)
specialization might result in negative transfer. Dynamic routing also improves effi-
ciency because only part of the overall network is executed at each timestep. The
primary limitation of Soft Modularization is that knowledge of the active task label
is required as input to the routing network.

Progressive Neural Networks [37] take hand-designed modularity to an extreme,
dedicating an entire network to each task. The framework is designed for multi-
task learning scenarios in which a sequence of tasks is pre-defined and the machine
learns each new task in sequence. A new network is added for each task and the
weights of all previous networks are frozen to avoid catastrophic forgetting. Lateral
connections connect each frozen network to all subsequent nets. The final machine
solves up to 4 Atari tasks, and it is shown that positive transfer from previous net-
works/tasks can significantly accelerate learning new tasks. The primary limitation
of Progressive Neural Networks is scalability because a new network is added for
each new task. In addition, while all networks process s⃗(t) at each timestep, the out-
put of only one must be selected using knowledge of the active task label. Elastic
Weight Consolidation (EWC) [25] showed improved scalability by using a single
network for continual learning of multiple tasks. The algorithm slows down updates
on certain weights based on how important they are to previously seen tasks. A task-
recognition model was incorporated to infer which task is being performed and auto-
matically manage which sets of weights to protect at any given time. A DQN agent
augmented with EWC was able to learn up to 10 Atari games. However, it did not
reach the score that would have been obtained by training ten separate DQNs. Fur-
thermore, DQN side-steps the issue of partial-observability by using an autoregres-
sive state representation. In short, frame stacking is employed such that s⃗(t) contains
a hard-coded historical window of the 4 most recent state observations (See [29]).
As such, no temporal memory mechanism is required to infer short-term temporal
properties of the environment such as the directional velocity of moving game enti-
ties. This approach to dealing with partial-observability is limited because design-
ing a temporal sliding window, or autoregressive state, relies on the experimenter’s

584 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

intuition/assumptions about the environment, and can only mitigate partial-observ-
ability within the fixed window. Furthermore, the machine is unable to adapt this
window if the properties of the task change over time.

PathNet [10] is an approach to sequential multi-task learning which evolves sub-
networks within a super network, essentially discovering how to reuse parameters
from previous tasks while learning new ones. Learning takes place over two dis-
tinct timescales: Online gradient descent adjusts the weights of “active” subnets as
they interact with the environment. A GA is used to discover which parts from a
template super network to use within each subnet. As new tasks are introduced, the
best subnets and their weight parameters from the previous task are frozen. This
mechanism supports multi-task parameter reuse without catastrophic forgetting, and
demonstrated positive inter-task transfer. However, PathNet was only evaluated on
sequential learning of 2 Atari and Labyrinth games. Furthermore, the network archi-
tecture still included a separate output layer for each task. As such, the networks
have no mechanism to identify which environment they are interacting with, and a
task label is again required.

In summary, there has recently been a surge of work in MTRL, but to date there
has not been significant progress made on approaches that address all the funda-
mental properties that make MTRL challenging. The motivation for this study is to
fill this gap with an evolutionary approach to MTRL in which: 1) Agent complex-
ity scales through interaction with the environment, and the run-time complexity of
the agents does not grow linearly with the number of tasks; 2) The agent’s multi-
task behaviour includes task-recognition capability, removing the need for an oracle
to provide the current task label; 3) The environments are partially-observable and
require agents to support temporal memory.

4 Algorithm description

The algorithm investigated in this work is an extension of Tangled Program Graphs
[22]. TPG was initially designed for RL tasks in which solutions map sensor inputs
to a set of discrete actions. This work represents the first time the method has
been used to build programs capable of operating in discrete-action and continu-
ous-action RL environments simultaneously, which is achieved through an exten-
sion of the shared memory mechanism introduced in [20]. This section outlines the
extended algorithm, paying specific attention to two critical components: 1) How
memory is shared among individual programs in a team-based model; and 2) How
multiple independent teams are adaptively combined into a hierarchical organism, or
program graph, through compositional evolution. All source code is publicly avail-
able [19].

4.1 Coevolving independent teams

A team of programs is the basic representation for a stand-alone agent in TPG. Each
team defines a group of programs that collectively map input state at time t, s⃗(t) to

585

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605

a pair of discrete and continuous actions, < ad, ac > . Teams can be thought of as
vertices in a computational graph where the edges are programs that process s⃗(t) and
produce output, Fig. 2. In this work, all programs are linear register machines [6],
see Algorithm 1 and Table 3. For the purposes of this study, it is important to note
that programs contain internal register memory that is stateless, that is, reset prior
to each execution. Programs also have a pointer to one shared stateful memory bank
that is only reset at the start of each episode of interaction with the environment.
In the case of sequential decision-making tasks where programs are executed mul-
tiple times per episode, shared stateful memory allows programs to communicate
with each other and to integrate information across multiple timesteps. This is a cru-
cial aspect of behaviour which allows teams to construct an internal world model of
partially-observable environments. In this case, the team-based agent must encode
salient information from s⃗(t) into stateful memory such that it can be reused, in com-
bination with s⃗(t + n) , when selecting an action a time t + n . This is one example of
an agent taking an active role in its perception of the environment. As we will dem-
onstrate, programs construct their world model dynamically at run-time from the
content of temporal memory, m⃗(t) and the current sensor input, or state s⃗(t).

Programs have a dual-purpose role within a team:

1. Memory management In order to manage the content of stateful memory, pro-
grams can read from current environmental state, s⃗(t) , and/or stateful memory,
m⃗(t) , and write to m⃗(t);

2. Program graph traversal In the context of a team, programs can be character-
ized as directed graph edges that dynamically set their weight as a function of
s⃗(t) and m⃗(t) . Each team maintains at least two programs, and each program has
a pointer to one discrete action (See Figure 2). The team maps < s⃗(t), m⃗(t) > to a
pair of actions < ad, ac > , by executing all programs in order and then following
the path with the largest weight. If the program is a leaf, then ad is the discrete

Fig. 2 Illustration of the relationship between teams, programs, and shared memory in TPG. Initially, all
programs are leaf nodes. Over time, program action pointers may be modified to refer to other teams and
program graphs emerge. When a team is subsumed into a program graph, it is cloned and the clone (t1c)
becomes an internal node. See Section 4.2 for details

586 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

action associated with the winning program, and ac is the content of its shared
stateful memory register m[0], i.e., a continuous value left over after all programs
have executed (See Algorithm 1).

Note that programs simultaneously manage stateful memory and define the
appropriate context (relative to s⃗(t) and m⃗(t)) in which their action pair should
define the agent’s output (Algorithm 1).

Table 3 Operations and
instruction formats

Programs encode 16 operations in a 4-bit op-code.
In addition, programs have access to 18 constants:
{ −0.9,−0.8, ...,−0.1, 0.1, 0.2, ..., 0.9 }, included as read-only registers
at the end of their private register bank r[] (See Algorithm 1). Let x
and y be generic registers or input state references such that x ∈ r[i]
or m[i] and y ∈ r[j] , m[j], or s⃗(t)[j]

Instruction Operations

x ← x◦y ◦ ∈ {+,−,×,÷, xy}

x ← ◦(y) ◦ ∈ {cos, ln, exp,
√
, sin}

◦ ∈ {tanh, y2, |y|, y3}
IF (x◦y) THEN x ← −x ◦ ∈ {<,>}

587

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605

Teams, programs, and shared memory registers are each stored in separate
populations and coevolved. Evolution is driven by a generational GA in the fol-
lowing sequence of steps (parameters listed in Table 4):

1. Initialization Evolution begins with a population of Rsize stochastically generated
teams. Each team contains tmSizeinit new programs which are initialized with a
unique memory bank (i.e. each initial team has a unique complement of tmSizeinit
programs, and each program has a unique memory pointer), Fig. 2. Programs are
initially all leaf nodes.

2. Generate offspring Let ℙ be the power set of all task combinations. For 6 tasks,
ℙ will contain 63 unique task sets. For each set s ∈ ℙ , the process for generating
team offspring will create nelite new root teams.1 To create each new root, the
process uniformly samples two teams, parent1 (always a root team) and parent2 .
Crossover is applied with probability px . When no crossover is applied, parent1
is cloned to create a new child team. Otherwise the crossover operator begins by
creating an empty child team. Shared memory implies that the order of program
execution within a team potentially impacts the outcome. To avoid disrupting this
order, the crossover operator interleaves programs from parent1 and parent2 in
order within the child, where each parent program is copied to the child with 50%
probability, Fig. 3. Mutation operators are then applied to the child team, as listed
in Table 4. Team mutation operators may modify the discrete action and memory
pointers, modify the program order, and add, remove, and modify programs in
the team. In short, team complement, program length and content, and the degree
of memory sharing are all adapted properties. Further details on TPG’s variation
operators are available in [18].

3. Evaluation Every root team in the population represents a stand-alone agent.
Thus, every new root team (created in the previous step) is evaluated in 20 epi-
sodes in each task environment.

4. Selection For each set s ∈ ℙ (the power set of task combinations), nelite teams with
the highest fitness are designated as survivors and protected from deletion in this
generation.2. For single task sets, team fitness is simply the average reward over
20 episodes in that task. For multi-task sets, team fitness captures how well a team
performs on multiple tasks by ranking teams by their weakest task performance in
the set. To achieve this, every root team’s mean reward on each task is normalized
relative to the rest of the current root population. Normalized score for team tmi
on task tj is calculated as:

(1)scnrm(tmi, tj) = (sc(tmi, tj) − scmin(tj))∕(scmax(tj) − scmin(tj))

1 With the parameters listed in Table 4, the team generation process creates 1575 new agents in each
generation.
2 The population at any given generation includes 1575 new agents and 1575 elite agents from previous
generations. The initial population size (R

size
 in Table 4) is 1000. Thus, after 2 generations the 63 bins

of elites will remain full, their content being recalculated in each generation based on the fitness of new
agents.

588 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

 where sc(tmi, tj) is the mean score for team tmi on task tj and scmin,max(tj) are the
population-wide min and max mean scores for task tj . Multi-task fitness for team
tmi is then min(scnrm(tmi, t{1..n}) , or the minimum normalized score for team tmi
over all tasks. n denotes the number of tasks. Thus, multi-task survivors are
the teams with the highest minimum normalized fitness over all tasks in each
task set. Any team not identified as a survivor in this process is deleted. Note
that normalizing rewards is a critical part of quantifying multi-task fitness and
mitigates the distraction dilemma (See Section 1.1). Finally, programs have no
individual concept of fitness. After team deletion, programs that are not part of
any team are also deleted. As such, selection is driven by a symbiotic relation-
ship between programs and teams: teams will survive as long as they define a

Fig. 3 Illustration of team
crossover operator. Each parent
program is copied to the child
with 50% probability. Parent
programs are interleaved within
the child, maintaining their
original ordering

Table 4 Parameterization of team and program populations

Rsize is the initial number of root teams. nelite is the number of root teams to maintain for each task set
(See Section 4 text). For the team population, px is the probability of crossover and pmx denotes a muta-
tion operator in which: x ∈ {d, a} are the probability of deleting or adding a program respectively;
x ∈ {m, n, s} are the probability of creating a new program, changing a program’s action pointer (leaf
or team), and changing a program’s shared memory pointer respectively. For the program population,
px denotes a mutation operator in which x ∈ {delete, add,mutate, swap} are the probability for deleting,
adding, mutating, or reordering instructions within a program. patomic is the probability that a modified
action-pointer for a program will be atomic (leaf)

Team population

Parameter Value Parameter Value

Rsize 1000 pmd 0.7
nelite 25 pma 0.6
tmSizeinit 10 pmn, pms 0.1
tmSizemax ∞ pmm 0.2

px 0.2

Program population

Parameter Value Parameter Value

Size of r 8 Size of m 8
ProgSizeinit 10 ProgSizemax ∞
pdelete 0.5 padd 0.4
pmutate 1.0 pswap 0.2
patomic 0.95

589

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605

complementary group of programs, while individual programs will survive as
long as they collaborate successfully within a team.

5. Go to step 2.

4.2 Evolving team hierarchies

When a program is modified by variation operators in Step 2, it will remain a leaf
with probability patomic , and will otherwise connect to one team from the set of
teams present from any previous generation, chosen with uniform probability. These
connection mutations are the mechanism by which TPG supports compositional
evolution, adaptively recombining multiple (previously independent) teams into var-
iably deep/wide directed graph structures, or program graphs, Fig. 2.

Execution of a program graph begins at the root team (t3 in Fig. 2), where all
programs in the team will execute in order. Graph traversal then follows the program
with the largest weight, repeating the execution process at every team along the
path until a leaf node is reached. Thus, the program graph computes one path from
root to leaf at each timestep, where only a subset of programs in the graph (those in
teams along the path) require execution. Note that cycles may appear in the graph
structure but are ignored during execution. That is, no team is visited more than
once per traversal. If the edge with the largest weight leads to a team that has already
been visited, the edge is simply ignored and the program/edge with the next highest
weight is considered. Team variation operators are constrained such that each team
maintains at least one program that is a leaf node, ensuring an output can always be
found.

As hierarchical structures emerge, only root teams (i.e. teams with indegree of 0)
define independent agents, and only these root teams are subject to deletion, cloning,
and variation. Non-root teams are protected from deletion as long as they are a com-
ponent of a graph that performs well collectively. As such, program graphs incre-
mentally grow and break apart at their root node, i.e. from the top up/down. While
the team and program population sizes vary throughout evolution, the number of
root teams to maintain in the population is a function of the number of tasks and the
nelite parameter (See step 4). Whenever a root team is subsumed within a program
graph, it will first be cloned and the clone becomes the internal node (See Figure 2).
Thus, as hierarchies grow, they must directly compete with their (simpler) subgraphs
(i.e. prior to the addition of a new root node). This clone-when-subsumed constraint
ensures that root teams with strong performance are not subsumed within a weaker-
performing program graph. Without cloning, the subsumed root behaviour would no
longer be part of the pool of independent agents, and its (high-fitness) stand-alone
behaviour would be lost until the hierarchy breaks down.

In summary, the hierarchical complexity and interdependency between teams in
program graphs emerges entirely through interaction with the task environment. As
a program graph operates, the subset of teams/programs that require execution is
dynamically selected at run-time based on the current input sample and the content
of stateful memory. This has two important implications: (1) Teams are free to spe-
cialize on particular aspects of the problem and may be switched in and out of the

590 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

model as needed; and (2) Program graphs can dynamically select inputs and stateful
memory registers that are relevant to the current state observation (i.e. inputs and
memory registers indexed by programs along the active path) while ignoring inputs/
memories that are not important at the current point in time. This is conceptually
similar to the modular structures and attention mechanisms explored by Goyal at.
al. [13], in which these properties were shown to improve generalization in dynamic
memory problems. However, in that case the total number of “modules” per solu-
tion required prior specification, as did the number of “active” modules at any point
in time. In this work we are specifically interested in how these model characteris-
tics emerge through compositional evolution. Section 5 will demonstrate how these
properties support hierarchical task decomposition in multi-task reinforcement
learning.

5 Training and test performance

Figure 4 provides a summary of multi-task TPG learning curves over 10 independ-
ent runs. At intervals of 5 generations, the program graph with the highest training
reward is identified for each task set (i.e. 63 unique sets, see Section 4), and this
agent is evaluated in 100 test episodes for each task. Each test episode begins with
random initial conditions not seen during training. Figure 4 reports the average test
reward for each task at 5-generation intervals. A dotted line represents the median
of champion single-task program graphs (i.e. each plot reports median mean reward
for the unique single-task champion identified for each task, at each test interval).
Single-task scores provide a benchmark for task difficulty. Some, but not all, tasks
have a score threshold indicating when the task is considered solved. For example,
CartPole is considered solved if the agent can balance the pole for an average of 195
timesteps over 100 episodes, which corresponds to a reward of 195 in Fig. 4. Within
≈ 500 generations, TPG single-task scores (dotted line) reach a quality of behaviour
in which all tasks can reasonably be considered solved. Section 5.1 makes a direct
comparison with state-of-the-art single-task behaviours.

Solid lines in Fig. 4 represent average test reward of the best multi-task program
graph for each run. At each test interval, the multi-task champions identified in each
run may exhibit a unique performance trade-off over the 6 tasks. As such, it is not
informative to report the average or median multi-task score over multiple runs.
Thus, Fig. 4 reports multi-task scores for each run individually (grey lines), with
the best over all runs in black. That is, the black line in each task plot represents test
reward of the same multi-task graph at each 5-generation interval. By generation
≈ 1000 , the single best multi-task program graph is competent in all 6 tasks. Scores
for this champion are compared to single-task TPG scores in Fig. 5, along with the
champion multi-task scores from the 9 other TPG runs. It is apparent that the best
run produced a multi-task agent that reaches roughly 90% of the best single-task
agent scores in all 6 tasks (black line), while 5/10 runs produced multi-task agents
that reached at least 60% of the single-task scores.

591

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605

5.1 Comparison with fully‑observable single‑task leaderboard

OpenAi Gym’s leaderboard provides a repository to track and compare RL algo-
rithms. Figure 6 compares the performance of multi-task and single-task TPG in
partially-observable classic control environments with the best scores in the lead-
erboard. Note that all leaderboard agents were trained and tested independently for

Fig. 4 Summarized TPG learning curves over 10 independent MTRL runs. Rewards are averaged over
100 episodes with random initial conditions. Dotted line represents median test reward of best single-task
program graphs (i.e. each plot reports median (over 10 runs) reward for the unique single-task champion
identified for each task). Solid lines represent fitness of best multi-task program graph for each run, with
the best over all runs in black (i.e. black line in each plot represents performance of the same multi-task
graph)

592 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

Fig. 5 Comparison of multi-task agent test scores over 10 independent runs, normalized by the score of
the best single-task agent in each task. Normalized score for multi-task agent ai in task tj is calculated as
(sc(ai, tj) − scrand(tj))∕(sc(stmax(tj)) − scrand(tj))) where sc(ai, tj) is the mean score for agent ai in task tj ,
scrand(tj) is the mean score for an agent that takes random actions in task tj , and sc(stmax(tj)) is the max
single-task score in task tj

Fig. 6 Comparison of multi-task and single-task TPG agent test scores, normalized by the score
of the best agent from OpenAI’s leaderboard at https://github.com/openai/gym/wiki/Leader-
board. Note that all leaderboard agents were trained independently for each task in fully-observa-
ble versions of the environment. Normalized score for multi-task agent ai in task tj is calculated as
(sc(ai, tj) − scrand(tj))∕(sc(stmax(tj)) − scrand(tj))) where sc(ai, tj) is the mean score for TPG agent ai in task
tj , scrand(tj) is the mean score for an agent that takes random actions in task tj , and sc(stmax(tj)) is the best
score on OpenAI’s leaderboard with an accompanying writeup at the time of this writing. In the case
of tasks with a threshold over which they are considered solved (CartPole, both version of Mountain
Car), this threshold is used as sc(stmax(tj)) . CartCentering is not yet part of OpenAI Gym but the time-
optimal control program for fully observable state is known [26], thus this time-optimal controller is used
as sc(stmax(tj)) . Sources for Acrobot and Pendulum leaders are from the Distributed Distributional Deep
Deterministic Policy Gradient algorithm, D4PG [4]

593

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605

each task with Fully-Observable (FO) versions of the environments. Multi-Task
learning in Partially-Observable (PO) environments is a significantly more challeng-
ing problem. The champion Multi-task TPG agent, trained and tested in PO environ-
ments, reaches at least 90% of the best leaderboard score in 4/6 tasks, and ≈ 80% and
≈ 75% in the remaining two. While the Multi-Task TPG agent does not quite match
the leaderboard scores, it reaches a general quality of behaviour in which all tasks
can be considered solved. Section 6 provides a detailed analysis of the structure and
behaviour of the champion TPG MTRL agent.

5.2 Ablation study

In order to confirm the significance of critical components of the TPG algorithm
(Sect. 4), an ablation study is performed with 3 additional experiments, each with
one component removed. Figure 7 summarizes the ablation results. For clarity, we
limit the ablation analysis to a comparison of the single best multi-task agent pro-
duced from each experiment, as identified by the multi-task selection procedure
described in Sect. 4. Without crossover (TPG-NoXover), the best multi-task agent
still achieves at least 80% of single-task performance in all tasks. Compared to full
TPG, TPG-NoXover is equal in one task (MountainCarContinuous), better in 2
tasks, and worse in 3 tasks. Also, its single worst normalized score (in Pendulum)
is less that any score from TPG. As such, it would be ranked behind TPG by the

Fig. 7 Multi-task ablation. Plot provides normalized test scores for the single best multi-task program
graph discovered when critical components of the TPG algorithm are removed. Normalized score for
multi-task agent ai in task tj is calculated as (sc(ai, tj) − scrand(tj))∕(sc(stmax(tj)) − scrand(tj))) where
sc(ai, tj) is the mean score for agent ai in task tj , scrand(tj) is the mean score for an agent that takes random
actions in task tj , and sc(stmax(tj)) is the max single-task score in task tj

594 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

multi-task ranking procedure outlined in Sect. 4. TPG-NoMemory refers to the sce-
nario in which all registers (internal and shared) are stateless. That is, registers are
reset to zero prior to each program execution. In this case, agents have no means
of building an internal model of the environment and integrating state information
across timesteps during an episode, something that is required in partially-observ-
able environments. As a result, the best TPG-NoMemory agent is weak, achieving
well below 50% of single-task agent scores in all tasks. Finally, TPG-NoHierarchy
refers to the experiment in which TPG is parameterized with patomic = 1.0 . In this
case, TPG’s ability to construct program graphs is disabled, and all evolved agents
will take the form of a single team of programs. As described in Sect. 4, TPG sup-
ports multi-task operation by automatically decomposing the overall problem within
the program graph hierarchy. In short, each team in the hierarchy is free to special-
ize on particular aspects of the overall multi-task problem, and the agent (program
graph) is able to generalize by recombining various specialized team behaviours as
it encounters different environmental scenarios over time. As seen in Figure 7, when
hierarchical development is disabled, the best multi-task agents can still specialize
well in one environment (MountainCarContinuous, in this case), but are unable to
generalize to other tasks.

The importance of hierarchical task decomposition in multi-task learning is fur-
ther evident in Fig. 8, which reports the hierarchical complexity of decision-making
(i.e. average number of teams visited per graph traversal during test) for the best
agent in each combination of tasks in the task power set (See Section 4). While
there is significant variation in hierarchical complexity, the larger task sets typically
require agents which have subsumed more independent teams within their structure,
and are thus able to generalize across a wider range of environments. The next sec-
tion will examine structural and behavioural properties of the best 6-task program
graph.

Fig. 8 Hierarchical complexity of the best program graph discovered for each set in the task power set, as
measured by the average number of teams visited per timestep (prediction) over 100 test episodes. Points
indicate max, median, and min over 10 independent runs. Tasks are numbered in the following order:
0-CartPole, 1-Acrobot, 2-CartCentering, 3-Pendulum, 4-MountainCar, 5-MountainContinuous

595

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605

6 Structure and behaviour of best program graph

Figure 9a illustrates the champion multi-task program identified from the TPG
experiment (black lines in Figs. 4, 5, 6, 7). For clarity only the team hierarchy is
shown, individual programs are omitted. Recall that in each timestep, graph tra-
versal begins at the root node and follows one path through the graph until an leaf
program is found. Since every team has at least one leaf program, graph traversal
can terminate at any team. Each team is depicted by a pie chart indicating the pro-
portion of timesteps in which it was visited over 100 test episodes in each task.
Naturally, MountainCar and MountainCarContinuous are closely related problems,
thus it is not surprising that individual teams often generalize over these tasks. Simi-
larly, teams often generalize over CartCentering and Pendulum, but the relationship
between these tasks is less obvious. Animations of this program graph interacting
with all tasks are available here [19]. Animations depict the team hierarchy as well

CartPole
Acrobot
CartCentering
Pendulum
MountainCar
MountainCarC.

Fig. 9 Champion multi-task program graph. Each node represents one team of programs. Node charts
illustrate proportion of timesteps in which each team was visited over 100 test episodes in each task. For
example, the root node is visited in every timestep, thus proportions are equal for CartPole, Acrobot,
CartCentering, Pendulum, MountainCar, and MountainCarContinuous. Barplot shows proportion of per-
task access (read or write) for all shared memory registers used by this program graph. Registers are dis-
tributed throughout graph but can be loosely tied to specific nodes by task decomposition. For example,
registers with even proportions (Right-Hand Side of barplot) must be in root node. Node numbering and
register x-axis labels are referenced in Sect. 6, 6.1, and 6.3 text (Color figure online)

596 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

as individual programs. The active components in the graph are emphasized at each
timestep, with the decision path (highest weight edges) highlighted in green.

We can gain insight into how the team hierarchy behaves in these tasks by exam-
ining where each team is active within the system state space. The state of Pendu-
lum and CartCentering can be fully described by two variables, only one of which is
observable to the agent (See Table 1). Each cell in Fig. 10 represents one numbered
team in Figure 9(a), and displays the points (in 2 dimensions of the state space)
when the team was visited during graph execution. Each dot represents one timestep
over 100 test episodes. Grey points indicated the team was visited at that step but
ultimately passed execution to a lower-level team. Colored points indicate the team
was the terminal stop and produced an atomic action at that timestep. For example,
the root team (1) is active at every timestep but is never the terminal node. A com-
mon path through the graph for both tasks is [1, 3, 6, 10, 14, 18]. Notice that the
behaviour of the terminal teams gets more specialized as execution moves down the
hierarchy (colored dots are increasingly fewer and more concentrated). The hierar-
chy decomposes both tasks in this manner using the same path, and there are simi-
larities in the nature of this decomposition. For example, see team/cell 14, which
makes a clear distinction at ≈ 0 in the observable state variable (cos(�) in Pendulum
and x in CartCentering) before passing execution to team/cell 18. In other cases,
for example team/cell 8, the behaviour of the terminal team decomposes these tasks
entirely differently in the space of the observable variable. This indicates that the
agent must be encoding some representation for the (unobservable) system veloc-
ity in memory and using this prediction of velocity to determine the action. Finally,
note that Pendulum is a continuous-action problem while CartCentering is discrete-
action. It is clear that some teams are capable of providing actions for both cases
(e.g. teams 6, 8, 14) while others specialize on one type of action (e.g. team 5).

6.1 Run‑time complexity

Figures 11 and 12 show the run-time dynamics of the best multi-task program
graph during 1 test episode in each task. Each node in the graph (Fig. 9a) represents
one team of programs. Every execution of the program graph begins at the root node
and follows one path, which may terminate at any node. Furthermore, each team
executes a unique subset of programs, each with a variable length list of instruc-
tions. Since the path of execution is dynamically selected, the computational com-
plexity of program graph execution is also a dynamic property. The top two plots
in Figs. 11a through 12b show the run-time complexity for the champion program
graph in each task. For example, the top plot in Fig. 12b indicates that the champion
program graph executes between 2 and 6 teams per timestep in the pendulum envi-
ronment. The rate of path switching fluctuates until timestep ≈ 80 and then stabi-
lizes at 3 teams per timestep. This correlates with the 2 modes of behaviour required
for pendulum: the agent must first rock the pendulum back and forth to gain enough
momentum to swing the pendulum up to a vertical position (timestep 1 to ≈ 80).
Then, a new mode of behaviour is required to balance the pendulum upright for the
remainder of the episode. An animated example of this behaviour can be seen here

597

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605

(a)

(b)

Fig. 10 Example task decompositions over 100 test episodes for the champion program graph depicted
in Fig. 9a. Each cell displays the points (in 2 dimensions of the problem state space) when each team
was visited during graph execution. Colored dots indicate the team was the terminal stop and produced
an atomic action, grey dots indicate the team was visited but ultimately passed execution to a lower-level
team. Note that the vertical axis variable describes velocity of the system and is unobservable. Pendulum
is a continous-action problem, while CartCentering is discrete-action. Color legends indicate color-cod-
ing of points with respect to actions (Color figure online)

598 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

[19]. Dynamic run-time complexity improves the efficiency of model deployment
when averaged over many timesteps. This is especially significant as complex (tem-
poral) problems call for increasingly complex models. The most complex decision
paths in any task execute 6 teams and roughly 300 instructions. This can be roughly
compared with the D4PG deep neural network that holds several of the highest lead-
erboard scores, Sect. 5.1. The D4PG agent network has two fully connected hid-
den layers with 400 and 300 neurons respectively. This implies that computing the
forward pass at each timestep requires at least 400 × 300 = 120, 000 calculations.
While this can be computed in parallel on a Graphics Processing Unit (GPU), the
relatively simple TPG agents do not require specialized hardware, making them suit-
able for operation on common embedded platforms such as the Raspberri Pi [9].
Note that the number of instructions per prediction in this work is significantly lower
than that of our initial study in time series prediction [23]. In this work, teams and
programs are initialized with a much smaller size and mutation operators are slightly

(a) (b)

Fig. 11 Time series data recorded during replay of best multi-task program graph (Fig. 9a) under 1 epi-
sode in CartPole and Acrobot. x-axis is timesteps. See Sections 6.1, 6.2, and 6.3 for details

599

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605

(a) (b)

(c) (d)

Fig. 12 Time series data recorded during replay of best multi-task program graph (Fig. 9a) in 1 episode
of each task. x-axis is timesteps. See Sections 6.1, 6.2, and 6.3 for details

600 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

biased toward changes which result in simpler agents (See progSizeinit , pmd,ma ,
pdelete,add , and patomic in Table 4).

6.2 Dynamic memory access

Since program graphs are not provided with temporal state information (velocity),
each program graph must define a mechanism for encoding observations within
stateful memory registers, recalling or resetting/overwriting these memories as
required. Essentially, each program graph defines an internal encoding of the system
state that is able to capture the temporal characteristics of any task observed during
training. Recall from Sect. 4 that each execution requires traversing one path through
the program graph, where each team along the path will read/write to a unique set of
stateful memory registers. As the active path changes over time, the agent’s encod-
ing of state also becomes dynamic. In particular, the “age” of memories accessed at
any point in time effectively defines a memory window that fluctuates in width over
time. The time point at which stateful memory registers are reset or left to accumu-
late is selected based on the current input as well as the content of stateful memory.
Memory Window plots in Figs. 11 and 12 depict the width of these dynamic mem-
ory windows at each timestep during test. The memory windows for time t1 to tn are
stacked vertically along the y-axis. Each horizontal line depicts the window width
from the newest memory accessed (right-hand-side) to the oldest memory accessed
(left-hand-side) at each timestep. Notice how the multi-task agent exhibits a unique
pattern of dynamic memory access for each task.

6.3 Internal prediction of unobservable state

In partially-observable MTRL, dynamic memory access is critical for successful
prediction of (unobservable) temporal properties of the system state. For example,
in this work the agent is blind to system velocities. In order to select the best action
at each timestep, the agent must predict the velocities internally. Velocity at time
t + 1 can only be computed as a function of at least two observations made at previ-
ous timesteps and stored in memory. The Memory Window plots in Figs. 11 and 12
show the maximum timespan from which these variables are drawn at each step. For
example, the memory window for the pendulum task (Fig. 12b) fluctuates in size
during the first mode of behaviour up to timestep ≈ 80 . These window-size fluc-
tuations correlate to different paths through the graph being activated during this
period. During this mode of behaviour, the pendulum is swinging back and forth
and its angular velocity is sweeping through its entire range from positive to nega-
tive (see Pendulum animation). The agent is continuously using temporal memory to
predict the pendulum’s velocity internally, which is required information in order to
produce actions (joint torques) that build the proper momentum to swing the pendu-
lum up to vertical. We can confirm that the agent is actually constructing an internal
model of velocity through this simple 2-step process:

601

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605

1. During replay, record the system velocity as well as the value stored in each
memory register at each timestep. The best agent in this case contains 216 state-
ful registers (See Figure 9b) and the pendulum task has 1 unobservable velocity
state variable (�̇�), giving us 217 time series recordings.

2. Calculate Pearson correlation coefficient between the system velocity and all time
series from agent memory, then identify the individual register that most strongly
correlates with the system velocity.

The results of this analysis during replay in each task are plotted as Internal Predic-
tion of Velocity in Figs. 11 and 12, where velocities and register time series are nor-
malized in [−1,1]. Clearly, this agent is able to compute a useful internal prediction
of system velocities while interacting with each task. The specific register contain-
ing the most correlated velocity predictions in Figs. 11a through 12d are marked in
Fig. 11b. Note that the exact same register is used to store the velocity prediction for
�̇�1 in Acrobot and ẋ in CartCentering.

In the case of Pendulum, the internal prediction of velocity is very accurate dur-
ing the first mode of behaviour up to timestep ≈ 80 . Once the pendulum is verti-
cally stabilized with an angular velocity near zero, memory-prediction is less critical
because the agent can simply observe the pendulum’s angle and apply a bang-bang
force to keep it vertical. This behaviour can be seen in cell 6 of Fig. 10a. The pendu-
lum is vertical at cos(�) = 1 . Blue and pink dots in this region indicate the agent is
applying a positive/negative bang-bang force to keep the pendulum’s angular veloc-
ity (�̇�) near zero (See Pendulum animation).

The ability to automatically define multiple memory windows with unique time
delays and dynamically switch between them at run-time is critical in non-stationary
and multi-task environments. Here, the agent exhibits unique patterns of dynamic
memory access for tasks that have unique temporal properties and time constants
(e.g. compare the rate of velocity change for CartPole and Pendulum in Figs. 11
and 12). Related studies have evolved “observation windows” in non-stationary time
series forecasting, but still required human intuition in order to parameterize the
window behaviour [46]. By contrast, the approach in this work is entirely emergent.

7 Conclusions and future work

TPG has been extended to support a modular temporal memory mechanism while
simultaneously accommodating both discrete and continuous outputs. We validate
the new algorithm in a challenging multi-task reinforcement learning problem for
which previous versions of TPG were not applicable. Notably, we have shown that
a single agent can recognize and solve partially-observable versions of 6 RL bench-
mark environments with a quality of behaviour that is competitive with the leading
single-task, fully-observable deep learning approach.

Evolving memory-prediction machines addresses all the challenges of MTRL
introduced in Sect. 1.1. Hierarchical program graphs built through compositional
evolution support multi-task environments through automatic, hierarchical prob-
lem decomposition. In short, agents can recombine multiple previously-independent

602 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

generalist and specialist behaviours, and dynamically switch between them at run-
time. This allows an agent to exploit positive inter-task transfer when tasks are
related, and avoid negative transfer between disjoint tasks that require specialized
behaviours. A multi-task selection process maintains a niche for generalist agents
relative to each combination of tasks, ensuring useful hierarchical building blocks
are always present in the population. A temporal memory mechanism allows agents
to construct a dynamic internal world-model, which enables operation in partially-
observable environments. Scalability is addressed by initializing the evolutionary
search with simple programs and adapting their complexity entirely through envi-
ronmental interaction. Variation operators are biased for simplicity, thus model
complexity emerges gradually and is correlated with an increase in multi-task com-
petence. The run-time complexity of a multi-task TPG agent is several orders of
magnitude simpler than the leading deep learning agent trained from scratch for
each task.

Future work will address the issue of scaling to more tasks. Our current approach
is dependent on generating new agents in quantities relative to the entire task power
set. As the number of tasks increases, this will result in combinatorial explosion of
population size. This scaling issue might be mitigated by dynamically optimizing
a subset of task combinations to focus on at any point in time, in parallel with the
agent policy search.

Compositional evolution with TPGs was initially demonstrated in high-dimen-
sional (visual) MTRL without any provision for temporal memory or support for
mixed discrete and continuous actions spaces [22]. Given the developments pre-
sented herein, as well as recent progress made in multi-class image classification
with TPG [39], we are interested to see how the approach operates in partially-
observable visual RL environments such as DeepMind Lab [5]. Future work will
likely also address how the dynamic properties of TPG will behave in explicitly non-
stationary time series environments [1, 46] and dynamic memory tasks in which the
input distribution changes significantly from training to test environments [13]. The
proposed temporal memory mechanism might also provide benefits under multi-task
time series prediction, where the goal is to build a single model capable of fore-
casting multiple independent data streams [49]. In short, this work significantly
broadens the scope of our existing methods and opens a breadth of future research
opportunities.

Acknowledgements S.K. gratefully acknowledges support through the NSERC Postdoctoral Scholarship
program. This material is based in part upon work supported by the National Science Foundation under
Cooperative Agreement No. DBI-0939454 to the BEACON Center for Evolution in Action at Michigan
State University. W.B. acknowledges support from the John R. Koza Endowment fund for part of this
work. Michigan State University provided computational resources through the Institute for Cyber-Ena-
bled Research. Additional support provided by ACENET, Calcul Québec, Compute Ontario and West-
Grid, and Compute Canada (www.computecanada.ca). Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

Declarations

 Conflicts of interest The authors declare that they have no conflict of interest.

603

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605

References

 1. A. Agapitos, M. O’Neill, A. Brabazon, Genetic programming for the induction of seasonal fore-
casts: A study on weather derivatives, in Financial Decision Making Using Computational Intel-
ligence. ed. by M. Doumpos, C. Zopounidis, P.M. Pardalos (Springer, US, Boston, MA, 2012),
pp. 159–188

 2. A. Banino, A.P. Badia, R. Koster, M.J. Chadwick, V. Zambaldi, D. Hassabis, C. Barry, M. Bot-
vinick, D. Kumaran, C. Blundell, Memo: A deep network for flexible combination of episodic
memories. arXiv: 2001. 10913 (2020)

 3. A.M. Barreto, D.A. Augusto, H.J. Barbosa, On the characteristics of sequential decision prob-
lems and their impact on evolutionary computation. In: Proceedings of the 11th Annual Con-
ference on Genetic and Evolutionary Computation, GECCO ’09, p. 1767-1768. Association for
Computing Machinery, New York, NY, USA (2009). https:// doi. org/ 10. 1145/ 15699 01. 15701 50

 4. G. Barth-Maron, M.W. Hoffman, D. Budden, W. Dabney, D. Horgan, D.TB, A. Muldal, N.
Heess, T. Lillicrap, Distributed distributional deterministic policy gradients. arXiv: 1804. 08617
(2018)

 5. C. Beattie, J.Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Küttler, A. Lefrancq, S. Green, V.
Valdés, A. Sadik, J. Schrittwieser, K. Anderson, S. York, M. Cant, A. Cain, A. Bolton, S. Gaffney,
H. King, D. Hassabis, S. Legg, S. Petersen, DeepMind Lab. arXiv: 1612. 03801 (2016)

 6. M. Brameier, W. Banzhaf, Linear Genetic Programming (Springer, Berlin, 2007)
 7. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W. Zaremba, OpenAI

Gym. arXiv: 1606. 01540 (2016)
 8. C. D’Eramo, D. Tateo, A. Bonarini, M. Restelli, J. Peters, Sharing knowledge in multi-task deep

reinforcement learning. In: International Conference on Learning Representations (2020). https://
openr eview. net/ forum? id= rkgpv 2VFvr

 9. K. Desnos, N. Sourbier, P.Y. Raumer, O. Gesny, M. Pelcat, Gegelati: Lightweight Artificial Intelli-
gence through Generic and Evolvable Tangled Program Graphs. In: Workshop on Design and Archi-
tectures for Signal and Image Processing (14th Edition), DASIP ’21, p. 35-43. ACM, New York,
NY, USA (2021). https:// doi. org/ 10. 1145/ 34411 10. 34415 75

 10. C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A.A. Rusu, A. Pritzel, D. Wierstra, Pathnet:
Evolution channels gradient descent in super neural networks. arXiv: 1701. 08734 (2017)

 11. H. Fu, H. Tang, J. Hao, Z. Lei, Y, Chen, C. Fan, Deep multi-agent reinforcement learning with
discrete-continuous hybrid action spaces. arXiv: 1903. 04959 (2019)

 12. F. J. Gomez, J. Schmidhuber, Co-evolving recurrent neurons learn deep memory pomdps. In: Pro-
ceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, GECCO ’05, p.
491-498. ACM, New York, NY, USA (2005). https:// doi. org/ 10. 1145/ 10680 09. 10680 92

 13. A. Goyal, A. Lamb, J. Hoffmann, S. Sodhani, S. Levine, Y. Bengio, B. Schölkopf, Recurrent inde-
pendent mechanisms. arXiv: 1909. 10893 (2019)

 14. K. Greff, R.K. Srivastava, J. Koutník, B.R. Steunebrink, J. Schmidhuber, Lstm: a search space odys-
sey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2017). https:// doi. org/ 10. 1109/
TNNLS. 2016. 25829 24

 15. M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt, H. van Hasselt, Multi-task deep rein-
forcement learning with popart. Proceedings of the AAAI Conference on Artificial Intelligence
33(01), 3796–3803 (2019) https:// doi. org/ 10. 1609/ aaai. v33i01. 33013 796. https:// ojs. aaai. org/ index.
php/ AAAI/ artic le/ view/ 4266

 16. M.I. Heywood, Evolutionary model building under streaming data for classification tasks: opportu-
nities and challenges. Genet. Program. Evol. Mach. 16(3), 283–326 (2015)

 17. J.H. Holland, Properties of the bucket brigade. In: Proceedings of the 1st International Conference
on Genetic Algorithms, p. 1-7. L. Erlbaum Associates Inc., USA (1985)

 18. S. Kelly, Scaling genetic programming to challenging reinforcement tasks through emergent modu-
larity. Ph.D. thesis, Faculty of Computer Science, Dalhousie University (2018)

 19. S. Kelly, Source code and animations (2021). Available at https:// steph enkel ly. ca/ genp2 021
 20. S. Kelly, W. Banzhaf, Temporal memory sharing in visual reinforcement learning, in Genetic Pro-

gramming Theory and Practice XVII. ed. by W. Banzhaf, L. Spector, L. Sheneman (Springer Inter-
national Publishing, Cham, 2020), pp. 101–119

 21. S. Kelly, M.I. Heywood, Discovering agent behaviors through code reuse: examples from half-field
offense and Ms. Pac Man IEEE Trans. Games 10(2), 195–208 (2018)

http://arxiv.org/abs/2001.10913
https://doi.org/10.1145/1569901.1570150
http://arxiv.org/abs/1804.08617
http://arxiv.org/abs/1612.03801
http://arxiv.org/abs/1606.01540
https://openreview.net/forum?id=rkgpv2VFvr
https://openreview.net/forum?id=rkgpv2VFvr
https://doi.org/10.1145/3441110.3441575
http://arxiv.org/abs/1701.08734
http://arxiv.org/abs/1903.04959
https://doi.org/10.1145/1068009.1068092
http://arxiv.org/abs/1909.10893
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1609/aaai.v33i01.33013796
https://ojs.aaai.org/index.php/AAAI/article/view/4266
https://ojs.aaai.org/index.php/AAAI/article/view/4266
https://stephenkelly.ca/genp2021

604 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

 22. S. Kelly, M.I. Heywood, Emergent solutions to high-dimensional multitask reinforcement learning.
Evol. Comput. 26(3), 347–380 (2018)

 23. S. Kelly, J. Newsted, W. Banzhaf, C. Gondro, A modular memory framework for time series predic-
tion. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, GECCO ’20,
pp. 949-957. ACM, New York, NY, USA (2020). https:// doi. org/ 10. 1145/ 33779 30. 33902 16

 24. J.F.C. Kingman, A simple model for the balance between selection and mutation. J. Appl. Prob.
15(1), 1–12 (1978)

 25. J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A.A. Rusu, K. Milan, J. Quan,
T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, R. Hadsell, Overcoming
catastrophic forgetting in neural networks. Proc. National Acad. Sci. 114(13), 3521–3526 (2017)

 26. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selec-
tion (MIT Press, Cambridge, 1992)

 27. T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D., Wierstra, Continuous
control with deep reinforcement learning. arXiv: 1509. 02971 (2015)

 28. L. Metz, J. Ibarz, N. Jaitly, J. Davidson, Discrete sequential prediction of continuous actions for
deep RL. arXiv: 1705. 05035 (2017)

 29. V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Ried-
miller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, D. Hassabis, Human-level control through deep reinforcement
learning. Nature 518(7540), 529–533 (2015)

 30. D.E. Moriarty, A.C. Schultz, J.J. Grefenstette, Evolutionary algorithms for reinforcement learning.
J. Artif. Int. Res. 11(1), 241–276 (1999)

 31. A.M. Nedelcu, R.E. Michod, Evolvability, modularity, and individuality during the transition to
multicellularity in volvocalean green algae. In: G. Schlosser, G. Wagner (eds.) Modularity in Devel-
opment and Evolution, pp. 470–489. Chicago Press (2002)

 32. E.O. Neftci, B.B. Averbeck, Reinforcement learning in artificial and biological systems. Nat. Mach.
Intell. 1(3), 133–143 (2019). https:// doi. org/ 10. 1038/ s42256- 019- 0025-4

 33. J. Oh, V. Chockalingam, S. Singh, H. Lee, Control of memory, active perception, and action in
minecraft. arXiv: 1605. 09128 (2016)

 34. R.J. Preen, L. Bull, Dynamical genetic programming in Xcsf. Evol. Comput. 21(3), 361–387 (2013)
 35. B. Recht, A tour of reinforcement learning: the view from continuous control. Ann. Rev. Control

Robot. Auto. Syst. 2(1), 253–279 (2019)
 36. A.A. Rusu, S.G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pascanu, V. Mih, K.

Kavukcuoglu, R. Hadsell, Policy distillation. arXiv: 1511. 06295 (2016)
 37. A.A. Rusu, N.C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu,

R. Hadsell, Progressive neural networks. arXiv: 1606. 04671 (2016)
 38. H.A. Simon, The architecture of complexity. Proc. Am. Philos. Soc. 106, 467–482 (1962)
 39. R.J. Smith, R. Amaral, M.I. Heywood, Evolving simple solutions to the CIFAR-10 benchmark using

tangled program graphs. In: Proceedings of the 2021 IEEE Congress of Evolutionary Computation
(CEC), paper to appear (2021)

 40. R.J. Smith, M.I. Heywood, Evolving Dota 2 shadow fiend bots using genetic programming with
external memory. In: Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’19, pp. 179–187. ACM, New York, NY, USA (2019)

 41. R.J. Smith, M.I. Heywood, A model of external memory for navigation in partially observable vis-
ual reinforcement learning tasks, in Genetic Programming. ed. by L. Sekanina, T. Hu, N. Lourenço,
H. Richter, P. García-Sánchez (Springer International Publishing, Cham, 2019), pp. 162–177

 42. R.S. Sutton, Learning to predict by the methods of temporal differences. Mach. Learn. 3(1), 9–44
(1988). https:// doi. org/ 10. 1023/A: 10226 33531 479

 43. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (A Bradford Book, Cambridge,
2018)

 44. N. Vithayathil Varghese, Q.H. Mahmoud, A survey of multi-task deep reinforcement learning.
Electronics 9(9) (2020). https:// doi. org/ 10. 3390/ elect ronic s9091 363. https:// www. mdpi. com/ 2079-
9292/9/ 9/ 1363

 45. G.P. Wagner, L. Altenberg, Perspective: complex adaptations and the evolution of evolvability. Evo-
lution 50(3), 967–976 (1996)

 46. N. Wagner, Z. Michalewicz, M. Khouja, R.R. McGregor, Time series forecasting for dynamic envi-
ronments: the DyFor genetic program model. IEEE Trans. Evol. Comput. 11(4), 433–452 (2007)

https://doi.org/10.1145/3377930.3390216
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1705.05035
https://doi.org/10.1038/s42256-019-0025-4
http://arxiv.org/abs/1605.09128
http://arxiv.org/abs/1511.06295
http://arxiv.org/abs/1606.04671
https://doi.org/10.1023/A:1022633531479
https://doi.org/10.3390/electronics9091363
https://www.mdpi.com/2079-9292/9/9/1363
https://www.mdpi.com/2079-9292/9/9/1363

605

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605

 47. R.A. Watson, J.B. Pollack, Modular interdependency in complex dynamical systems. Artif. Life
11(4), 445–457 (2005)

 48. A.S. Yang, Modularity, evolvability, and adaptive radiations: a comparison of the hemi- and holo-
metabolous insects. Evol. Develop. 3(2), 59–72 (2001)

 49. M. Yang, Q. Hu, Y. Wang, Multi-task learning method for hierarchical time series forecasting, in
Artificial Neural Networks and Machine Learning—ICANN 2019: Text and Time Series. ed. by
I.V. Tetko, V. Kůrková, P. Karpov, F. Theis (Springer International Publishing, Cham, 2019), pp.
474–485

 50. R. Yang, H. Xu, Y. Wu, X. Wang, Multi-task reinforcement learning with soft modularization.
arXiv: 2003. 13661 (2020)

 51. G.N. Yannakakis, J. Togelius, Artificial intelligence and games. Springer (2018). http:// gamea ibook.
org

http://arxiv.org/abs/2003.13661
http://gameaibook.org
http://gameaibook.org

	Evolving hierarchical memory-prediction machines in multi-task reinforcement learning
	Abstract
	1 Introduction
	1.1 Multi-task reinforcement learning environment
	1.2 Tangled program graphs and emergent modularity
	1.3 Modular memory models

	2 Research objectives
	3 Related work in deep learning
	3.1 Shared representations and manual decomposition
	3.2 Shared representations and automatic decomposition

	4 Algorithm description
	4.1 Coevolving independent teams
	4.2 Evolving team hierarchies

	5 Training and test performance
	5.1 Comparison with fully-observable single-task leaderboard
	5.2 Ablation study

	6 Structure and behaviour of best program graph
	6.1 Run-time complexity
	6.2 Dynamic memory access
	6.3 Internal prediction of unobservable state

	7 Conclusions and future work
	Acknowledgements
	References

