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Abstract
Genotype–phenotype mapping plays an essential role in the design of an evolution-
ary algorithm. Variation occurs at the genotypic level but fitness is evaluated at the 
phenotypic level, therefore, this mapping determines if and how variations are effec-
tively translated into quality improvements. In evolutionary algorithms, this map-
ping has often been observed as highly redundant, i.e., multiple genotypes can map 
to the same phenotype, as well as heterogeneous, i.e., some phenotypes are repre-
sented by a large number of genotypes while some phenotypes only have few. We 
numerically study the redundant genotype–phenotype mapping of a simple Boolean 
linear genetic programming system and quantify the mutational connections among 
phenotypes using tools of complex network analysis. The analysis yields several 
interesting statistics of the phenotype network. We show the evidence and provide 
explanations for the observation that some phenotypes are much more difficult to 
find as the target of a search than others. Our study provides a quantitative analysis 
framework to better understand the genotype–phenotype map, and the results may 
be utilized to inspire algorithm design that allows the search of a difficult target to be 
more effective.

Keywords Evolvability · Genotype–phenotype map · Networks · Neutrality · 
Redundancy · Robustness

1 Introduction

The genotype–phenotype map as a key aspect of natural evolution came to promi-
nence in biology in the early 1990s. Alberch raised the issue in his attempt to create 
a framework for unifying evolutionary and developmental biology [1]. In particular, 
he raised attention to the fact that this map is much more complex and dynamic than 
previous understanding was willing to accept. In the intervening years, these aspects 

 * Ting Hu 
 ting.hu@queensu.ca

Extended author information available on the last page of the article

http://orcid.org/0000-0001-6382-0602
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-020-09379-0&domain=pdf


376 Genetic Programming and Evolvable Machines (2020) 21:375–397

1 3

of complexity and dynamics have garnered substantial attention, couching the map 
between genotype and phenotype in terms of a network of regulatory elements that 
can control its different functions (see Davidson for an in-depth study [14]). In this 
view, genes form a network of regulatory entities where changes in the expression 
of one gene can be compensated by changes in other genes providing stability for 
the phenotype. The evolutionary process then molds the expression dynamics of this 
network by genetic variation which percolates to the corresponding phenotypes via 
the gene regulatory network. As Kirschner and Gerhard pointed out, this dynamic 
“buffering” layer for variation is a key aspect of the evolvability observed in natural 
evolutionary systems [27, 28].

In artificial evolutionary systems, the value of using a “buffer” layer between 
genotypes and phenotypes has also steadily gained prominence in research on evo-
lutionary computation and artificial life. Indirect encodings [9], developmental pro-
cesses [30, 34], epigenetic interactions [17] and regulatory networks [13] have been 
studied as ways to improve the evolvability of these artificial evolutionary systems.

Studying the context of one of the most simple genotype–phenotype maps availa-
ble in nature embodied by RNA folding, Schuster, Fontana and others [44] have con-
sidered another network, namely that traversed during the evolutionary search pro-
cess, where different genotypes form a complex network, with genotypes as nodes, 
and variation operator connecting those nodes via mutation. The phenotype network 
corresponding to this network is another network that can be studied at the same 
time. Here, the previously mentioned genotype–phenotype map has been abstracted 
into a physico-chemical model for the folding of linear RNA sequences into two-
dimensional RNA folding shapes. Subsequent work has shown particular features of 
this map which are relevant for our study below [11, 41]. Following earlier work by 
Kauffman et al. [25], search on fitness landscapes has been studied using adaptive or 
random walks on these complex networks.

Here we adopt this view of search as an adaptive walk in the complex network 
provided by the representation of our problem, enabled by the operators working 
on this representation, and guided by the fitness attached to each of these represen-
tations. Notably, in evolutionary algorithms, the quality of a candidate solution is 
assessed based on its phenotype, i.e., how well the phenotype is able to produce a 
desired outcome judged by a fitness measure. Yet, the actual evolutionary search 
occurs in genotype space, where the encoding of candidate solutions is modified by 
mutation or recombination operations. Thus, how genotypes are mapped to pheno-
types will substantially influence the search effectiveness of an evolutionary algo-
rithm [15, 26].

Redundant genotype–phenotype maps are common in both natural [8, 43] and 
computational evolution [4, 22, 29, 42, 46], where multiple genotypes can map to 
the same phenotype. Such a redundancy is often unevenly distributed among pheno-
types, where some phenotypes are over-represented, i.e. represented by many geno-
types, and some are under-represented, i.e. represented by only a few [23, 42]. When 
the target phenotype is under-represented, its evolutionary search is often more diffi-
cult than having a genotypically over-represented target. This is intuitive since it can 
be more difficult to find one of the few genotypes that map to an under-represented 
target phenotype.
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If the genotype-to-phenotype mapping is redundant, a mutation to a genotype 
may not change the phenotype it encodes, a phenomenon defined as neutrality [36, 
48], and such mutations are called neutral mutations [18, 19, 21, 47]. Neutrality is 
facilitated by redundancy, but not guaranteed. For instance, there are cases where 
genotypes map to the same phenotype but are not mutationally connected, i.e., one 
genotype cannot be reached from the other through single point mutations, thus 
mutations that need to occur on the way from one to the other will need to alter the 
phenotype.

In contrast to neutral mutations, non-neutral mutations connect genotypes of dis-
tinct phenotypes. Such non-neutral mutational connections among phenotypes might 
also be heterogeneous [23, 38], i.e., a phenotype may not have the same likelihood 
of mutating to other phenotypes and thus may tend to “prefer” some phenotypes 
over others. The difficulty of finding a target phenotype is thus influenced not only 
by its genotypic abundance, but also by how mutational connections are distributed 
among different phenotypes.

In this article, we quantitatively measure the genotypic redundancy of pheno-
types and the mutational connections among them, and take a network approach to 
analyze how these properties correlate with the difficulty of finding a target phe-
notype. This extends our research previously published in the EuroGP’19 confer-
ence proceedings [24], We use a linear genetic programming (LGP) algorithm for 
Boolean function search, and numerically characterize its genotype, phenotype, and 
fitness space. Using random sampling and random walks, we construct a phenotype 
network to depict the mutational connections among different phenotypes. Once a 
specific target phenotype is chosen, this changes the connectivity of the phenotype 
network since only non-deleterious mutations, i.e. mutations that do not decrease 
fitness, are allowed. We show that such changes can significantly influence the dif-
ficulty of finding a target.

The paper is organized as follows: Sect. 2 reviews our Boolean LGP system and 
defines basic notions for studying the complex networks. We then discuss evolv-
ability and robustness as the two notions of major importance in this study (Sect. 3). 
Section  4 reports the results of our examination of genotype and phenotype net-
works and Sect. 5 discusses the consequences of our network view of the evolution-
ary search process.

2  Methods

2.1  A Boolean linear genetic programming algorithm

We use a linear genetic programming (LGP) algorithm for our empirical analysis. 
LGP is a branch of genetic programming and employs a sequential representation 
of computer programs to encode an evolutionary individual [7]. Such an LGP pro-
gram is often comprised of a set of imperative instructions, which are executed 
sequentially. Registers are used to either read input variables (input registers) or to 
enable computational capacity (calculation register). One or more registers can be 
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designated as the output register(s) such that the final stored value(s) after the pro-
gram is executed will be the program’s output.

In this study, we use an LGP algorithm for a three-input, one-output Boolean 
function modeling application. Each instruction has one return, two operands and 
one Boolean operator. The operator set has four Boolean functions {AND, OR, 
NAND, NOR}, any of which can be selected as the operator for an instruction. Three 
registers �

�
 , �

�
 , and �

�
 receive the three Boolean inputs, and are write-protected in 

an LGP program. That is, they can only be used as an operand in an instruction. 
Registers �

�
 and �

�
 are calculation registers, and can be used as either a return or an 

operand. Register �
�
 is also the designated output register, and the Boolean value 

stored in �
�
 after an LGP program’s execution will be the final output of the pro-

gram. All calculation registers are initialized as FALSE before execution of a pro-
gram. An LGP program can have any number of instructions, however, for the ease 
of simulation in this study, we determine that an LGP program has a fixed length of 
six instructions. An example LGP program is given as follows.

2.2  Genotype, phenotype, and fitness

The genotype in our evolutionary algorithm is a unique LGP program. Since we 
have a finite set of registers and operators, as well as a fixed length for all programs, 
the genotype space is finite. Specifically, considering an instruction, either of the 
two registers can be chosen as the return, and any two of the five registers can be 
chosen as the operands, and the operator is picked from the set of four possible 
Boolean functions. Thus, there are 2 × 5 × 5 × 4 = 200 unique instructions. Given 
the fixed length of six instructions for all LGP programs, we have a total number of 
2006 = 6.4 × 1013 possible different programs. Although finite, the genotype space 
is enormous and is not amenable to exhaustive enumeration. Therefore, we con-
duct a simulation by randomly generating one billion LGP programs ( ≈ 15.6 ppm = 
0.00156% of the genotype space) to approximate the genotype space.

The phenotype in our evolutionary algorithm is a Boolean relationship that maps 
three inputs to one output, represented by an LGP program, i.e., f ∶ �3

→ � , where 
� = {TRUE, FALSE}. There are thus a total of 223 = 256 possible Boolean relation-
ships. Having 6.4 × 1013 genotypes to encode 256 phenotypes, our LGP algorithm 
must have a highly redundant genotype-to-phenotype mapping. We define the geno-
typic redundancy of a phenotype as the total number of genotypes that map to it.

The fitness of an LGP program is dependent on the target Boolean rela-
tionship, and it is defined as the dissimilarity of the presented and the target 
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Boolean relationships. Given three inputs, there are 23 = 8 combinations of 
Boolean inputs. The Boolean relationship encoded by an LGP program can 
be seen as a 8-bit string representing the outputs that correspond to all 8 pos-
sible combinations of inputs. Fitness is defined as the Hamming distance of 
this 8-bit output and the target output. For instance, if the target relationship 
is f (�

�
, �

�
, �

�
) = �

�
��� �

�
��� �

�
 , represented by the 8-bit output string of 

00000001, the fitness of an LGP program encoding the FALSE relationship, i.e., 
00000000, is 1. Fitness falls into the range of [0, 8] where 0 is the perfect fitness 
and 8 is the worst, and is to be minimized.

2.3  Phenotype network

Point mutations to genotypes may change the encoded phenotypes from one to 
another. In the context of our LGP algorithm, a point mutation is to replace any 
one of the four elements, i.e., return, two operands, and operator, of an instruc-
tion in an LGP program. The mutational connections among pairs of phenotypes 
can be modeled using a phenotype network. In such a network, each node repre-
sents one of the 256 phenotypes that can be possibly encoded by the LGP geno-
types. Two nodes (phenotypes) are directly connected by an edge if there exist 
at least one pair of underlying genotypes, one from each phenotype, that can be 
transitioned from one to the other through a single point mutation.

Since it is infeasible to enumerate all possible genotypes, sampling the 
mutational connections among phenotypes is also necessary. We assemble one 
million randomly generated LGP programs and allow each to take a 1000-
step random walk in genotype space. All the phenotypes each random walker 
encountered are recorded in order to estimate the number of point mutations that 
can transition one phenotype to another. This random walk simulation yields a 
undirected, weighted phenotype network, where the weight of an edge is propor-
tional to the number of sampled point mutations that can change the genotypes 
of one phenotype to that of the other phenotype.

Assigning a fitness to each phenotype and preventing deleterious mutations 
changes the reversible nature of point mutations, the weighted phenotype net-
work into a directed graph and transforms the random walk on the network into 
an adaptive walk. We study adaptive walks by picking two target phenotypes 
with a considerable difference in their genotypic redundancies, given the con-
sideration that whether a target phenotype is over- or under-represented by geno-
typic encodings may influence the difficulty level of finding that target [42] in an 
adaptive walk. The first target is phenotype 11110000 (decimal 240) which has 
a genotypic redundancy of 46,729,920, i.e., 4.673% of the one billion sampled 
genotypes. The second target is phenotype 10110100 (decimal 180) with only a 
genotypic redundancy of 86. Setting such different targets will render the corre-
sponding directed, weighted phenotype networks different. Thus, we investigate 
a variety of network properties to compare these two networks.
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2.4  Complex network analysis

Since we need a few concepts and methods from the field of network science [5, 35], 
we here collect some useful definitions to be referenced and used later.

Strength This term refers to the generalization of the vertex degree to weighted 
networks. It is defined as the sum si of weights of the edges from node i to its neigh-
bors N(i),

where wij is the weight of the edge connecting nodes i and j.
Disparity A given value of a node’s strength can be obtained with very different 

values of edge weights. The contributing weights could be of about the same size 
or they could be very different. To measure the degree of heterogeneity of a node’s 
edges disparity can be used. It is defined as follows:

If all the connections are of the same order then Y2 is small and of order 1/k where 
k is the vertex degree. On the other hand, if there is a small number of high weight 
connections Y2 is larger and may approach unity.

Centralities Network centrality measures are intended to characterize the impor-
tance of a node or an edge in a network and were first considered in social network 
contexts. There are several established centrality measures (see, e.g., [35]); here we 
use two of them: eigenvector centrality and PageRank centrality.

Eigenvector centrality tries to capture the idea that the more central the neighbors 
of a node are, the more central the node itself is. It can be expressed in terms of 
eigenvector solutions of eigenvalue systems based on the graph adjacency matrix, 
hence the name.

PageRank centrality is based on Google’s PageRank algorithm [39], a key com-
ponent of their search engine, which attributes to a web page a rank essentially given 
by the frequency with which a random walk hits the page in the long run. This fre-
quency is higher for pages with many incoming links and provides a measure of the 
importance, or popularity, of a page.

Coreness The k-core of a network is its largest subgraph for which all vertex 
degrees are at least k. With a suitable visualization technique, knowledge of k-core 
decomposition of a network allows to highlight the best interconnected and the least 
interconnected parts in a network. This can be done by showing the k-cores as suc-
cessive layers that go from highly connected at the center to less and less connected 
towards the periphery in a radial fashion.

Average shortest paths We use weighted and unweighted shortest paths between 
pairs of vertices. The average values of all two-point shortest paths in a graph give 
an idea of the typical distances between nodes.

si =
∑

j∈N(i)

wij,

Y2(i) =
∑

j∈N(i)

(
wij

si

)2

.
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Clustering coefficient The clustering coefficient C(i) of a node i is defined as the 
ratio between the e edges that actually exist between the k neighbors of i and the 
number of possible edges between these nodes:

The clustering coefficient can be interpreted intuitively as the likelihood that two 
of node i’s neighbors are also neighbors. The average clustering coefficient C̄ is the 
average of C(i) over all N vertices in the graph G, i ∈ V(G) : C̄ = (1∕N)

∑N

i=1
C(i).

Degree, strength, and edge weight distribution functions These discrete distribu-
tions give, respectively, the frequency of a given node degree, node strength, or edge 
weight in the network. These distributions are useful for evaluating whether they 
are, for instance, homogeneous or heterogeneous, unimodal or multimodal.

3  Evolvability and robustness

Evolvability and robustness are two important notions related to the genotype–phe-
notype mapping. Evolvability describes the ability of generating novel phenotypes 
in order to adapt to varying environments, while robustness refers to the resilience 
of remaining intact in response to perturbations and changes. Early work on evolv-
ability [2, 3] in genetic programming was taken up in evolutionary biology [27, 40, 
48, 50], and has since been further investigated in artificial evolutionary systems [2, 
16, 21, 31] and is a prime example of “closing the feedback loop” between evolu-
tionary computation and evolutionary biology.

The relationship of evolvability and robustness may appear antagonistic, however 
they have been shown correlated in both theoretical analyses [23, 49] and empirical 
observations [6, 33]. Robustness results from the redundant genotype to phenotype 
mapping, where changes to genotypes may not alter the phenotype. Thus, the evo-
lutionary system is resilient to genetic perturbations. These neutral mutations, more 
importantly, provide an expansion in the genotypic space without being subject to 
selection pressure, and enable reaching more novel phenotypes faster when the sys-
tem is actively adapting to a new environment.

Constructing the phenotype network provides a quantitative characterization of 
evolvability and robustness in an evolutionary algorithm. Moreover, defining evolv-
ability and robustness at different levels of genotype, genotype, fitness, and system 
helps elucidating their relationships. The robustness of a phenotype can be inferred 
using its genotypic redundancy [49]. An over-represented phenotype is considered 
robust to mutations since it has more encoding genotypes and random mutations to 
them will less likely change the phenotype.

Using the framework of the phenotype network, various network-based meas-
urements have been proposed to quantify the evolvability of a phenotype, including 
node degree [49], disparity [10], and centralities [20, 38]. These network measures 
capture some aspects of phenotypic evolvability, i.e., starting from a specific pheno-
type, how easily can fitter phenotypes be reached? Both node degree and disparity 

C(i) =
e
(
k

2

) =
2e

k(k − 1)
.
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are found incapable of predicting such an ability given that they only provide the 
estimation of the direct neighborhood of a node, and fail to give long-term, multi-
hop predictions [23]. Centralities, on the other hand, are computed based on the 
importance of a node that contributes to the global connectivity of the network, and 
provide a better long-term estimation of reaching other phenotypes. The weighted 
eigenvector centrality is found to have the best prediction power estimating the 
evolvability of a phenotype [20]. However, there is still a considerable discrepancy 
between the predicted and the observed quantities, and is found to be resulted by 
the mutational bias led by robust genotypes. Specifically, more robust genotypes are 
more likely to be visited through random mutations, therefore, they have a stronger 
influence on directing the transition to other phenotypes [23]. Thus, future attempts 
on quantifying the evolvability of a phenotype need to consider mutational connec-
tions both at the phenotypic and the genotypic levels. In this study, we further inves-
tigate the properties of the phenotype networks and relate them to previous findings 
on evolvability and robustness.

4  Results

4.1  Sampled genotype space

When we decode the one billion randomly generated genotypes, we find that 17 of 
the total 256 phenotypes are never sampled. The distribution of the genotypic redun-
dancy of the remaining 239 sampled phenotypes is highly heterogeneous, as shown 
in Fig. 1. Moreover, due to the symmetry of Boolean relationships we see that many 
phenotypes have the same genotypic redundancy.

The most over-represented phenotype is 0, i.e., FALSE, which has over 108 mil-
lion genotypes, while phenotype 255, i.e., TRUE, its symmetric counterpart, is the 
second most abundant with over 93 million genotypes. The asymmetry in count is 
due to the initialization of calculation registers, including the output register �

�
 , to 

FALSE in all LGP programs prior to execution. In addition to the 17 phenotypes 
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types using one billion randomly generated LGP programs
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never sampled, under-represented phenotypes include 105, 231, 24, 219, 189, 36, 
and 66, none of which has more than 40 sampled genotypic encodings.

4.2  Undirected and weighted phenotype network

Using the assembly of one million 1000-step random walkers, the mutational con-
nections among pairs of phenotypes can be approximated. 16 out of 256 phenotypes 
are never encountered, i.e., they are neither sampled in the one million randomly 
initialized walkers (programs), nor visited during the walks. These 16 phenotypes 
are isolated nodes in the phenotype network, 15 of which belong to the 17 never-
sampled phenotypes discussed previously (Sect. 4.1). This also suggests that under-
represented phenotypes are hard to reach by random walks.

The remaining 240 phenotypes are connected to form one component of the net-
work, and there are 14,663 directly connected phenotype pairs, represented as edges, 
in the network. This yields an average node degree of 122. The network has an aver-
age shortest path 1.5 and a diameter as short as 3, which means that any pair of 
phenotypes can be reached from one to another by point mutations through no more 
than 3 hops in the phenotype network. The clustering coefficient of the network is 
high at 0.75; this is due to the fact that many nodes have neighbors that are them-
selves connected, giving rise to many closed triangles.

When we take a closer look at the distribution of mutational connections among 
phenotype pairs i.e., distribution of edge weights, it appears highly heterogeneous 
and ranges across orders of magnitude (Fig. 2a). The phenotype pair 0 and 255 has 
the highest number of mutational connections (5,673,803), and 6513 pairs only have 
one mutational connection. The distribution of these pairwise mutational connec-
tions is roughly monotonic, where the likelihood of having a greater number of con-
nections decreases.

The phenotypes become less connected if we use an edge weight cutoff to filter 
out weakly connected edges. Figure 2b shows the number of nodes (excluding iso-
lated nodes) in the phenotype network in relation to the edge weight filter cutoff. For 
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edge weight in the phenotype network, and b the number of nodes (phenotypes) in the network using an 
edge weight filter



384 Genetic Programming and Evolvable Machines (2020) 21:375–397

1 3

five different edge weight cutoffs, the network remains having only one connected 
component, however, its size decreases as the cutoff increases. This means that 
nodes are being detached from the largest component individually without forming a 
second connected component.

Figure 3 shows a visualization of the weighted phenotype network using an edge 
weight filter 105 . There are 72 nodes and 382 edges in this network. The size of 
a node is proportional to the genotypic redundancy of its representing phenotype, 
and the width of an edge is proportional to its weight. The graph layout puts nodes 
with higher strengths in the center, and the two most central phenotypes are FALSE 
(0) and TRUE (255). We see that genotypically over-represented phenotypes (larger 
nodes) are more connected to others than under-represented ones.

Next, we show node properties and their correlations, as well as some global 
structures of the phenotype network, analyzed using the network measures defined 
in Sect. 2.4, in the following subsections.

4.2.1  Node properties and distributions

We look at a variety of node properties, including degree, strength, disparity, core-
ness, eigenvector centrality, and PageRank centrality (computed using � = 1 ), in 
the phenotype network. Figure 4 shows the distributions of these node properties. 
Phenotype 0 and 255 have the highest node degree of 236, and phenotypes 22 and 
104 only have a degree of 2. Strength, being a generalization of degree for weighted 
networks, has a shape that is qualitatively similar to the degree histogram, with a bi-
modal distribution.

The node disparity shows that most phenotypes have a low disparity, i.e., their 
links tend to have similar weights, and the distribution decays quickly. The coreness 
distribution shows that the majority of the phenotypes form a very dense core leav-
ing only few peripheral nodes. The weighted centralities of eigenvector and PageR-
ank share a very similar distribution. The majority of the nodes have similar and low 
centrality values and only very few nodes have significant higher centrality.

4.2.2  Node property correlations

Next, we look at how node properties correlate with the genotypic redundancy of its 
represented phenotype (see Fig. 5). Both degree and strength are strongly correlated 
with genotypic redundancy with a linear-log and a log-log correlation coefficient 
of r2 = 0.9642 (p < 10−16) and r2 = 0.9981 (p < 10−16) . This suggests that over-
represented phenotypes have more and stronger mutational connections to other 
phenotypes.

The positive correlation between disparity and redundancy has a coefficient of 
r2 = 0.3568 (p < 10−16) . Coreness and genotypic redundancy also have a positive 
correlation. Please note that the maximal coreness value observed in the network is 
95. Both eigenvector and PageRank centrality are positively correlated with geno-
typic redundancy, while only highly redundant phenotypes (with more than 106 rep-
resenting genotypes) have greater centrality values than the rest.
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Recall that a phenotype with a greater number of underlying genotypes is con-
sidered more robust. Degree, strength, disparity, and centralities have been pro-
posed in the literature as possible metrics to quantify evolvability. We find positive 
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correlations of all these network measures with genotypic redundancy. Our results 
suggest that more robust phenotypes are also more evolvable, a correlation that con-
curs with observations from evolutionary biology.

4.2.3  Communities

Communities in a complex network can be loosely defined as clusters of nodes that 
are more strongly linked among themselves than with the rest of the network. A 
precise and unique definition cannot be given, which makes community detection 
a hard and somewhat ill-defined task for which heuristic methods must be used. 
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Nevertheless, several community detection algorithms have been proposed that 
work well in practice.

Here we use the methods implemented in the igraph R package [12], which 
also cover weighted networks. Before submitting our phenotype network G to a 
community detection algorithm some manipulations are necessary. In fact, the 
graph has a mean degree of about 122 which makes it a very dense network. 
Community detection algorithms typically do not work well, or at all, on such 
graphs. However, we note that edge weights in G span seven orders of magnitude 
(see Fig.  2a), which means that many links are comparatively very weak. Thus 
we have discarded weak network connections by cutting all edges with weights 
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below a threshold of wij < 105 . As a consequence, some of the original nodes 
also become disconnected but we have ensured that all edges of the target pheno-
types are kept, especially for target node 180, which would have become isolated 
otherwise, since all its edges have weights lower than the threshold. Community 
detection algorithms usually determine a partition of the network node. These 
partitions may overlap or not. Here we have used methods that produce a non-
overlapping partition.

Modularity is a measure that estimates the cohesiveness of a partition found 
by a community detection algorithm with respect to a graph with the same degree 
distribution but with edges placed at random [37]. The community partition found 
with several community detection algorithms from igraph has a modularity value 
of about two, which is not very high but still significantly different from random. 
Figure 6a shows the communities found by the Louvain algorithm. It is important 
to note that the small community to which vertex 180 belongs is almost always 
found identically by all the different algorithms tried. Figure 6a clearly shows that 
node 180, together with its neighbors belonging to the same community, appears 
to be extremely difficult to reach, all the more taking into account that the intra-
community and extra-community edges are weak. On the other hand, phenotype 
240 is at the intersection of two bigger and well connected communities and thus 
it is intuitively reasonable that it should be easier to find.

The following Fig.  6b has been obtained with another community detection 
method, the fastgreedy algorithm, which is also in the igraph library. As said 
above, the results may differ because of the different constraints algorithms 
impose on the community definition but, again, vertex 180 belongs to a small and 
weakly connected cluster.
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4.3  Directed phenotype networks

When a fitness is assigned to each phenotype based on its Hamming distance to the 
target phenotype, the phenotype network becomes oriented since we only allow non-
deleterious point mutations. Note that we only consider simple graphs in the current 
study, i.e., self-loops are excluded in our network analysis, in order to focus on the 
mutational connections among distinct phenotypes.

4.3.1  In‑ and out‑degrees

A phenotype/node now has edges with two directions, pointing to its neighbors (out-
edges) and being pointed from its neighbors (in-edges). Subsequently, in-degree and 
out-degree can be used to depict how many unique phenotypes can access or can be 
reached from a reference phenotype.

We often consider the search for a target phenotype as being effective if follow-
ing fitter phenotypes will most likely lead to the target. That is, fitter phenotypes are 
expected to have more in-edges to attract mutations while less fit phenotypes should 
have more out-edges (see an example in Fig. 7).

Figure 8 shows the correlations of in- and out-degrees with the fitness of a phe-
notype in two directed phenotype networks with different targets. Using both targets, 
in-degrees are negatively correlated with fitness while out-degrees are positively 
correlated with fitness. Note that fitness is to be minimized. Phenotypes with better 
fitness will have less edges going out but more edges coming in, i.e., fitter pheno-
types are easier to reach and harder to leave, which is intuitive and desirable since 
we hope reaching fitter phenotypes will be more likely leading to the path to the 
target. However, when we compare the correlations using different targets, it can 
be seen that using a relatively harder target (i.e., phenotype 180) results in weaker 
correlations of in-/out-degrees and fitness. This indicates that genotypically under-
represented targets are difficult to find partially because they render the guidance of 
the fitness gradient less effective. That is, reaching fitter phenotypes at a current step 
does not necessarily lead to better paths for finding the target.

Better

Worse

Fitness

Fig. 7  Fitness in relation to in- and out-degrees. Fitness can better guide the search for the target if phe-
notypes (circles) with better fitness have higher in-degrees and lower out-degrees comparing with worse 
phenotypes
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4.3.2  Fitness correlation of neighboring phenotypes

Fitness correlation can give statistical information about the fitness assortativity of 
neighboring nodes in the network. A practical way for evaluating fitness correlation is 
given by the average fitness of neighbors f̄neighbor(i) of a node i

where fi is the fitness of phenotype/node i.
From this quantity one can compute the average fitness of the neighbors f̄neighbor(f ) 

for nodes of the phenotypic network having fitness value f which is a good approxima-
tion to the fitness-fitness correlation:

where Nf  is the number of nodes with fitness f.

f̄neighbor(i) =
1

|N(i)|
∑

j∈N(i)

fj,
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∑
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( p < 4.6 × 10−16 ), respectively. In c, d, the positive correlations are with a coefficient of R2 = 0.461 
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Remembering that a low fitness value is better in our context, one can see from 
Fig. 9 that the neighboring fitness correlations are quite different when different phe-
notypes are used as the search target. Specifically, when the over-represented phe-
notype 240 is set as the target (see Fig. 9a), the fitness values of neighboring phe-
notypes do not correlate, meaning that a phenotype can be connected to phenotypes 
with any fitness values. However, as shown in Fig.  9b, when the target is under-
represented, a bad phenotype that has a fitness value greater than four tends to have 
neighbors better than itself, while a good phenotype with a fitness value less than 
four tends to have neighbors worse than itself.

4.4  Random walks and adaptive walks

4.4.1  Random walks

Although the GP system searches the genotype space and not the much smaller phe-
notype space, it is still interesting to simulate random walk search in the latter to 
numerically confirm the above idea that some phenotypes are easy to find while oth-
ers are hard. Nevertheless, it is worth noting that walking in the phenotypic network 
ignores the fact that it depends on the sampled genotypic space and thus may not 
adequately represent the actual difficulty since many steps are abstracted into a sin-
gle step here and also depend on the sampling accuracy. Random walks on networks 
are reviewed in [32]. In an unweighted network, the probability for going from node 
i to node j is pij = aij∕ki , where ki is the degree of i and aij is the corresponding 
entry in the graph adjacency matrix being 1 if nodes i and j are connected and 0 
if they are not. The random walk we are interested in is biased, since edges of the 
undirected phenotype network are weighted. So we have to modify the probabili-
ties accordingly, but the changes are minor: the transition probability from node i 
to node j through an edge {ij} with weight wij ≥ 0 now becomes pij = wij∕si , where 
si is the strength of node i and is defined as the sum of the weights of the edges 
from i to its neighbors N(i) (see definitions in Sect. 2.4). These probabilities are well 
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behaved since a connected node must have a positive finite strength, pij ≥ 0 , and ∑
j∈N(i) pij = 1 and form the rows of the transition matrix �.
The stationary distribution �∗ of the random walks defined above can be found by 

solving the eigenvalue equation �∗ = �∗� with an appropriate linear algebra algo-
rithm. However, for large matrices there might be numerical difficulties that require 
specialized knowledge. Instead, here we shall follow a Monte Carlo simulation 
approach which, while it is slower, is very simple and gives the same results in the 
long time limit. It consists in performing a large number of random walk steps start-
ing from each network node and recording each time a given target node is encoun-
tered. If the number of random walk steps is large enough, the final frequency with 
which the target has been hit will provide a very good approximation to its equilib-
rium occupancy probability.

For each of the two target phenotypes 180 and 240, we numerically simulate 
biased random walks in the original unfiltered network starting from all network 
nodes except the target nodes themselves. For each starting node we perform 105 
random walk steps, for a total of (N − 1) × 105 = 237 × 105 steps. For each of the 
phenotypes 180 and 240 we record the number of times it is found, i.e., the number 
of hits, and the mean number of steps to the first hit, when the node is found.

Results are shown in Table 1. From the number of hits and the first hit times, it 
is apparent that phenotype 180 is much harder to find than phenotype 240. Further-
more, if we exclude the first neighbors of the target node as starting nodes in the 
random walk, it becomes even more difficult, comparatively, to find phenotype 180 
(figures after the comma in Table 1). We can also see that phenotype 240 is very 
often found directly from a starting node that is a first neighbor given that 240 has 
223 neighbors while 180 only has 41 connections.

4.4.2  Adaptive walks

In contrast with random walks where fitness doesn’t play a role, adaptive walks can 
be performed in a phenotype network when each phenotype is attributed a fitness 
value. Adaptive walks can be defined in several ways [25] but given that the walk is 
at a certain phenotype i at step t, the basic idea is to move to a neighboring node k at 
step t + 1 , provided that the fitness of k is better than i’s fitness; if no neighbor has a 
better fitness the walk terminates at i.

Our implementation of adaptive walks is somewhat different from the usual ones 
as it takes into account the weight of the edge wij between phenotypes i and j. This is 

Table 1  Average number of hits and first hitting times for random walks having nodes 180 and 240 as 
targets. 237 × 105 random walks steps are performed in total

The figures after the commas refer to the same quantities when the first neighbors of nodes 180 and 240 
are excluded as starting nodes for the walk

Target Phenotype 180 Target Phenotype 240

Number of hits 2, 0 97,465, 5862
First hitting time 910,306, – 10, 10
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because this weight stands for the number of single-point mutations that transform a 
genotype belonging to phenotype i into a genotype for phenotype j in one step, and 
thus represents the potential frequency of such a transition. Our algorithm for an 
adaptive walk can be summarized as follows: 

1. choose a starting node a and make it the current node current
2. sort the neighbors of current in decreasing order of their link weights and place 

them in the list weights
3. if it exists, set current to the first node n in weights whose fitness f(n) is better 

than f(current) and go to 2; otherwise stop

where 2 and 3 are repeated for a prefixed number of steps. This is a deterministic 
algorithm that needs to be run only once for each starting node.

We applied the above algorithm to the directed and weighted networks of target 
phenotypes 180 and 240. Those phenotypes are the single global optima of their 
respective networks in terms of fitness. We did a first computational experiment 
by starting an adaptive walk from each network node except the target phenotype 
for each of 180 and 240 networks. The results were the following: target phenotype 
180 was reached 27 times out of 237 adaptive walks. On the other hand, phenotype 
240 was the end state of 39 out of 239 walks. We see that, even taking fitness into 
account, 180 is more difficult to reach by hill-climbing than 240. At this point it has 
to be noted that most phenotypes are degenerate local optima, i.e., there is more than 
one phenotype having the same fitness at the end of an adaptive walk. By contrast, 
the globally optimal phenotypes 180 and 240 are single.

We next did another numerical simulation, this time only using as starting nodes 
those that have fitnesses above a certain level. Recall that the optimal fitness is zero 
and the worst value is eight, i.e., the walk starts from a distribution of “worse” nodes 
here, and so the walk in general requires a longer time to find its way to better fitness 
nodes. Excluding all nodes whose fitness is lower than 5 as starting points for the 
walks, phenotype 240 is reached 8 times, while 180 is hit only on three occasions. 
Restricting the starting node set further to only those that have fitness 6 or higher 
results in node 240 being reached three times and node 180 zero times. In conclu-
sion, even when there is fitness guidance in the search, phenotype 240 is always 
easier to find than phenotype 180.

5  Discussion

The genotype–phenotype mapping plays an essential role in evolvability, since the 
variations characterizing the search occur in the genotype space, but the quality or 
behavior of a system can only be observed and evaluated at the phenotypic level. 
We argue that some target phenotypes are more difficult to find than others, not only 
because they are most likely under-represented in genotypic space, but also because 
the mutational connections between phenotypes are altered through setting different 
target phenotypes.
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In this study, we took a network approach and quantitatively analyzed the dis-
tribution of mutational connections among phenotypes and how this distribution is 
changed with different phenotypes set as target. Using a Boolean LGP algorithm, 
we sampled the genotypic and phenotypic spaces and constructed a phenotype net-
work to characterize the distribution of mutational connections among phenotypes. 
By setting two different phenotypes as the target, one genotypically over-represented 
and one under-represented, we compared the properties of the resulting directed, 
weighted phenotype networks.

Similar to many GP systems, our Boolean LGP algorithm has a highly redun-
dant mapping from genotypes ( 6.4 × 1013 ) to phenotypes (256). Such redundancy 
is heterogeneously distributed among phenotypes, with the most abundant pheno-
type possessing about 10% of the entire genotype space while some other pheno-
types never appeared in our samples. By examining the undirected, weighted phe-
notype network, we found that genotypically more abundant phenotypes have more 
access to different phenotypes and more tendency to mutate into certain neighboring 
phenotypes. These findings are in line with reported observations in evolutionary 
biology, where the genotypic redundancy of a phenotype is often considered as its 
robustness, and most robust phenotypes are often found more evolvable.

We chose two phenotypes, 180 and 240, as targets, and observed that in addition 
to having considerably different degrees, 41 and 233, the two phenotypes have very 
different community structures. This suggests that target 180 is much more difficult 
to find, not only because it was connected to fewer neighbors, but also because it 
is located in a small and distant community. It was also interesting to see that in 
the directed phenotype network resulting from setting 180 as target, fitness was less 
effective at guiding evolution, since fitness and in-/out-degree of a phenotype are 
less correlated, i.e., reaching a fitter phenotype at a current step would not necessar-
ily lead to more promising paths to finding the target.

The search performance of an evolutionary algorithm can vary considerably with 
different problem instances. Our study provides a quantitative investigation into this 
issue using complex network analysis. That a specific target is hard to reach can 
have multiple explanations: (1) the target is under-represented in genotypic space; 
(2) the target is connected to only a few phenotypes in phenotypic space; (3) the 
target belongs to a small community distant from the rest of the phenotypes in that 
space; and (4) setting the target has wired the connections among phenotypes in a 
way that renders following fitter phenotypes in order to reach the target a less effec-
tive strategy.

We hope our observations can be found useful to inspire more intelligent search 
mechanisms that are able to overcome these challenges. For instance, can we use 
network-based metrics to supplement fitness evaluation such that the search in the 
genotypic space is better guided towards a genotypically under-represented and 
weakly connected target? Is the genotype–phenotype map itself evolvable? Can we 
evolve genotype–phenotype maps that allow finding rare phenotype targets more 
easily?
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