
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2020) 21:375–397
https://doi.org/10.1007/s10710-020-09379-0

1 3

A network perspective on genotype–phenotype mapping
in genetic programming

Ting Hu1,2 · Marco Tomassini3 · Wolfgang Banzhaf4

Received: 14 October 2019 / Revised: 3 January 2020 / Published online: 29 January 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Genotype–phenotype mapping plays an essential role in the design of an evolution-
ary algorithm. Variation occurs at the genotypic level but fitness is evaluated at the
phenotypic level, therefore, this mapping determines if and how variations are effec-
tively translated into quality improvements. In evolutionary algorithms, this map-
ping has often been observed as highly redundant, i.e., multiple genotypes can map
to the same phenotype, as well as heterogeneous, i.e., some phenotypes are repre-
sented by a large number of genotypes while some phenotypes only have few. We
numerically study the redundant genotype–phenotype mapping of a simple Boolean
linear genetic programming system and quantify the mutational connections among
phenotypes using tools of complex network analysis. The analysis yields several
interesting statistics of the phenotype network. We show the evidence and provide
explanations for the observation that some phenotypes are much more difficult to
find as the target of a search than others. Our study provides a quantitative analysis
framework to better understand the genotype–phenotype map, and the results may
be utilized to inspire algorithm design that allows the search of a difficult target to be
more effective.

Keywords Evolvability · Genotype–phenotype map · Networks · Neutrality ·
Redundancy · Robustness

1 Introduction

The genotype–phenotype map as a key aspect of natural evolution came to promi-
nence in biology in the early 1990s. Alberch raised the issue in his attempt to create
a framework for unifying evolutionary and developmental biology [1]. In particular,
he raised attention to the fact that this map is much more complex and dynamic than
previous understanding was willing to accept. In the intervening years, these aspects

 * Ting Hu
 ting.hu@queensu.ca

Extended author information available on the last page of the article

http://orcid.org/0000-0001-6382-0602
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-020-09379-0&domain=pdf

376 Genetic Programming and Evolvable Machines (2020) 21:375–397

1 3

of complexity and dynamics have garnered substantial attention, couching the map
between genotype and phenotype in terms of a network of regulatory elements that
can control its different functions (see Davidson for an in-depth study [14]). In this
view, genes form a network of regulatory entities where changes in the expression
of one gene can be compensated by changes in other genes providing stability for
the phenotype. The evolutionary process then molds the expression dynamics of this
network by genetic variation which percolates to the corresponding phenotypes via
the gene regulatory network. As Kirschner and Gerhard pointed out, this dynamic
“buffering” layer for variation is a key aspect of the evolvability observed in natural
evolutionary systems [27, 28].

In artificial evolutionary systems, the value of using a “buffer” layer between
genotypes and phenotypes has also steadily gained prominence in research on evo-
lutionary computation and artificial life. Indirect encodings [9], developmental pro-
cesses [30, 34], epigenetic interactions [17] and regulatory networks [13] have been
studied as ways to improve the evolvability of these artificial evolutionary systems.

Studying the context of one of the most simple genotype–phenotype maps availa-
ble in nature embodied by RNA folding, Schuster, Fontana and others [44] have con-
sidered another network, namely that traversed during the evolutionary search pro-
cess, where different genotypes form a complex network, with genotypes as nodes,
and variation operator connecting those nodes via mutation. The phenotype network
corresponding to this network is another network that can be studied at the same
time. Here, the previously mentioned genotype–phenotype map has been abstracted
into a physico-chemical model for the folding of linear RNA sequences into two-
dimensional RNA folding shapes. Subsequent work has shown particular features of
this map which are relevant for our study below [11, 41]. Following earlier work by
Kauffman et al. [25], search on fitness landscapes has been studied using adaptive or
random walks on these complex networks.

Here we adopt this view of search as an adaptive walk in the complex network
provided by the representation of our problem, enabled by the operators working
on this representation, and guided by the fitness attached to each of these represen-
tations. Notably, in evolutionary algorithms, the quality of a candidate solution is
assessed based on its phenotype, i.e., how well the phenotype is able to produce a
desired outcome judged by a fitness measure. Yet, the actual evolutionary search
occurs in genotype space, where the encoding of candidate solutions is modified by
mutation or recombination operations. Thus, how genotypes are mapped to pheno-
types will substantially influence the search effectiveness of an evolutionary algo-
rithm [15, 26].

Redundant genotype–phenotype maps are common in both natural [8, 43] and
computational evolution [4, 22, 29, 42, 46], where multiple genotypes can map to
the same phenotype. Such a redundancy is often unevenly distributed among pheno-
types, where some phenotypes are over-represented, i.e. represented by many geno-
types, and some are under-represented, i.e. represented by only a few [23, 42]. When
the target phenotype is under-represented, its evolutionary search is often more diffi-
cult than having a genotypically over-represented target. This is intuitive since it can
be more difficult to find one of the few genotypes that map to an under-represented
target phenotype.

377

1 3

Genetic Programming and Evolvable Machines (2020) 21:375–397

If the genotype-to-phenotype mapping is redundant, a mutation to a genotype
may not change the phenotype it encodes, a phenomenon defined as neutrality [36,
48], and such mutations are called neutral mutations [18, 19, 21, 47]. Neutrality is
facilitated by redundancy, but not guaranteed. For instance, there are cases where
genotypes map to the same phenotype but are not mutationally connected, i.e., one
genotype cannot be reached from the other through single point mutations, thus
mutations that need to occur on the way from one to the other will need to alter the
phenotype.

In contrast to neutral mutations, non-neutral mutations connect genotypes of dis-
tinct phenotypes. Such non-neutral mutational connections among phenotypes might
also be heterogeneous [23, 38], i.e., a phenotype may not have the same likelihood
of mutating to other phenotypes and thus may tend to “prefer” some phenotypes
over others. The difficulty of finding a target phenotype is thus influenced not only
by its genotypic abundance, but also by how mutational connections are distributed
among different phenotypes.

In this article, we quantitatively measure the genotypic redundancy of pheno-
types and the mutational connections among them, and take a network approach to
analyze how these properties correlate with the difficulty of finding a target phe-
notype. This extends our research previously published in the EuroGP’19 confer-
ence proceedings [24], We use a linear genetic programming (LGP) algorithm for
Boolean function search, and numerically characterize its genotype, phenotype, and
fitness space. Using random sampling and random walks, we construct a phenotype
network to depict the mutational connections among different phenotypes. Once a
specific target phenotype is chosen, this changes the connectivity of the phenotype
network since only non-deleterious mutations, i.e. mutations that do not decrease
fitness, are allowed. We show that such changes can significantly influence the dif-
ficulty of finding a target.

The paper is organized as follows: Sect. 2 reviews our Boolean LGP system and
defines basic notions for studying the complex networks. We then discuss evolv-
ability and robustness as the two notions of major importance in this study (Sect. 3).
Section 4 reports the results of our examination of genotype and phenotype net-
works and Sect. 5 discusses the consequences of our network view of the evolution-
ary search process.

2 Methods

2.1 A Boolean linear genetic programming algorithm

We use a linear genetic programming (LGP) algorithm for our empirical analysis.
LGP is a branch of genetic programming and employs a sequential representation
of computer programs to encode an evolutionary individual [7]. Such an LGP pro-
gram is often comprised of a set of imperative instructions, which are executed
sequentially. Registers are used to either read input variables (input registers) or to
enable computational capacity (calculation register). One or more registers can be

378 Genetic Programming and Evolvable Machines (2020) 21:375–397

1 3

designated as the output register(s) such that the final stored value(s) after the pro-
gram is executed will be the program’s output.

In this study, we use an LGP algorithm for a three-input, one-output Boolean
function modeling application. Each instruction has one return, two operands and
one Boolean operator. The operator set has four Boolean functions {AND, OR,
NAND, NOR}, any of which can be selected as the operator for an instruction. Three
registers �

�
 , �

�
 , and �

�
 receive the three Boolean inputs, and are write-protected in

an LGP program. That is, they can only be used as an operand in an instruction.
Registers �

�
 and �

�
 are calculation registers, and can be used as either a return or an

operand. Register �
�
 is also the designated output register, and the Boolean value

stored in �
�
 after an LGP program’s execution will be the final output of the pro-

gram. All calculation registers are initialized as FALSE before execution of a pro-
gram. An LGP program can have any number of instructions, however, for the ease
of simulation in this study, we determine that an LGP program has a fixed length of
six instructions. An example LGP program is given as follows.

2.2 Genotype, phenotype, and fitness

The genotype in our evolutionary algorithm is a unique LGP program. Since we
have a finite set of registers and operators, as well as a fixed length for all programs,
the genotype space is finite. Specifically, considering an instruction, either of the
two registers can be chosen as the return, and any two of the five registers can be
chosen as the operands, and the operator is picked from the set of four possible
Boolean functions. Thus, there are 2 × 5 × 5 × 4 = 200 unique instructions. Given
the fixed length of six instructions for all LGP programs, we have a total number of
2006 = 6.4 × 1013 possible different programs. Although finite, the genotype space
is enormous and is not amenable to exhaustive enumeration. Therefore, we con-
duct a simulation by randomly generating one billion LGP programs (≈ 15.6 ppm =
0.00156% of the genotype space) to approximate the genotype space.

The phenotype in our evolutionary algorithm is a Boolean relationship that maps
three inputs to one output, represented by an LGP program, i.e., f ∶ �3

→ � , where
� = {TRUE, FALSE}. There are thus a total of 223 = 256 possible Boolean relation-
ships. Having 6.4 × 1013 genotypes to encode 256 phenotypes, our LGP algorithm
must have a highly redundant genotype-to-phenotype mapping. We define the geno-
typic redundancy of a phenotype as the total number of genotypes that map to it.

The fitness of an LGP program is dependent on the target Boolean rela-
tionship, and it is defined as the dissimilarity of the presented and the target

I1 ∶ �
�
= �

�
��� �

�

I2 ∶ �
�
= �

�
�� �

�

I3 ∶ �
�
= �

�
���� �

�

I4 ∶ �
�
= �

�
��� �

�

I5 ∶ �
�
= �

�
��� �

�

I6 ∶ �
�
= �

�
��� �

�

379

1 3

Genetic Programming and Evolvable Machines (2020) 21:375–397

Boolean relationships. Given three inputs, there are 23 = 8 combinations of
Boolean inputs. The Boolean relationship encoded by an LGP program can
be seen as a 8-bit string representing the outputs that correspond to all 8 pos-
sible combinations of inputs. Fitness is defined as the Hamming distance of
this 8-bit output and the target output. For instance, if the target relationship
is f (�

�
, �

�
, �

�
) = �

�
��� �

�
��� �

�
 , represented by the 8-bit output string of

00000001, the fitness of an LGP program encoding the FALSE relationship, i.e.,
00000000, is 1. Fitness falls into the range of [0, 8] where 0 is the perfect fitness
and 8 is the worst, and is to be minimized.

2.3 Phenotype network

Point mutations to genotypes may change the encoded phenotypes from one to
another. In the context of our LGP algorithm, a point mutation is to replace any
one of the four elements, i.e., return, two operands, and operator, of an instruc-
tion in an LGP program. The mutational connections among pairs of phenotypes
can be modeled using a phenotype network. In such a network, each node repre-
sents one of the 256 phenotypes that can be possibly encoded by the LGP geno-
types. Two nodes (phenotypes) are directly connected by an edge if there exist
at least one pair of underlying genotypes, one from each phenotype, that can be
transitioned from one to the other through a single point mutation.

Since it is infeasible to enumerate all possible genotypes, sampling the
mutational connections among phenotypes is also necessary. We assemble one
million randomly generated LGP programs and allow each to take a 1000-
step random walk in genotype space. All the phenotypes each random walker
encountered are recorded in order to estimate the number of point mutations that
can transition one phenotype to another. This random walk simulation yields a
undirected, weighted phenotype network, where the weight of an edge is propor-
tional to the number of sampled point mutations that can change the genotypes
of one phenotype to that of the other phenotype.

Assigning a fitness to each phenotype and preventing deleterious mutations
changes the reversible nature of point mutations, the weighted phenotype net-
work into a directed graph and transforms the random walk on the network into
an adaptive walk. We study adaptive walks by picking two target phenotypes
with a considerable difference in their genotypic redundancies, given the con-
sideration that whether a target phenotype is over- or under-represented by geno-
typic encodings may influence the difficulty level of finding that target [42] in an
adaptive walk. The first target is phenotype 11110000 (decimal 240) which has
a genotypic redundancy of 46,729,920, i.e., 4.673% of the one billion sampled
genotypes. The second target is phenotype 10110100 (decimal 180) with only a
genotypic redundancy of 86. Setting such different targets will render the corre-
sponding directed, weighted phenotype networks different. Thus, we investigate
a variety of network properties to compare these two networks.

380 Genetic Programming and Evolvable Machines (2020) 21:375–397

1 3

2.4 Complex network analysis

Since we need a few concepts and methods from the field of network science [5, 35],
we here collect some useful definitions to be referenced and used later.

Strength This term refers to the generalization of the vertex degree to weighted
networks. It is defined as the sum si of weights of the edges from node i to its neigh-
bors N(i),

where wij is the weight of the edge connecting nodes i and j.
Disparity A given value of a node’s strength can be obtained with very different

values of edge weights. The contributing weights could be of about the same size
or they could be very different. To measure the degree of heterogeneity of a node’s
edges disparity can be used. It is defined as follows:

If all the connections are of the same order then Y2 is small and of order 1/k where
k is the vertex degree. On the other hand, if there is a small number of high weight
connections Y2 is larger and may approach unity.

Centralities Network centrality measures are intended to characterize the impor-
tance of a node or an edge in a network and were first considered in social network
contexts. There are several established centrality measures (see, e.g., [35]); here we
use two of them: eigenvector centrality and PageRank centrality.

Eigenvector centrality tries to capture the idea that the more central the neighbors
of a node are, the more central the node itself is. It can be expressed in terms of
eigenvector solutions of eigenvalue systems based on the graph adjacency matrix,
hence the name.

PageRank centrality is based on Google’s PageRank algorithm [39], a key com-
ponent of their search engine, which attributes to a web page a rank essentially given
by the frequency with which a random walk hits the page in the long run. This fre-
quency is higher for pages with many incoming links and provides a measure of the
importance, or popularity, of a page.

Coreness The k-core of a network is its largest subgraph for which all vertex
degrees are at least k. With a suitable visualization technique, knowledge of k-core
decomposition of a network allows to highlight the best interconnected and the least
interconnected parts in a network. This can be done by showing the k-cores as suc-
cessive layers that go from highly connected at the center to less and less connected
towards the periphery in a radial fashion.

Average shortest paths We use weighted and unweighted shortest paths between
pairs of vertices. The average values of all two-point shortest paths in a graph give
an idea of the typical distances between nodes.

si =
∑

j∈N(i)

wij,

Y2(i) =
∑

j∈N(i)

(
wij

si

)2

.

381

1 3

Genetic Programming and Evolvable Machines (2020) 21:375–397

Clustering coefficient The clustering coefficient C(i) of a node i is defined as the
ratio between the e edges that actually exist between the k neighbors of i and the
number of possible edges between these nodes:

The clustering coefficient can be interpreted intuitively as the likelihood that two
of node i’s neighbors are also neighbors. The average clustering coefficient C̄ is the
average of C(i) over all N vertices in the graph G, i ∈ V(G) : C̄ = (1∕N)

∑N

i=1
C(i).

Degree, strength, and edge weight distribution functions These discrete distribu-
tions give, respectively, the frequency of a given node degree, node strength, or edge
weight in the network. These distributions are useful for evaluating whether they
are, for instance, homogeneous or heterogeneous, unimodal or multimodal.

3 Evolvability and robustness

Evolvability and robustness are two important notions related to the genotype–phe-
notype mapping. Evolvability describes the ability of generating novel phenotypes
in order to adapt to varying environments, while robustness refers to the resilience
of remaining intact in response to perturbations and changes. Early work on evolv-
ability [2, 3] in genetic programming was taken up in evolutionary biology [27, 40,
48, 50], and has since been further investigated in artificial evolutionary systems [2,
16, 21, 31] and is a prime example of “closing the feedback loop” between evolu-
tionary computation and evolutionary biology.

The relationship of evolvability and robustness may appear antagonistic, however
they have been shown correlated in both theoretical analyses [23, 49] and empirical
observations [6, 33]. Robustness results from the redundant genotype to phenotype
mapping, where changes to genotypes may not alter the phenotype. Thus, the evo-
lutionary system is resilient to genetic perturbations. These neutral mutations, more
importantly, provide an expansion in the genotypic space without being subject to
selection pressure, and enable reaching more novel phenotypes faster when the sys-
tem is actively adapting to a new environment.

Constructing the phenotype network provides a quantitative characterization of
evolvability and robustness in an evolutionary algorithm. Moreover, defining evolv-
ability and robustness at different levels of genotype, genotype, fitness, and system
helps elucidating their relationships. The robustness of a phenotype can be inferred
using its genotypic redundancy [49]. An over-represented phenotype is considered
robust to mutations since it has more encoding genotypes and random mutations to
them will less likely change the phenotype.

Using the framework of the phenotype network, various network-based meas-
urements have been proposed to quantify the evolvability of a phenotype, including
node degree [49], disparity [10], and centralities [20, 38]. These network measures
capture some aspects of phenotypic evolvability, i.e., starting from a specific pheno-
type, how easily can fitter phenotypes be reached? Both node degree and disparity

C(i) =
e
(
k

2

) =
2e

k(k − 1)
.

382 Genetic Programming and Evolvable Machines (2020) 21:375–397

1 3

are found incapable of predicting such an ability given that they only provide the
estimation of the direct neighborhood of a node, and fail to give long-term, multi-
hop predictions [23]. Centralities, on the other hand, are computed based on the
importance of a node that contributes to the global connectivity of the network, and
provide a better long-term estimation of reaching other phenotypes. The weighted
eigenvector centrality is found to have the best prediction power estimating the
evolvability of a phenotype [20]. However, there is still a considerable discrepancy
between the predicted and the observed quantities, and is found to be resulted by
the mutational bias led by robust genotypes. Specifically, more robust genotypes are
more likely to be visited through random mutations, therefore, they have a stronger
influence on directing the transition to other phenotypes [23]. Thus, future attempts
on quantifying the evolvability of a phenotype need to consider mutational connec-
tions both at the phenotypic and the genotypic levels. In this study, we further inves-
tigate the properties of the phenotype networks and relate them to previous findings
on evolvability and robustness.

4 Results

4.1 Sampled genotype space

When we decode the one billion randomly generated genotypes, we find that 17 of
the total 256 phenotypes are never sampled. The distribution of the genotypic redun-
dancy of the remaining 239 sampled phenotypes is highly heterogeneous, as shown
in Fig. 1. Moreover, due to the symmetry of Boolean relationships we see that many
phenotypes have the same genotypic redundancy.

The most over-represented phenotype is 0, i.e., FALSE, which has over 108 mil-
lion genotypes, while phenotype 255, i.e., TRUE, its symmetric counterpart, is the
second most abundant with over 93 million genotypes. The asymmetry in count is
due to the initialization of calculation registers, including the output register �

�
 , to

FALSE in all LGP programs prior to execution. In addition to the 17 phenotypes

Phenotype

G
en

ot
yp

ic
 re

du
nd

an
cy

0 50 100 150 200 250
100

102

104

106

108
a

Genotypic redundancy

Fr
eq

ue
nc

y

100 102 104 106 108

0

20

40

60

80
b

Fig. 1 a Scatter plot of and b distribution of the genotypic redundancy, in log scale, of sampled pheno-
types using one billion randomly generated LGP programs

383

1 3

Genetic Programming and Evolvable Machines (2020) 21:375–397

never sampled, under-represented phenotypes include 105, 231, 24, 219, 189, 36,
and 66, none of which has more than 40 sampled genotypic encodings.

4.2 Undirected and weighted phenotype network

Using the assembly of one million 1000-step random walkers, the mutational con-
nections among pairs of phenotypes can be approximated. 16 out of 256 phenotypes
are never encountered, i.e., they are neither sampled in the one million randomly
initialized walkers (programs), nor visited during the walks. These 16 phenotypes
are isolated nodes in the phenotype network, 15 of which belong to the 17 never-
sampled phenotypes discussed previously (Sect. 4.1). This also suggests that under-
represented phenotypes are hard to reach by random walks.

The remaining 240 phenotypes are connected to form one component of the net-
work, and there are 14,663 directly connected phenotype pairs, represented as edges,
in the network. This yields an average node degree of 122. The network has an aver-
age shortest path 1.5 and a diameter as short as 3, which means that any pair of
phenotypes can be reached from one to another by point mutations through no more
than 3 hops in the phenotype network. The clustering coefficient of the network is
high at 0.75; this is due to the fact that many nodes have neighbors that are them-
selves connected, giving rise to many closed triangles.

When we take a closer look at the distribution of mutational connections among
phenotype pairs i.e., distribution of edge weights, it appears highly heterogeneous
and ranges across orders of magnitude (Fig. 2a). The phenotype pair 0 and 255 has
the highest number of mutational connections (5,673,803), and 6513 pairs only have
one mutational connection. The distribution of these pairwise mutational connec-
tions is roughly monotonic, where the likelihood of having a greater number of con-
nections decreases.

The phenotypes become less connected if we use an edge weight cutoff to filter
out weakly connected edges. Figure 2b shows the number of nodes (excluding iso-
lated nodes) in the phenotype network in relation to the edge weight filter cutoff. For

Edge weight

Fr
eq

ue
nc

y

100 102 104 106 108

0

1000

2000

3000

4000
a

102 103 104 105 106

Edge weight cutoff

N
um

be
r o

f n
od

es

0

50

100

150

200

250
b

Fig. 2 a Distribution of the number of point mutations that can change one phenotype to another, i.e.,
edge weight in the phenotype network, and b the number of nodes (phenotypes) in the network using an
edge weight filter

384 Genetic Programming and Evolvable Machines (2020) 21:375–397

1 3

five different edge weight cutoffs, the network remains having only one connected
component, however, its size decreases as the cutoff increases. This means that
nodes are being detached from the largest component individually without forming a
second connected component.

Figure 3 shows a visualization of the weighted phenotype network using an edge
weight filter 105 . There are 72 nodes and 382 edges in this network. The size of
a node is proportional to the genotypic redundancy of its representing phenotype,
and the width of an edge is proportional to its weight. The graph layout puts nodes
with higher strengths in the center, and the two most central phenotypes are FALSE
(0) and TRUE (255). We see that genotypically over-represented phenotypes (larger
nodes) are more connected to others than under-represented ones.

Next, we show node properties and their correlations, as well as some global
structures of the phenotype network, analyzed using the network measures defined
in Sect. 2.4, in the following subsections.

4.2.1 Node properties and distributions

We look at a variety of node properties, including degree, strength, disparity, core-
ness, eigenvector centrality, and PageRank centrality (computed using � = 1), in
the phenotype network. Figure 4 shows the distributions of these node properties.
Phenotype 0 and 255 have the highest node degree of 236, and phenotypes 22 and
104 only have a degree of 2. Strength, being a generalization of degree for weighted
networks, has a shape that is qualitatively similar to the degree histogram, with a bi-
modal distribution.

The node disparity shows that most phenotypes have a low disparity, i.e., their
links tend to have similar weights, and the distribution decays quickly. The coreness
distribution shows that the majority of the phenotypes form a very dense core leav-
ing only few peripheral nodes. The weighted centralities of eigenvector and PageR-
ank share a very similar distribution. The majority of the nodes have similar and low
centrality values and only very few nodes have significant higher centrality.

4.2.2 Node property correlations

Next, we look at how node properties correlate with the genotypic redundancy of its
represented phenotype (see Fig. 5). Both degree and strength are strongly correlated
with genotypic redundancy with a linear-log and a log-log correlation coefficient
of r2 = 0.9642 (p < 10−16) and r2 = 0.9981 (p < 10−16) . This suggests that over-
represented phenotypes have more and stronger mutational connections to other
phenotypes.

The positive correlation between disparity and redundancy has a coefficient of
r2 = 0.3568 (p < 10−16) . Coreness and genotypic redundancy also have a positive
correlation. Please note that the maximal coreness value observed in the network is
95. Both eigenvector and PageRank centrality are positively correlated with geno-
typic redundancy, while only highly redundant phenotypes (with more than 106 rep-
resenting genotypes) have greater centrality values than the rest.

385

1 3

Genetic Programming and Evolvable Machines (2020) 21:375–397

Recall that a phenotype with a greater number of underlying genotypes is con-
sidered more robust. Degree, strength, disparity, and centralities have been pro-
posed in the literature as possible metrics to quantify evolvability. We find positive

168

2

1

95

213

42

80

12

51

245

191

48

204

205

112

200

241

143

238

251

171

15

63

239

119

85

127

32

5

17

55

253

3

31

187

160

254

240

0

192

136

207

234

16

243

224

223

247

87

84

76

179

19

248

128

64

10

250

68

252

170

255

236

221

7

34

175

14
4

50

21

8

Fig. 3 The undirected and weighted phenotype network of the LGP Boolean algorithm using an edge
weight filter > 105 . The network includes 72 nodes (phenotypes) and 382 edges (mutational connec-
tions), resulting in an average node degree of 10.6. A phenotype is named using the decimal value of
its 8-bit binary string. Node size is proportional to the genotypic redundancy of a phenotype, and edge
width is proportional to the number of mutational connections between two phenotypes. The graph is
visualized using software Cytoscape [45]

386 Genetic Programming and Evolvable Machines (2020) 21:375–397

1 3

correlations of all these network measures with genotypic redundancy. Our results
suggest that more robust phenotypes are also more evolvable, a correlation that con-
curs with observations from evolutionary biology.

4.2.3 Communities

Communities in a complex network can be loosely defined as clusters of nodes that
are more strongly linked among themselves than with the rest of the network. A
precise and unique definition cannot be given, which makes community detection
a hard and somewhat ill-defined task for which heuristic methods must be used.

Node degree

Fr
eq

ue
nc

y

0 50 100 150 200 250

0

5

10

15

20

25a

Node strength

Fr
eq

ue
nc

y

100 103 106 109

0

20

40

60

80b

Node disparity

Fr
eq

ue
nc

y

0 0.05 0.1 0.15 0.2

0

20

40

60

80
c

Node Coreness

Fr
eq

ue
nc

y

0 20 40 60 80 100

0

50

100

150d

Node eigenvector centrality (weighted)

Fr
eq

ue
nc

y

0.0 0.1 0.2 0.3 0.4 0.5

0

50

100

150

200e

Node PageRank centrality (weighted)

Fr
eq

ue
nc

y

0.00 0.02 0.04 0.06 0.08 0.10

0

50

100

150

200f

Fig. 4 Distribution of node a degree, b strength, c disparity, d coreness, e eigenvector centrality, and f
PageRank centrality in the undirected weighted phenotype network

387

1 3

Genetic Programming and Evolvable Machines (2020) 21:375–397

Nevertheless, several community detection algorithms have been proposed that
work well in practice.

Here we use the methods implemented in the igraph R package [12], which
also cover weighted networks. Before submitting our phenotype network G to a
community detection algorithm some manipulations are necessary. In fact, the
graph has a mean degree of about 122 which makes it a very dense network.
Community detection algorithms typically do not work well, or at all, on such
graphs. However, we note that edge weights in G span seven orders of magnitude
(see Fig. 2a), which means that many links are comparatively very weak. Thus
we have discarded weak network connections by cutting all edges with weights

Genotypic redundancy

D
eg

re
e

100 103 106 109

0

50

100

150

200

250a

Genotypic redundancy

S
tre

ng
th

100 103 106 109

100

103

106

109b

Genotypic redundancy

D
is

pa
rit

y

100 103 106 109

0.00

0.05

0.10

0.15c

Genotypic redundancy

C
or

en
es

s

100 103 106 109

0

20

40

60

80

100
d

Genotypic redundancy

E
ig

en
ve

ct
or

 c
en

tra
lit

y

100 103 106 109

0.0

0.1

0.2

0.3

0.4

0.5
e

Genotypic redundancy

P
ag

eR
an

k
ce

nt
ra

lit
y

100 103 106 109

0.00

0.02

0.04

0.06

0.08

0.10
f

Fig. 5 Node a degree, b strength, c disparity, d coreness, e eigenvector centrality, and f PageRank cen-
trality in relation to the genotypic redundancy of a phenotype

388 Genetic Programming and Evolvable Machines (2020) 21:375–397

1 3

below a threshold of wij < 105 . As a consequence, some of the original nodes
also become disconnected but we have ensured that all edges of the target pheno-
types are kept, especially for target node 180, which would have become isolated
otherwise, since all its edges have weights lower than the threshold. Community
detection algorithms usually determine a partition of the network node. These
partitions may overlap or not. Here we have used methods that produce a non-
overlapping partition.

Modularity is a measure that estimates the cohesiveness of a partition found
by a community detection algorithm with respect to a graph with the same degree
distribution but with edges placed at random [37]. The community partition found
with several community detection algorithms from igraph has a modularity value
of about two, which is not very high but still significantly different from random.
Figure 6a shows the communities found by the Louvain algorithm. It is important
to note that the small community to which vertex 180 belongs is almost always
found identically by all the different algorithms tried. Figure 6a clearly shows that
node 180, together with its neighbors belonging to the same community, appears
to be extremely difficult to reach, all the more taking into account that the intra-
community and extra-community edges are weak. On the other hand, phenotype
240 is at the intersection of two bigger and well connected communities and thus
it is intuitively reasonable that it should be easier to find.

The following Fig. 6b has been obtained with another community detection
method, the fastgreedy algorithm, which is also in the igraph library. As said
above, the results may differ because of the different constraints algorithms
impose on the community definition but, again, vertex 180 belongs to a small and
weakly connected cluster.

0

1

2

3

4

5

8
10

12

15

16 17

32

34

48

51

63

64
68

80

85
95

119

128

136160 170

180

192

204 238
240 250

252

255

254

7

19

21

14

42

175245

11

76

207

243

31

143

50

187

221

112

55

179127

19184

75

87

213

223

247

168

200

224

165

171

234

239

244

251

205236

253

241

248

a

01

2 3 4

5

7

8

10

11

12

13

14

15

16
17

19

21

32
34

35

42

48

49

50

51

63

64
68

6976

80 8184
8595

112

119
127

128
136

138

140

160

162

168 170
175

176

180

187

192

196

200

204 207

208

221

224

238
240 243

245
250

252
254
255

31

55

87

171
253

205

251
248

143

247

59

244

93

242

239

241

47 79

191
223

236

234

179

220

213

117

206

115

186

75

174

165

b

Fig. 6 Community structure of the edge-filtered undirected phenotypic network using two different parti-
tion algorithms (see text). In both figures, phenotype 180 clearly belongs to a small community that is
very weakly connected to the rest of the network, while phenotype 240 is located in the center of the
network and belongs to a larger and well connected community

389

1 3

Genetic Programming and Evolvable Machines (2020) 21:375–397

4.3 Directed phenotype networks

When a fitness is assigned to each phenotype based on its Hamming distance to the
target phenotype, the phenotype network becomes oriented since we only allow non-
deleterious point mutations. Note that we only consider simple graphs in the current
study, i.e., self-loops are excluded in our network analysis, in order to focus on the
mutational connections among distinct phenotypes.

4.3.1 In‑ and out‑degrees

A phenotype/node now has edges with two directions, pointing to its neighbors (out-
edges) and being pointed from its neighbors (in-edges). Subsequently, in-degree and
out-degree can be used to depict how many unique phenotypes can access or can be
reached from a reference phenotype.

We often consider the search for a target phenotype as being effective if follow-
ing fitter phenotypes will most likely lead to the target. That is, fitter phenotypes are
expected to have more in-edges to attract mutations while less fit phenotypes should
have more out-edges (see an example in Fig. 7).

Figure 8 shows the correlations of in- and out-degrees with the fitness of a phe-
notype in two directed phenotype networks with different targets. Using both targets,
in-degrees are negatively correlated with fitness while out-degrees are positively
correlated with fitness. Note that fitness is to be minimized. Phenotypes with better
fitness will have less edges going out but more edges coming in, i.e., fitter pheno-
types are easier to reach and harder to leave, which is intuitive and desirable since
we hope reaching fitter phenotypes will be more likely leading to the path to the
target. However, when we compare the correlations using different targets, it can
be seen that using a relatively harder target (i.e., phenotype 180) results in weaker
correlations of in-/out-degrees and fitness. This indicates that genotypically under-
represented targets are difficult to find partially because they render the guidance of
the fitness gradient less effective. That is, reaching fitter phenotypes at a current step
does not necessarily lead to better paths for finding the target.

Better

Worse

Fitness

Fig. 7 Fitness in relation to in- and out-degrees. Fitness can better guide the search for the target if phe-
notypes (circles) with better fitness have higher in-degrees and lower out-degrees comparing with worse
phenotypes

390 Genetic Programming and Evolvable Machines (2020) 21:375–397

1 3

4.3.2 Fitness correlation of neighboring phenotypes

Fitness correlation can give statistical information about the fitness assortativity of
neighboring nodes in the network. A practical way for evaluating fitness correlation is
given by the average fitness of neighbors f̄neighbor(i) of a node i

where fi is the fitness of phenotype/node i.
From this quantity one can compute the average fitness of the neighbors f̄neighbor(f)

for nodes of the phenotypic network having fitness value f which is a good approxima-
tion to the fitness-fitness correlation:

where Nf is the number of nodes with fitness f.

f̄neighbor(i) =
1

|N(i)|
∑

j∈N(i)

fj,

f̄neighbor(f) =
1

Nf

∑

i

f̄neighbor(i),

Fitness

In
 d

eg
re

e

0

50

100

150

200

a Network T240

Fitness

In
 d

eg
re

e

0

50

100

150

200

b Network T180

Fitness

O
ut

 d
eg

re
e

0

50

100

150

200

c

Fitness

O
ut

 d
eg

re
e

0 2 4 6 8 0 2 4 6 8

0 2 4 6 8 0 2 4 6 8

0

50

100

150

200
d

Fig. 8 Correlation of node in-degree (a, b) and out-degree (c, d) with fitness in the directed pheno-
type networks using an over-represented target 240 (a, c) and under-represented target 180 (b, d). In
a, b, the negative correlations are with a coefficient of R2 = 0.462 (p < 2.2 × 10−16), and R2 = 0.252
(p < 4.6 × 10−16), respectively. In c, d, the positive correlations are with a coefficient of R2 = 0.461
(p < 2.2 × 10−16), and R2 = 0.262 (p < 4.6 × 10−16), respectively

391

1 3

Genetic Programming and Evolvable Machines (2020) 21:375–397

Remembering that a low fitness value is better in our context, one can see from
Fig. 9 that the neighboring fitness correlations are quite different when different phe-
notypes are used as the search target. Specifically, when the over-represented phe-
notype 240 is set as the target (see Fig. 9a), the fitness values of neighboring phe-
notypes do not correlate, meaning that a phenotype can be connected to phenotypes
with any fitness values. However, as shown in Fig. 9b, when the target is under-
represented, a bad phenotype that has a fitness value greater than four tends to have
neighbors better than itself, while a good phenotype with a fitness value less than
four tends to have neighbors worse than itself.

4.4 Random walks and adaptive walks

4.4.1 Random walks

Although the GP system searches the genotype space and not the much smaller phe-
notype space, it is still interesting to simulate random walk search in the latter to
numerically confirm the above idea that some phenotypes are easy to find while oth-
ers are hard. Nevertheless, it is worth noting that walking in the phenotypic network
ignores the fact that it depends on the sampled genotypic space and thus may not
adequately represent the actual difficulty since many steps are abstracted into a sin-
gle step here and also depend on the sampling accuracy. Random walks on networks
are reviewed in [32]. In an unweighted network, the probability for going from node
i to node j is pij = aij∕ki , where ki is the degree of i and aij is the corresponding
entry in the graph adjacency matrix being 1 if nodes i and j are connected and 0
if they are not. The random walk we are interested in is biased, since edges of the
undirected phenotype network are weighted. So we have to modify the probabili-
ties accordingly, but the changes are minor: the transition probability from node i
to node j through an edge {ij} with weight wij ≥ 0 now becomes pij = wij∕si , where
si is the strength of node i and is defined as the sum of the weights of the edges
from i to its neighbors N(i) (see definitions in Sect. 2.4). These probabilities are well

Fitness

Av
er

ag
e

fit
ne

ss
 o

f n
ei

gh
bo

rs

0 2 4 6 8

3.0

3.5

4.0

4.5

5.0

a

Fitness

Av
er

ag
e

fit
ne

ss
 o

f n
ei

gh
bo

rs

0 2 4 6 8

3.0

3.5

4.0

4.5

5.0

b

Fig. 9 Average neighbor fitness versus node fitness in the phenotypic network with the target phenotype
a 240 and b 180

392 Genetic Programming and Evolvable Machines (2020) 21:375–397

1 3

behaved since a connected node must have a positive finite strength, pij ≥ 0 , and ∑
j∈N(i) pij = 1 and form the rows of the transition matrix �.
The stationary distribution �∗ of the random walks defined above can be found by

solving the eigenvalue equation �∗ = �∗� with an appropriate linear algebra algo-
rithm. However, for large matrices there might be numerical difficulties that require
specialized knowledge. Instead, here we shall follow a Monte Carlo simulation
approach which, while it is slower, is very simple and gives the same results in the
long time limit. It consists in performing a large number of random walk steps start-
ing from each network node and recording each time a given target node is encoun-
tered. If the number of random walk steps is large enough, the final frequency with
which the target has been hit will provide a very good approximation to its equilib-
rium occupancy probability.

For each of the two target phenotypes 180 and 240, we numerically simulate
biased random walks in the original unfiltered network starting from all network
nodes except the target nodes themselves. For each starting node we perform 105
random walk steps, for a total of (N − 1) × 105 = 237 × 105 steps. For each of the
phenotypes 180 and 240 we record the number of times it is found, i.e., the number
of hits, and the mean number of steps to the first hit, when the node is found.

Results are shown in Table 1. From the number of hits and the first hit times, it
is apparent that phenotype 180 is much harder to find than phenotype 240. Further-
more, if we exclude the first neighbors of the target node as starting nodes in the
random walk, it becomes even more difficult, comparatively, to find phenotype 180
(figures after the comma in Table 1). We can also see that phenotype 240 is very
often found directly from a starting node that is a first neighbor given that 240 has
223 neighbors while 180 only has 41 connections.

4.4.2 Adaptive walks

In contrast with random walks where fitness doesn’t play a role, adaptive walks can
be performed in a phenotype network when each phenotype is attributed a fitness
value. Adaptive walks can be defined in several ways [25] but given that the walk is
at a certain phenotype i at step t, the basic idea is to move to a neighboring node k at
step t + 1 , provided that the fitness of k is better than i’s fitness; if no neighbor has a
better fitness the walk terminates at i.

Our implementation of adaptive walks is somewhat different from the usual ones
as it takes into account the weight of the edge wij between phenotypes i and j. This is

Table 1 Average number of hits and first hitting times for random walks having nodes 180 and 240 as
targets. 237 × 105 random walks steps are performed in total

The figures after the commas refer to the same quantities when the first neighbors of nodes 180 and 240
are excluded as starting nodes for the walk

Target Phenotype 180 Target Phenotype 240

Number of hits 2, 0 97,465, 5862
First hitting time 910,306, – 10, 10

393

1 3

Genetic Programming and Evolvable Machines (2020) 21:375–397

because this weight stands for the number of single-point mutations that transform a
genotype belonging to phenotype i into a genotype for phenotype j in one step, and
thus represents the potential frequency of such a transition. Our algorithm for an
adaptive walk can be summarized as follows:

1. choose a starting node a and make it the current node current
2. sort the neighbors of current in decreasing order of their link weights and place

them in the list weights
3. if it exists, set current to the first node n in weights whose fitness f(n) is better

than f(current) and go to 2; otherwise stop

where 2 and 3 are repeated for a prefixed number of steps. This is a deterministic
algorithm that needs to be run only once for each starting node.

We applied the above algorithm to the directed and weighted networks of target
phenotypes 180 and 240. Those phenotypes are the single global optima of their
respective networks in terms of fitness. We did a first computational experiment
by starting an adaptive walk from each network node except the target phenotype
for each of 180 and 240 networks. The results were the following: target phenotype
180 was reached 27 times out of 237 adaptive walks. On the other hand, phenotype
240 was the end state of 39 out of 239 walks. We see that, even taking fitness into
account, 180 is more difficult to reach by hill-climbing than 240. At this point it has
to be noted that most phenotypes are degenerate local optima, i.e., there is more than
one phenotype having the same fitness at the end of an adaptive walk. By contrast,
the globally optimal phenotypes 180 and 240 are single.

We next did another numerical simulation, this time only using as starting nodes
those that have fitnesses above a certain level. Recall that the optimal fitness is zero
and the worst value is eight, i.e., the walk starts from a distribution of “worse” nodes
here, and so the walk in general requires a longer time to find its way to better fitness
nodes. Excluding all nodes whose fitness is lower than 5 as starting points for the
walks, phenotype 240 is reached 8 times, while 180 is hit only on three occasions.
Restricting the starting node set further to only those that have fitness 6 or higher
results in node 240 being reached three times and node 180 zero times. In conclu-
sion, even when there is fitness guidance in the search, phenotype 240 is always
easier to find than phenotype 180.

5 Discussion

The genotype–phenotype mapping plays an essential role in evolvability, since the
variations characterizing the search occur in the genotype space, but the quality or
behavior of a system can only be observed and evaluated at the phenotypic level.
We argue that some target phenotypes are more difficult to find than others, not only
because they are most likely under-represented in genotypic space, but also because
the mutational connections between phenotypes are altered through setting different
target phenotypes.

394 Genetic Programming and Evolvable Machines (2020) 21:375–397

1 3

In this study, we took a network approach and quantitatively analyzed the dis-
tribution of mutational connections among phenotypes and how this distribution is
changed with different phenotypes set as target. Using a Boolean LGP algorithm,
we sampled the genotypic and phenotypic spaces and constructed a phenotype net-
work to characterize the distribution of mutational connections among phenotypes.
By setting two different phenotypes as the target, one genotypically over-represented
and one under-represented, we compared the properties of the resulting directed,
weighted phenotype networks.

Similar to many GP systems, our Boolean LGP algorithm has a highly redun-
dant mapping from genotypes (6.4 × 1013) to phenotypes (256). Such redundancy
is heterogeneously distributed among phenotypes, with the most abundant pheno-
type possessing about 10% of the entire genotype space while some other pheno-
types never appeared in our samples. By examining the undirected, weighted phe-
notype network, we found that genotypically more abundant phenotypes have more
access to different phenotypes and more tendency to mutate into certain neighboring
phenotypes. These findings are in line with reported observations in evolutionary
biology, where the genotypic redundancy of a phenotype is often considered as its
robustness, and most robust phenotypes are often found more evolvable.

We chose two phenotypes, 180 and 240, as targets, and observed that in addition
to having considerably different degrees, 41 and 233, the two phenotypes have very
different community structures. This suggests that target 180 is much more difficult
to find, not only because it was connected to fewer neighbors, but also because it
is located in a small and distant community. It was also interesting to see that in
the directed phenotype network resulting from setting 180 as target, fitness was less
effective at guiding evolution, since fitness and in-/out-degree of a phenotype are
less correlated, i.e., reaching a fitter phenotype at a current step would not necessar-
ily lead to more promising paths to finding the target.

The search performance of an evolutionary algorithm can vary considerably with
different problem instances. Our study provides a quantitative investigation into this
issue using complex network analysis. That a specific target is hard to reach can
have multiple explanations: (1) the target is under-represented in genotypic space;
(2) the target is connected to only a few phenotypes in phenotypic space; (3) the
target belongs to a small community distant from the rest of the phenotypes in that
space; and (4) setting the target has wired the connections among phenotypes in a
way that renders following fitter phenotypes in order to reach the target a less effec-
tive strategy.

We hope our observations can be found useful to inspire more intelligent search
mechanisms that are able to overcome these challenges. For instance, can we use
network-based metrics to supplement fitness evaluation such that the search in the
genotypic space is better guided towards a genotypically under-represented and
weakly connected target? Is the genotype–phenotype map itself evolvable? Can we
evolve genotype–phenotype maps that allow finding rare phenotype targets more
easily?

Acknowledgements This research was supported by the Natural Sciences and Engineering Research
Council (NSERC) of Canada Discovery Grant RGPIN-2016-04699 to T.H., and the Koza Endowment

395

1 3

Genetic Programming and Evolvable Machines (2020) 21:375–397

fund provided to W.B. by Michigan State University and supported by its BEACON Center for the Study
of Evolution in Action.

References

 1. P. Alberch, From genes to phenotype: dynamical systems and evolvability. Genetica 84, 5–11
(1991)

 2. L. Altenberg, The evolution of evolvability in genetic programming, in Advances in Genetic Pro-
gramming, (MIT Press, Cambridge, MA, 1994), pp. 47–74

 3. L. Altenberg. Genome growth and the evolution of the genotype-phenotype map, in W. Banzhaf
and F. Eeckman, eds., Evolution and Biocomputation, volume 899 of Lecture Notes in Computer
Science. (Springer, 1995), pp. 205–259

 4. W. Banzhaf, Genotype–phenotype mapping and neutral variation—a case study in genetic pro-
gramming, in Parallel Problem Solving from Nature, volume of 866 Lecture Notes in Computer
Science, ed. by Y. Davidor, H.-P. Schwefel, R. Manner (Springer, Berlin, 1994), pp. 322–332

 5. A.-L. Barábasi, Network Science (Cambridge University Press, Cambridge, 2016)
 6. J.D. Bloom, S.T. Labthavikul, C.R. Otey, F.H. Arnold, Protein stability promotes evolvability.

Proc. Nat. Acad. Sci. 103(15), 5869–5874 (2006)
 7. M.F. Brameier, W. Banzhaf, Linear Genetic Programming (Springer, Berlin, 2007)
 8. P. Catalan, A. Wagner, S. Manrubia, J.A. Cuesta, Adding levels of complexity enhances robust-

ness and evolvability in a multilevel genotype–phenotype map. J. R. Soc. Interface. 15(138),
20170516 (2018)

 9. J. Clune, K.O. Stanley, R.T. Pennock, C. Ofria, On the performance of indirect encoding across
the continuum of regularity. IEEE Trans. Evolut. Comput. 15(3), 346–367 (2011)

 10. M.C. Cowperthwaite, E.P. Economo, W.R. Harcombe, E.L. Miller, L.A. Meyers, The ascent of
the abundant: how mutational networks constrain evolution. PLoS Comput. Biol. 4(7), e1000110
(2008)

 11. M.C. Cowperthwaite, L.A. Meyers, How mutational networks shape evolution: lessons from
RNA models. Annu. Rev. Ecol. Evol. Syst. 38, 203–230 (2007)

 12. G. Csardi, T. Nepusz, The igraph software package for complex network research. InterJ. Com-
plex Syst. 1695, 1–9 (2006)

 13. S. Cussat-Blanc, K. Harrington, W. Banzhaf, Artificial gene regulatory networks—a review.
Artif. lLfe 24(4), 296–328 (2019)

 14. E.H. Davidson, The Regulatory Genome: Gene Regulatory Networks in Development and Evolu-
tion (Elsevier, Amsterdam, 2010)

 15. J.A.G.M. de Visser, J. Krug, Empirical fitness landscapes and the predictability of evolution.
Nat. Rev. Genet. 15, 480–490 (2014)

 16. M. Ebner, M. Shackleton, R. Shipman, How neutral networks influence evolvability. Complexity
7(2), 19–33 (2002)

 17. A. Fontana, Epigenetic tracking: biological implications, in European Conference on Artificial
Life, (Springer, 2009), pp. 10–17

 18. E. Galvan-Lopez, R. Poli, An empirical investigation of how and why neutrality affects evolu-
tionary search, in M. Cattolico, ed., Proceedings of the Genetic and Evolutionary Computation
Conference, (2006), pp. 1149–1156

 19. T. Hu, W. Banzhaf, Neutrality and variability: Two sides of evolvability in linear genetic pro-
gramming, in Proceedings of the 18th Genetic and Evolutionary Computation Conference
(GECCO), (2009), pp. 963–970

 20. T. Hu, W. Banzhaf, Quantitative analysis of evolvability using vertex centralities in pheno-
type network, in Proceedings of the 25th Genetic and Evolutionary Computation Conference
(GECCO), (2016), pp. 733–740

 21. T. Hu, W. Banzhaf, Neutrality, robustness, and evolvability in genetic programming, in R. Riolo,
B. Worzel, B. Goldman, B. Tozier, eds., Genetic Programming Theory and Practice XIV, chap-
ter 7, (Springer, 2018), pp. 101–117

396 Genetic Programming and Evolvable Machines (2020) 21:375–397

1 3

 22. T. Hu, W. Banzhaf, J.H. Moore, The effect of recombination on phenotypic exploration and
robustness in evolution. Artif. Life 20(4), 457–470 (2014)

 23. T. Hu, J. Payne, W. Banzhaf, J.H. Moore, Evolutionary dynamics on multiple scales: a quantita-
tive analysis of the interplay between genotype, phenotype, and fitness in linear genetic program-
ming. Genet. Program. Evolv. Mach. 13(3), 305–337 (2012)

 24. T. Hu, M. Tomassini, W. Banzhaf, Complex network analysis of a genetic programming phe-
notype network, in Proceedings of the 22nd European Conference on Genetic Programming
(EuroGP), volume 11451 of Lecture Notes in Computer Science, (2019), pp. 49–63

 25. S. Kauffman, S. Levin, Towards a general theory of adaptive walks on rugged landscapes. J.
Theor. Biol. 128(1), 11–45 (1987)

 26. D.B. Kell, Genotype-phenotype mapping: genes as computer programs. Trends Genet. 18(11),
555–559 (2002)

 27. M. Kirschner, J. Gerhart, Evolvability. Proc. Natl. Acad. Sci. 95, 8420–8427 (1998)
 28. M. Kirschner, J.C. Gerhart, The Plausibility of Life: Resolving Darwin’s Dilemma (Yale Univer-

sity Press, New Haven, 2006)
 29. J. D. Knowles, R. A. Watson, On the utility of redundant encodings in mutation-based evolution-

ary search, in Parallel Problem Solving from Nature—PPSN VII, volume 2439 of Lecture Notes
in Computer Science, (2002), pp. 88–98

 30. J.R. Koza, D. Andre, M.A. Keane, F.H. Bennett III, Genetic Programming III: Darwinian Inven-
tion and Problem Solving, vol. 3 (Morgan Kaufmann, Burlington, 1999)

 31. R.E. Lenski, J.E. Barrick, C. Ofria, Balancing robustness and evolvability. PLoS Biol. 4(12),
e428 (2006)

 32. N. Masuda, M.A. Porter, R. Lambiotte, Random walk and diffusion in networks. Phys. Rep. 716,
1–58 (2017)

 33. R.C. McBride, C.B. Ogbunugafor, P.E. Turner, Robustness promotes evolvability of thermotoler-
ance in an RNA virus. BMC Evolut. Biol. 8, 231 (2008)

 34. J.F. Miller, W. Banzhaf, Evolving the program for a cell: From French flags to Boolean circuits,
in On Growth, Form and Computers, ed. by S. Kumar, P. Bentley (Academic, New York, 2003),
pp. 278–301

 35. M.E.J. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2018)
 36. M.E.J. Newman, R. Engelhardt, Effects of selective neutrality on the evolution of molecular spe-

cies. Proc. R. Soc. B 265(1403), 1333–1338 (1998)
 37. M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys.

Rev. E 69, 026113 (2004)
 38. K. L. Nickerson, Y. Chen, F. Wang, T. Hu, Measuring evolvability and accessibility using the

Hyperlink-Induced Topic Search algorithm, in Proceedings of the 27th Genetic and Evolutionary
Computation Conference (GECCO), (2018), pp. 1175–1182

 39. L. Page, S. Brin, R. Motwani, T. Winograd, The pagerank citation ranking: Bringing order to the
web Technical report, Stanford InfoLab (1999)

 40. J.L. Payne, A. Wagner, The causes of evolvability and their evolution. Nat. Rev. Genet. 20,
24–38 (2019)

 41. R. Rezazadegan, C. Barrett, C. Reidys, Multiplicity of phenotypes and RNA evolution. J. Theo-
ret. Biol. 447, 139–146 (2018)

 42. F. Rothlauf, D.E. Goldberg, Redundant representations in evolutionary computation. Evolut.
Comput. 11(4), 381–415 (2003)

 43. S. Schaper, A.A. Louis, The arrival of the frequent: how bias in genotype–phenotype maps can
steer populations to local optima. PLoS One 9(2), e86635 (2014)

 44. P. Schuster, W. Fontana, P .F. Stadler, I .L. Hofacker, From sequences to shapes and back: a case
study in RNA secondary structures. Proc. R. Soc. Lond. Ser. B Biol. Sci. 255(1344), 279–284
(1994)

 45. P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski,
T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction
networks. Genome Res. 13, 2498–2504 (2003)

 46. T. Smith, P. Husbands, M. O’Shea, Neutral networks and evolvability with complex genotype-
phenotype mapping, in J. Kelemen, P. Sosik, eds., Proceedings of the European Conference on
Artificial Life, volume 2159 of Lecture Notes in Artificial Intelligence, (Springer-Verlag, 2001),
pp. 272–281

397

1 3

Genetic Programming and Evolvable Machines (2020) 21:375–397

 47. E. van Nimwegen, J.P. Crutchfield, M.A. Huynen, Neutral evolution of mutational robustness.
Proc. Natl. Acad. Sci. 96(17), 9716–9720 (1999)

 48. A. Wagner, Robustness, evolvability, and neutrality. Fed. Eur. Biochem. Soc. Lett. 579(8), 1772–
1778 (2005)

 49. A. Wagner, Robustness and evolvability: a paradox resolved. Proc. R. Soc. B 275(1630), 91–100
(2008)

 50. G.P. Wagner, L. Altenberg, Perspective: Complex adaptations and the evolution of evolvability.
Evolution 50(3), 967–976 (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Ting Hu1,2 · Marco Tomassini3 · Wolfgang Banzhaf4

 Marco Tomassini
 marco.tomassini@unil.ch

 Wolfgang Banzhaf
 banzhafw@msu.edu

1 School of Computing, Queen’s University, Kingston, ON, Canada
2 Department of Computer Science, Memorial University, St. John’s, NL, Canada
3 Faculty of Business and Economics, Information Systems Department, University of Lausanne,

Lausanne, Switzerland
4 Department of Computer Science and Engineering, and BEACON Center, Michigan State

University, East Lansing, MI, USA

http://orcid.org/0000-0001-6382-0602

	A network perspective on genotype–phenotype mapping in genetic programming
	Abstract
	1 Introduction
	2 Methods
	2.1 A Boolean linear genetic programming algorithm
	2.2 Genotype, phenotype, and fitness
	2.3 Phenotype network
	2.4 Complex network analysis

	3 Evolvability and robustness
	4 Results
	4.1 Sampled genotype space
	4.2 Undirected and weighted phenotype network
	4.2.1 Node properties and distributions
	4.2.2 Node property correlations
	4.2.3 Communities

	4.3 Directed phenotype networks
	4.3.1 In- and out-degrees
	4.3.2 Fitness correlation of neighboring phenotypes

	4.4 Random walks and adaptive walks
	4.4.1 Random walks
	4.4.2 Adaptive walks

	5 Discussion
	Acknowledgements
	References

