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Abstract

The importance of digital data compression in
the future media arena cannot be overestimated.
A novel approach to data compression is built on
Genetic Programming. This technique has been
referred to as ”programmatic compression”. In
this paper we apply a variant of programmatic
compression to the compression of bitmap images
and sampled digital sound. The work presented
here constitutes the first successful result of ge-
netic programming applied to compression of real
full size images and sound. A compiling genetic
programming system is used for efficiency reas-
ons. Different related issues are discussed, such
as the handling of very large fitness case sets.

1 Introduction

Programmatic compression is a very general form of com-
pression. The basic idea behind this technique is that any
system, which evolves programs or algorithms for gener-
ating data, can be viewed as a data compression sys-
tem. The data that should be compressed are presented
to the Genetic Programming system as fitness cases for
symbolic regression. After choosing a function set that
facilitates an accurate reproduction of the uncompressed
data, the system then tries to evolve an individual pro-
gram that, to a certain degree of precision, outputs the
uncompressed data. If the evolved program solution can
be expressed by fewer bits than the target data, then
we have achieved a compression. In principle, this tech-
nique could address any compression problem with an
appropriate choice of the function set and the method
has a potential for both lossy and lossless compression.
The initial studies performed by Koza [1]in the domain
of very small bitmap images displays the difficulty of
the problem and the huge computational effort needed
for real world examples. We have applied a Compiling
Genetic Programming System (CGPS) to the program-
matic compression problem. A CGPS is up to 2000 times
faster than a LISP Genetic Programming System (GPS)
[5],16], which enables the application of programmatic
compression to real-world problems.

1.1 Compiling Genetic Programming

A CGPS is a GP system where all genetic manipula-
tion of individuals is performed in binary machine code.
Almost all computers today are of Von Neumann type,
which means that programs and data reside in the same
memory. Program information can thus be regarded as
just another sort of data structure and it can be ma-
nipulated as any other data, in this case by the genetic
operators. This arrangement enables the deletion of all
interpreting steps, which results in a speed up of up to
2000 times compared to a LISP system, and 100 times
compared to an interpreting C implementation. Some
experiments described below consumed 10 CPU-days of
execution. This kind of experiments would not be feas-
ible with other types of GPSs. A LISP version of such an
experiment could take more than 50 years while an inter-
preting C version still would need two years of execution
time. These compression examples thus are real-life ex-
periments and research, only feasible with a CGPS. For
a more detailed description of the CGPS and comparison
with other implementation methods, see [5],[6],[8].

2 Programmatic Compression (PC)

Programmatic image compression is briefly mentioned in
[1]. Koza uses the 900 pixel values of a small 30x30 bit-
map of a regular mathematical pattern as fitness cases
for symbolic regression by a GPS. The system finds a
good solution in less than 100 generations with a gener-
ation size of 2000 individuals and a function set consist-
ing of arithmetic operators. This method has an import-
ant relation to the theoretically maximal compression
achievable. If a Turing-complete function set is used then
the shortest program that accurately produces the target
data could be seen as one estimation of the Kolmogorov
Complexity [3] which opens possibilities of a deeper the-
oretical analysis of the application. The GPS has at least
the potential of finding this shortest possible compression
of the data.

In our work we have used two real-world applications
which both call for the use of very large fitness case sets.
In the experiments described below we apply program-
matic compression to bitmap images and sampled sound.
The large potential of these two fields in the growing di-



gital media arena cannot be overestimated.

We examine the compression in several different ways
for instance with different function sets, fitness evalu-
ation methods and parameter settings.

The majority of experiments were performed with a
simple function set consisting of the most usual low level
machine code operations such as arithmetic and logic
operations. It is surprising that the most efficient search
runs were performed using these machine instructions as
the function set, regardless of application. These res-
ults strongly support the universal applicability of GP.
Sometimes critique has been heard that GP only would
manage to solve different problems because there was a
specially adapted function set corresponding to the prob-
lem domain. In most of our runs we have used a function
set that is not decided by us but by the manufacturer of
a certain computer. The same set of operators was used
for the completely different domains of sound and im-
ages, suggesting that it is not the choice of function set
that is primarily responsible for the success of GP.

The advantage of programmatic compression is the
large flexibility possible with a programming language
as output of a compression process. This flexibility im-
plies a possible larger compression factor sometimes ap-
proaching the theoretical limit. The use of machine code
instructions makes decompression very fast. The decom-
pression algorithm is simply a small and efficient binary
machine code program. Decompression rates of 150 mil-
lion bits/second per processor are sometimes possible on
a SUN 20. This figure definitely exceeds the demand of,
for instance, real-time full size video.

Another advantageous feature of the system is that
each element of the target data (sample or pixel) can be
accessed independently of the values of other elements.
For instance, a sample with a certain index number can
be obtained without the need to calculate the values of
samples before and after that index number.

2.1 Chunking

The simplest and most obvious method to be applied
when using PC is to present the target data as a con-
tinuous sequence of fitness cases. The evolved program
then tries to reproduce the entire list of data when ex-
ecuted. While uncomplicated and elegant, this method
has some disadvantages when used with very large fit-
ness case sets. If the target data are very complex, there
is a risk that an evolutionary search will not converge
to a solution with acceptable quality. It is also harder
to predict how many generations are needed before a
solution is found. Therefore, we have used two different
systems applied to each of the two domains sound and
images. The first system treats all the fitness cases at the
same time. The other system applies programmatic com-
pression to equally sized sub-sets of the fitness cases and
evolves a solution to each of them. Below we refer to this

method as chunking. A time limit is imposed on each of
the chunks which keeps the overall conversion time under
control. The disadvantage of chunking is that the com-
pression ratio could be lower since similarities between
chunks will not be expressed in the individuals.

Chunking for sound is done by letting a CGPS evolve a
solution for a fixed size sample chunk typically below the
resolution time of the ear (70ms). In the Image domain
the pictures were divided into small quadratic blocks,
8x8 or 16x16 pixels each.

The system was in this way presented with fitness case
sets of sizes from 32 to 100000 integers. The largest
fitness case set corresponded to 10 seconds of sound or a
256x256x8bit pixel image.

2.1.1

Two methods for long term GP-memory

In order to speed up the search in the chunked data
approach two different “memory methods” were intro-
duced. The first method kepi? the entire generation
between chunks which speeded up the search when sim-
ilar chunks were adjacent. The second method made a
few individuals “read-only” in every generation. They
could take part in reproduction and crossover but only
as parents. They were never allowed to be over-written
by any offspring. For every generation, less than 10 in-
dividual were frozen, to help maintain diversity and to
save valuable genetic code for future chunks. The second
method has the advantage that genetic information can
be reused between non-adjacent chunks. In this way,
the GPS is given an association capability that enables
it to use knowledge obtained from a similar problem
earlier in time. The results of this experiments show
that these mechanisms can save considerable amounts of
search time while the best solutions found tend to con-
verge to a slightly worse fitness. The tradeoff between
search time and quality makes the method worth further
investigation.

2.1.2  Multi-level Compression

When this method is used in practice it is advisable to
compress the resulting machine code segments further.
In most experiments only half of 32 bits in the instruc-
tions were used in the programs, the rest of the instruc-
tions did not have any relevance in a CGPS. This sug-
gests that the instructions in the result can be further
compressed by a factor of two. In addition the resulting
“16-bit instructions” can be ordered according to their
frequency and then Huffman-coded. This method will
have only a marginal effect on the overall decompression
speed, because decompression of programs only has to
be performed once per chunk.

Note that introns will be removed before packing the
programes. The introns will be identified with the
method described in [2].



3 Compression of Sound

Our first experiments with PC concerns sound generat-
ing programs. The difficulty in generating and predicting
large and complex time series has previous been repor-
ted by Oakley [4]. In this case, the time series consists
of sampled sound. The data are produced by the built
in sampler in a SUN workstation, which produces sound
samples with 8 bit resolution and 8kHz sampling fre-
quency. A recording of a one second sound, is thus 8000
bytes long and corresponds to 8000 fitness cases for the
CGPS.

3.1 Sound Generating Program architectures

There are several program architectures possible for indi-
viduals for time series problems. The first obvious indi-
vidual structure is a function without inputs that has the
ability to store values as side-effects. The individual is
placed in a loop, the variables initialized to zero and then
output of the program only depends on what is stored
by the program in these variables during the cycles of
the loop. The variables can be accessed as a stack, as
fixed variables or as index memory. In a similar way
the individual can be directly fed by its previous output.
A different approach is to feed the individual programs
with the index number of the fitness case and expect
it to compute the output only from this index number.
A combination of side effects and index number is also
possible. Other architectures of the individuals are also
possible. The individual could also be fed with recent
fitness case output, but most of these methods are not
suitable for efficient compression, because you have to
supply output values. This method, however can be used
for time series prediction into the near future. Table 1
summarizes the parameters used during training.

Of these approaches the index version without side-
effects gave the best results during evolution of sound.
An integer is thus given as input to the individual pro-
gram and the output is taken to be a single sound sample.
The integer index is subsequently incremented and fed
to the same individual, which then produces the next
sample. In its simplest case, the fitness is just the sum of
the absolute values of the differences between the actual
sound samples and generated samples. There are many
other methods to establish fitness values and as we have
experienced, they can have a considerable impact on the
quality of the evolved results.

3.2  Fitness measurements

Oakley has previously reported the importance of choos-
ing an appropriate fitness measurement when evolving
a chaotic and oscillating target function [4]. He ob-
served that when fitness was measured as the difference

Terminal set : Integers 0-8192
ADD, SUB, MUL, SHL,
SHR, XOR, OR, AND

desired value

Function set :

Maximum population size : 100 - 100000
Crossover Prob : 90%
Mutation Prob : 5%

Tournament Selection
16-1024

Selection :
Maximum number of nodes:

Table 1: Summary of parameters used during training.
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Figure 1: Adaption of generated sound to target sound
(GP output is dotted)

between the target output and the actual output, the
system would only converge to a constant output. The
constant output represented the mean value of the target
function. When we used the fitness measure of absolute
value of differences, we noticed that for many initial gen-
erations, sometimes more than 100, the system displayed
this behavior. However, a constant value is not of much
use when the target is to evolve a sound. In the long
run though the system always converged to a more ac-
curate, oscillating output. Figure 3.2 shows the output
of a program after the oscillation in the output has been
adapted to a close fit of the target samples'. The original
sound in this case is a sampled two-tone door bell. We
can here see, how the output represented by the dotted
line shows a very good adaption to the target function’s
frequency, amplitude and phase. A view of the entire
sample also shows an adaption to the envelope, that is
the long term changes in amplitude. However, the wave-
form in the output is simplified to a square wave. This
behavior seemed hard to change by changing the para-
meters and varying the function set. When we changed
the fitness function to the squared difference instead of
the absolute value of the difference the result changed
significantly. Not only did the convergence to an os-

1This figure, like most figures below, shows an excerpt of a
longer sequence of samples. The details of the wave form of the
full sequence is rather irregular, which might explain some irreg-
ularities in the output. It is impossible to show the full sequence
in one diagram. If the training sequence was restricted to only the
short sample spaces shown in the figures an even closer convergence
would have been expected.



cillating output happen earlier, but the resulting curve
also displayed much more details. We also tried fitness
differences raised to three and raised to four without sig-
nificantly better results. The crucial point could be that
non-linearity is needed.

The results with the squared error both looked and
sounded much better, but the details of the waveform in
the generated output lacked the extreme peaks of the
target sample. To increase the selection pressure to-
wards accurately reproducing these pointed features we
tried with a difference between two adjacent points as
the fitness value. This fitness measure did not work well
when adopted alone but when it was in a weighted sum
with the normal absolute value fitness it displayed a more
pointed behavior.

All of the fitness methods above have the disadvantage
that they do not take into account the way the ear per-
ceives sound. The output can look quite similar to the
samples and there could still be a lot of audible distor-
tion. The evolved sounds often had metallic overtones
and sometimes noise added to it. To some extent this
could probably be filtered out with a filter similar to an
anti-aliasing filter, but the fact remains that there is a
difference between looking similar and sounding similar.

The human inner ear could be considered to perform
a transformation similar to a Fourier transform of the
This is the reason why we perceive
tones and not quickly changing sequences of pressure
variations. This mechanic Fourier transform is neces-
sary because the ’clock frequency’ of the brain is not
fast enough to process sound directly.

sound we hear.

Another fitness measurement would thus be a com-
parison with the Fourier transformed spectra of the gen-
erated samples and the target functions. Oakley [4]
used Fourier transforms as a means to force the system
away from local minima of constant output. Our system
showed oscillation without the Fourier transform but we
instead applied it to improve sound quality by aligning
fitness function judgment of the output with that of the
human ear.

We thus implemented a fast Fourier transform (FFT)
taking real-valued data and transforming them into the
frequency domain represented by complex numbers. Fit-
ness is measured as the squared difference between the
transform of output and the transform of the target
samples. Both the real and imaginary part of the trans-
form were separately taken into account by the fitness
function in order to assure that the phase of the output
was treated appropriately.

The sound produced by the FFT fitness system was
audibly better. The CPU time needed for this system
was about twice that of the system without FFT, which
was reasonable considering the quality improvement.

When FFT is applied in the fitness function then the
exact amplitude of the curve is less important, instead
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Figure 2: FFT spectrum of the sample(GP output is

dotted)

features that influence the overtones of the system are
dominating. Figure 3.2 shows the spectrum of the same
sample. An external function in a CGPS is a function
that is not part of the processor’s instruction set and has
to be used by a call instruction. Any C-function can be
linked to the system and used as an external function.
The function set in the experiments presented above was
eight low-level machine code instructions: addition, sub-
traction, multiplication, shift left, shift right, logical and,
logical or and logical exclusive or.

Different experiments where also performed with the use
of side effects in functions. The programs were given
the possibility to store values in memory between the
processing of the samples. In the extreme case the in-
dividual was not provided with an index number for
the sample that should be generated instead the indi-
vidual had to do its own book keeping with the use of
memory variables. These programs took longer time to
evolve and performed worse in fitness but had a softer
sound with less overtones. Side effects were introduced as
Save/Restore functions,the Swap function and indexed
memory of different sizes.

The first reflection over sound generating programs is
that it would be advantageous to use functions related
to oscillation in the function set. We therefore tried to
use the sinus function directly in the function set as well
as functions that are components of a discrete differential
equation for oscillation and thus together could produce
a variety of different curves. To our surprise did none of
these functions perform better than the individuals built
with the simple machine code building blocks.
Automatically defined subfunctions (ADF's) [2] were also
used without significantly improving results.

3.3 FEvolving Large Samples Sequences

As mentioned above two methods were tried for evol-
ution of large samples sequences. The simple linear
method that tried to evolve the sample with one indi-
vidual proved insufficient for large and complex sound.
This method also had the disadvantage that its con-
vergence behavior and evolution time requirements were



Figure 3: Target bitmap with fast evolution

hard to predict. It was possible to evolve the frequency,
amplitude, phase, envelop and, to some extent, the wave
form of a 16.000 samples sound lasting two seconds, if
the sound was regular. However, to evolve changes in
frequency in a sample, turned out to be harder. We
succeeded to generate two different tones, that change
at a specific point in the sample frequency, but we did
not have any good results with more complex sounds.
The more random output from earlier generations some-
times expressed complex melodies, but it did not evolve
such melodies corresponding to a specific fitness case
set. Even more complex sounds, like spoken words were
impossible to mimic with this linear method and with
sample length of audible size.

The solution we use instead for evolution of longer and
more complex sounds is chunking. The sample sequence
is divided into equally sized sequences and the CGPS in
then applied to each chunk in turn. The chunk size is
chosen so that the length of a chunk is below the resolu-
tion of the human ear. Pulses that come faster than 70ms
are perceived as tones and not individual pulses. The fact
that the evolved sound always is in phase assures that the
sound pieces fit together well in the joint of two chunks.
With this method it is possible to evolve complex sound
lasting for a longer time. We have for instance evolved
human speech with an understandable quality. Melodies
of 100000 samples have also been evolved. In future work
we would like to investigate the possibility of evolving the
division points between chunks allowing for adaptive and
varying chunk lengths.

3.4  Results

Compression ratios vary much depending on the regular-
ity of the target sound. For regular sound the compres-
sion ratio can easily be 10 times or more, while the ratio
for speech is around two times. The quality is still below
telephone quality but we will in the future investigate
several methods to improve it.

Figure 4: An example of output from the programmatic
compression system

The CPU time for generating a ten second chunked
sample is in the range of tens of hours on a SUN 20.

4 Compression of Pictures

Our system for programmatic compression of images
bears many similarities with the sound compressing sys-
tem. Instead of trying to evolve a one dimensional array
of samples we here try to evolve a two dimensional array
of pixels. In our experiments every pixel holds 8 bits of
information. In the experiments we have used gray scale
images because of the technically more complex handling
of color in the display palette. The technique is however
equally applicable to color pictures and to pictures with
more than 8 bit quantification, i.e. 24 bit color. The out-
put of the evolved individuals consists of eight bit num-
bers. If very fast decompression is required, it is possible
to use the full 32 integer bits of the architecture. In this
way more bits per second can be decompressed.

4.1 Program architecture

Basically the same method is used for images and sound.
As a first method an individual is fed by the X and Y
coordinates of the pixel and the output is interpreted as
the value of the pixel. However a simpler method proved
to give better results. Instead of supplying both the X
and Y coordinates to the programs, we supplied a one
dimensional index value of the pixel.

Chunking is a must when working with realistically
sized images. In our experiments we have used pic-
tures consisting of 256x256 pixel which were divided into
squares of either 16x16 or 8x8 pixel. The definitely best
results were achieved with 8x8 pixel blocks. This size
corresponds to the size used by several other image com-
pression techniques such as JPEG [9]. Different methods
for side effect were also used, and unlike the sound ex-
ample the pictures had a slightly better quality when the
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Figure 5: The target bitmap

programs also had access to a small set of memory cells.

Figure 4.1 shows an example of an evolved image that
used figure 4.1 as target data. Figure 3.2 shows a quickly
(one hour) evolved picture with lower quality .

4.2 Fitness functions

Different fitness measurements were also applied, and
similar to the sound domain, the squared error differ-
ences gave better results than the absolute value.

In future work we would like to use two dimensional
FFT in the fitness function, as well as functions measur-
ing differences between adjacent pixels in several direc-
tions.

The blocks of chunking are visible to a varying degree
in the decompressed pictures. By incorporating the dif-
ferences in color around the edges of blocks into the fit-
ness function we hope to reduce this effect. We will also
try different conventional smoothing techniques used i.e.
with JPEG for the same purpose.

The CPU times for compressing a picture in our ex-
periments on a SUN20 are in the range of 30 minutes
to 10 days depending on the requested quality and com-
pression ratio.

5 Summary and Conclusion

We have described experiments that have shown that
programmatic compression can be used with other than
toy problems in both the image and sound domain.

With these compression experiments we have demon-
strated that GP can be used with very large fitness case
sets if a compiling approach is applied. Some of our
experimental runs have evaluated hundreds of billions
of fitness cases, something that would take years on an
interpreting GP system. The machine code approach
provides for very fast decompression suitable even for
the demand of real time full size video.
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