Genetic Reasoning

Evolving Proofs with Genetic Search

Peter Nordin and Wolfgang Banzhaf
Universitat Dortmund
Fachbereich Informatik
Lehrstuhl fir Systemanalyse
D—44221 Dortmund
Germany
nordin,banzhaf@ls11.informatik.uni-dortmund.de

Abstract

Most automated reasoning systems rely on hu-
man knowledge or heuristics to guide the reas-
oning or search for proofs. We have evaluated
the use of a powerful general search algorithm to
search in the space of mathematical proofs. In
our approach, automated reasoning is seen as an
instance of automated programming. The proof
is a program executing functions that correspond
to rules of inference. It transforms a statement
into an axiom. Genetic programming is the tech-
nique we use for automated programming. We
show how such a system can be used to evolve
mathematical proofs. The domain of application
is arithmetics and register machine program veri-
fication.

Keywords: Genetic Programming, Automated Reasoning,

Theorem Proving

1 Introduction

We present an approach to reasoning that uses a genetic
search heuristics to navigate and search in the space of
true statements. An algorithm inspired by natural selec-
tion is used to search for proofs.

To use a genetic process as the architecture for men-
tally related activities could, at first, be considered
strange. As far as we know today, genetic information
processing is not directly involved in information pro-
cessing in brains, though the idea of genetics as a model
of mental processes is not new. William James, the
father of American psychology, argued just 15 years after
Darwin published The Origin of Species, in 1874, that
mental processes could operate in a Darwinian manner
(William James 1890). He suggested that ideas ”com-
pete” with one another in the brain, leaving only the best
or fittest. Just as Darwinian evolution shaped a better

brain in a couple of million years, a similar Darwinian
process operating within the brain might shape intelli-
gent solutions to problems on the time scale of thought
and action. This allows ”our thoughts to die instead of
ourselves”.

Genetic Programming (GP) (Koza 1992) uses the
mechanisms behind natural selection for ewvolution of
computer programs. This application contrasts with
other evolutionary algorithms which often optimize
real numbers or vectors of real numbers. GP dif-
fers from other evolutionary techniques and other “soft-
computing” techniques in that it produces symbolic in-
formation (i.e. computer programs) as output. It can
also process symbolic information as input very efhi-
ciently. Despite this unique strength GP has so far been
applied mostly in the numerical and Boolean problem
domains. In this paper we exploit GP’s strength in pro-
cessing purely symbolic information through search in
the domain of proofs.

Genetic Programming is a method for automated pro-
gramming. A formal proof of a statement could be seen
as a computer program and a theorem prover could be
considered as an application of automated programming.
The proof program is a list of inference functions trans-
forming a statement into an axiom or into a statement
known to be false, i.e. a contradiction. Rules of inference
are considered here as functions from theorems to the-
orems or from statements to statements. The inference
rules are rules that match part of a formula and rewrite
it as something equivalent or equally true. To give an
example, the formula X 4 0 could be replaced by X, as
one of the axioms of Peano arithmetic tells us. This rule
describes a function from one statement to another. In
the same way, the reverse is true and X could be replaced
by X + 0 through another function.)

The simplest form of a theorem prover systematically
applies rules of inference in order to construct all possible
valid logical deductions. Pioneering Al research tried



this approach already in the 1950s, notably with the Lo-
gic Theory Machine of Alan Newell and Herbert Simon
(Newell, Shaw and Simon 1957). In practice, however,
such a method could only find very short proofs. Com-
binatorial explosion would quickly exhaust all computer
resources.

Different and more efficient variants of representation
and search have been introduced later, like the resolu-
tion method pioneered by Robinson in the early 1960s
(Robinson 1965), see also (Bundy 1983). These meth-
ods were adapted more to machine reasoning than to
human reasoning, hence their implementions were more
efficient. Still they needed to be governed by strategies
and heuristics that optimized the order in which clauses
were resolved. Resolution theorem provers help against
the combinatorial explosion but they cannot eliminate
it altogether. As a consequence, they are only able to
produce proofs of modest length.

The disappointment with some of these reasoning sys-
tems lead to the conclusion that more human knowledge
needs to be put into the reasoning process, or, as Bledsoe

has put it (Bledsoe 1977):

The word “knowledge” is a key to much of this
modern theorem-proving. Somehow we want to
use the knowledge accumulated by humans over
the last few thousand years, to help direct the
search for proofs.

This knowledge is included as heuristics, weights and pri-
orities in a theorem proving system. If the system is an
interactive theorem prover it can have its heuristics mod-
ified by a human during execution. Regarding search al-
gorithm, most systems rely on a hill-climbing algorithm,
on back-tracking or a best-first heuristics (Winker and
Wos 1978).

In our research we investigate a different approach. In-
stead of using heuristics that is explicitly added to guide
the search process, we apply a powerful and robust gen-
eral search algorithm, ”Genetic Reasoning”. We hypo-
thesize that the robustness of a genetic search process
could free the reasoning system from the burden of car-
rying specialized heuristics. The search could then be
more autonomous and act more “intelligently” by pro-
ducing solutions which require less a-priori knowledge.

2 Genetic Reasoning

In order to apply GP to reasoning and automated the-
orem proving (ATP) we need to choose an appropriate
fitness function, a function set and a theorem represent-
ation. In this paper, our goal is to handle statements
about arithmetics in a logic as powerful as first order
logic.

The function set is made up of functions represent-
ing rules of inference. One such function could be the
rule X 4+ 0 can be replaced by X 7. All functions we
use are unary functions — they take one statement as
input and produce an equivalent statement as output.
This means that the tree representation of individuals in
GP collapses into a linear list representation’ and that
recombination will exchange linear segments of genomes
as seen in Figure 1.

The actual statement to be proven ”true” or ”false” is
represented by a tree. Universal quantification is indic-
ated by leaving variables free. Existential quantification
is represented by a Skolem function, as is common in sev-
eral approaches to ATP. The natural numbers are built
into our system in the form of the zero (0) symbol and
the successor function. Figure 2 shows, how a (false)
statement such as 3 = 2 4+ 0 would be represented.

The inference functions in the genome are then applied
in turn to this structure. After all inference functions
have been applied, i.e. after the individual program has
terminated, the result is another tree structure repres-
enting an equivalent statement. Let us say that we call
the rule ”X 4+ 0 can be replaced by X” funcy. If this
function is part of the genome it will try to match a sub-
tree in the statement and, provided it finds a match, will
replace it with X as shown in Figure 3.

In Figure 3 the function matches a sub-tree in the
statement and the statement can be transformed. With
this transformation the size of the statement structure
is reduced. There exists, however, an equal number of
functions in the function set that increase the size of the
structure. If a function does not matches any sub-tree in
the statement then it is not executed and the structure is
left untouched. This procedure provides syntactic clos-
ure and also gives the opportunity of temporary storage
of unused material in the genome. We call this unused
genetic material tntrons. As we have discussed elsewhere,
it may play an important role in the efficiency of genetic
search (Nordin and Banzhaf 1995a), (Nordin, Francone
and Banzhaf 1995).

2.1 The Fitness Function

The fitness function in our genetic reasoning system is
very simple. It is just the number of nodes in the state-
ment structure (cf. Figure 2). The two simplest and
shortest statements are the Boolean constants t and f|
each represented by only one node. These truth values
are short hand for an axiom or a contradiction, respect-
ively. So the genetic system will try to simplify any ex-
pression down to a statement of either “true” or ”false”,
represented by the nodes t and f that carry highest fit-

INote that in this application the genome structure is linear
while the fitness case input is a tree structure. It is sometimes the
other way around in other GP applications.



Genetic Reasoning
linear genome

Parents

Figure 1: Crossover in Genetic Reasoning.

Figure 2: Representation of the statement 3 = 2 + 0.

ness values.

Genetic search has been proven to perform well and
robustly in a wide variety of highly multi-modal search
domains where local optima can trap local hill-climbing
approaches easily. So, the pressure towards simplifying a
statement does not mean that the system will try to con-
stantly shorten the structure. Instead, the population of
solution candidates helps to avoid local optima. Fur-
thermore, the selection criterion does not monotonically
select the best individuals from generation to generation.
Rather, it probabilistically reproduces individuals with a
large variation in fitness.

The logic of the genetic reasoning system is similar to
that of the automated reasoning system Nqthm (Boyer
and More 1979). It is a quantifier-free, first-order lo-
gic with equality. The rules of inference are taken from
propositional logic and the equality. Mathematical in-
duction is an important part of the system.

Functions defining all Boolean and arithmetic opera-

tions (A,V ,= ,—) are built-in. The Boolean constants t
and f representing an axiom or a contradiction, respect-
ively, are also built-in. There are if-then-else functions
as well as equality. Natural numbers and arithmetics
are defined by the Peano axioms and the symmetry re-
lation. It is possible to add functions defining abstract
data types and lemmas to support a specific application.
In the register machine example below axioms describing
this fictional processor are added.

2.2 The Evolutionary Algorithm and its Imple-
mentation

In principle, it is possible to use any variant of GP as
the basis for Genetic Reasoning. We have used a steady-
state variant with tournament selection. The size of the
population has been between 100 — 1000 individuals.

The GP system is implemented on a SUN-20 in PRO-



func_1

Figure 3: Application of funcy to the statement 3 =2 + 0.

LOG. The built-in features of PROLOG, such as pattern
matching and list handling, simplify the implementation
significantly.

3 Results

Our reasoning system has so far been applied to two dif-
ferent domains: proving simple statements in arithmet-
ics and reasoning about, for instance, halting of machine
code programs. Both these applications rely to a great
extent on mathematical induction as the proof method.
The examples exclude that the proof can be obtained by
simplification only. The system could not just hill-climb
towards a solution. Instead, various steps of expansion
are needed on the way, to be able to finally reach a con-
stant false or true statement. These expansions are not
defined by a lemma or heuristics but have to result from
the genetic search process.

3.1 Arithmetic Problems

The arithmetic problems that we started our evaluation
with were selected using two criteria. The statement
should be hard to prove without induction and it should
be impossible to prove by just transforming it to shorter
statements. The induction principle might in itself re-
quire proofs that cannot be obtained by monotonic trans-
formations and reductions. A typical statement used is:
?There is no natural number bigger than 3, that if added
2 to it, 1s equal to 4.” This statement is represented by
the tree structure in Figure 4.

This kind of a statement can be proven (true) with
a few hundred generation equivalents and a population
size of 200 individuals. This calculation takes about 10
minutes on our SPARC-20.

3.2 Termination Proofs of a Program for a Re-
gister Machine

A register machine is a machine which operates with in-
structions that manipulate a limited set of registers. All
CPUs in commercial computers are register machines.
The axioms defining the processor and the current pro-
gram of the processor are added to the system. We
use the genetic reasoning system to determine the cor-
rectness of machine code programs, which often means
to prove termination of the program. This approach
demonstrates one of the strengths of the genetic reason-
ing system because termination proofs almost exclusively
require induction to be part of the system.

The machine code application is slightly more complex
than pure arithmetic statements and the verification of
a short program of 2 tol0 instructions takes about one
hour on a SPARC-20 with a population size of 1000 in-
dividuals.

Correctness proofs for programs have many applica-
tions, for instance data security, high robustness in pro-
grams (e.g., satellite technology), or simplification of ma-
chine code programs (Boyer and Yu 1992), to name a few.
However, GP is often accused of producing non-robust
solutions. A reasoning system could judge evolved solu-
tions to prove whether they are complete or not. The
procedure resembles that of a human programmer who
first might put together a program solution almost by
intuition. Then he would study the solution and reason
whether it will really hold for all inputs. If this is ensured
he would check whether the solution could be simplified.

Termination proofs could also be used with a normal
GP system in order to detect infinite loops in individual
programs during evolution. Normally, a few hundred
generation equivalents have been needed to reach the
true and false constants in our program verification ex-



Figure 4: An example statement representation.

periments.

4 Future Work

In our experiments we have concentrated so far on the
problem of proving a theorem. We are, however, con-
vinced that the genetic reasoning method has applica-
tions in other areas of reasoning and machine learning,
such as planning in robotics. We would like to continue
and to extend our robot experiments on the Khepera
robot platform (Nordin and Banzhaf 1995b) with the
application of genetic reasoning.

We also plan to port the system to C which will result
in an acceleration by a factor of 100. This would allow
us to try more difficult problems using larger population
sizes.

5 Summary and Conclusions

We have demonstrated that automated reasoning could
be seen as an instance of automated programming. In
this spirit we a have evaluated the use of a robust genetic
search algorithm to search the space of proofs. The sys-
tem has been able to avoid local minima in its search and
has found proofs of statements from complex domains
such as arithmetics and program verification. The sys-
tem does not use heuristics or human knowledge to guide
its search. Instead, it relies on the performance of the
search algorithm. We believe that this technique will
have applications in many automated reasoning and ma-
chine learning domains.

Acknowledgement

Thanks to Steffo Weber for invaluable advice in the
process of writing this paper. We would also like to
thank Tom Haynes for giving us pointers to his experi-
ments with GP and theorem proving (Knight and Haynes
1994). One of us (P.N.) acknowledges support by a grant
from the Deutsche Forschungsgemeinschaft (DFG) under
contract Ba 1042/5-1.

References

[1] James, W. (1890) The principles of psychology Vol.1.
Originally published: Henry Holt, New York.

[2] Koza, J. (1992) Genetic Programming. MIT Press, Cam-
bridge, MA

[3] Newell, A., Shaw, J.C. and Simon, H. (1957) Empir-
ical Explorations of the Logic Theorem Machine: A case
study in Heuristic. In Proceedings of Western Joint Com-
puter Conference Vol. 15.

[4] Robinson, J.A. (1965) A Machine Oriented Logic Based
on the Resolution Principle. In J. ACM, Vol. 12, No. 1,
pp- 23-41.

[5] Bundy, A. (1983) The Computer Modeling of Mathem-
atical Reasoning, Academic Press, London

[6] Bledsoe, W. W. (1977) Non-Resolution Theorem Prov-
ing. In Artificial Intelligence, Vol. 9, pp 2-3.

[7] Winker, S. and Wos, L. (1978) Automated Genera-
tion of Models and Counterexamples and its applica-
tion to Open Questions in Ternary Boolean Algebra. In
Proceedings of 8th international symposium Multiple-
Valued Logic, Rosemont, Ill., IEEE and ACM, New
York, pp. 251-256.



(8]

[10]

[11]

[12]

Nordin, J.P. and Banzhaf, W. (1995a) Complexity Com-
pression and Evolution. In Proceedings of Sixth Inter-
national Conference of Genetic Algorithms, Pittsburgh,
1995. L. Eshelman (ed.). Morgan Kaufmann, San Mateo,
CA

Nordin, J.P., Francone, F. and Banzhaf, W. (1995) Ex-
plicitly Defined Introns in Genetic Programming. In Ad-
vances in Genetic Programming I1. P. Angeline, K. Kin-

near (Eds.). MIT Press, Cambridge, MA

Nordin, J.P. and Banzhaf, W. (1995b) Controlling an
Autonomous Robot with Genetic Programming. In 1996
AAAIT fall symposium on Genetic Programming. MIT,
Cambridge, MA

Boyer, R.S. and Yu, Y. (1992) Automated Correctness
Proofs of Machine Code Programs for a Commercial
Microprocessor. In Automated Deduction - CADE-11.
Kapur D. (Ed), pp. 416-430.

Knight, L. and Haynes, T. (1994) A GP Theorem Prover.
Technical Report CS 7213, University of Tulsa.



