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ABSTRACT
Self-Modifying Cartesian Genetic Programming (SMCGP)
is a form of genetic programming that integrates developmental
(self-modifying) features as a genotype-phenotype mapping.
This paper asks: Is it possible to evolve a learning algorithm
using SMCGP?

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning; I.2 [Artificial In-
telligence]: Automatic Programming

General Terms
Algorithms

Keywords
Developmental systems, genetic programming

1. INTRODUCTION
In natural evolution the notion of time plays an important,

if not essential role. At a low level, information stored long-
term in DNA is transcribed into messenger RNA, a process
that is controlled by time-dependent transcription control
that in itself requires time. RNA is subsequently subject to
numerous time-dependent process before being translated
into proteins which themselves have a finite lifetime. At a
higher level, time dependent networks of gene-protein inter-
actions take place and these patterns of activity characterize
and cause the differentiation cells into different types. At a
higher level still, in multicellular development, cells replicate
and differentiate in ways that depend on time and their en-
vironmental surroundings. Moving a few levels still higher,
neurons adjust and form new connections over time, in re-
sponse to their own internal communications and to external
environmental signals, a process that leads to learning. In
artificial neural networks, learning often occurs through a
time independent algorithm which adjusts the strengths of
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connections (weights). This approach is used even if evolu-
tionary algorithms control the adjustment of weights. How-
ever, natural evolution does not work in this way, instead
evolution operates at the very much lower level of genetic
code and learning in organisms is an emergent consequence
of many underlying processes and interactions with an exter-
nal environment. The essential point here is that all learning
occurs in the lifetime of the organism, a fact recently em-
phasized in [4, 5]. From the point of view of this paper, the
key point is that evolution has invented learning algorithms
(inasmuch as physical learning processes can be simulated
by algorithms). In our view, the term ‘development’ means
that there is a genotype-phenotype mapping that unfolds
over time.

Previously we proposed a developmental mapping in the
context of Cartesian Genetic Programming (CGP) by in-
troducing self-modification (SM) [3]. However, as far as
we can tell it was Spector and Stoffel who first introduced
self-modification into genetic programming (GP) [8]. Self-
modification functions are functions that carry out simple
computations but also act as instructions to alter the phe-
notype. This approach to computational development (i.e.
by augmenting a GP function set with SM functions) has a
distinct advantage, in that the phenotypes are automatically
computational entities. This means that the computational
advantage of development can be assessed in a unified way
and arbitrary additional mappings do not have to be devised
to go from a phenotype to a computation (i.e. mapping a
arrangement of cells to a computation). Another advan-
tage is that if a problem does not require a time-dependent
solution, it can automatically be achieved through the com-
plete removal of SM instructions (i.e. the phenotype can
shut down its own development). Recently, the efficiency
of SMCGP has been shown to surpass CGP on a number
of problems: generating a Fibonnaci sequence, a sequence
of squares, sum of all inputs and a power function [1]. In
addition, SMCGP has been shown to be able to find general
solutions to parity [2] a problem that cannot be solved with
CGP (since it has a bounded genotype).

In this paper, we show how SMCGP can invent a learning
algorithm. We do this by evolving a genotype which, when
developed and iterated with an error signal, can learn any
desired two-input Boolean function. We have devised the
problem so that the evolved program cannot generate all two
input Boolean functions in one program, instead it learns
purely through an error signal how to become the desired
function.
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2. DEMONSTRATING THE
ABILITY TO LEARN

Our aim is to demonstrate that we can evolve programs
that have the ability to learn post evolution. This implies
that we must be sure that changes in the behaviour (i.e.
learning) happen only at run time and are not resident some-
how in the genotype (i.e. directly discovered by evolution).
To show that it is possible to evolve a learning algorithm,
means that it is necessary to untangle the contribution to
solving a problem that derives from each of the components
(evolution, learning and development).

Unfortunately, it is not possible to just implement a frame-
work that could allow for learning and then consider the end
fitness score on an arbitrary task. To clarify this, consider
the following scenario where the task is to evolve the con-
troller for a soccer playing robot, with the intention that it
can learn to play soccer at run time. The hope being that
the robot gets better at playing over time when the evolved
program is executed.

If it is observed that (after evolution) the player gets bet-
ter the more games it plays, there are at least two possible
reasons. It may be because the evolved player is learning
soccer, and that a successful learning algorithm has been
evolved. However, it may just be because the program is
time dependent (perhaps the speed of the robot is a func-
tion of time). Here, the program may look like it is learning
- but it is not.

It may be possible to prevent evolution from being the
learning mechanism by testing the evolved program on a
number of different problems. But does the ability to gener-
alize reduce the chance that the learning is occurring at run
time or during evolution? If a learning algorithm is evolved,
it may be expected that it should be able to learn problems
not seen during evolution.

However, just because something can learn to do one thing
(e.g. sing in a girl band) does not mean that it can learn
to do something else (e.g. act). So, perhaps even if a pro-
gram is learning certain problems, our unseen learning ex-
amples may not be learnable to that particular program.
Alternatively, it however is likely that learning to do things
that are similar, or at least have some over lapping skills,
(such as learning both piano and violin) are linked. There
is an intuition here that a learning system should be able to
learn more than one task - especially when they are similar.
Therefore, under some circumstances, the ability to solve (or
not) unseen problems is evidence of learning at run time.

Another possible way to determine where the problem
solving ability comes from is to inspect the genotype and
the phenotype. From this it may be possible to deduce the
learning algorithm or even reverse engineer it. However,
evolved programs are often convoluted and hard for a hu-
man to understand.

These observations indicate that designing a suitable fit-
ness task for evolving a learning algorithm is difficult. To
address many of these issues we have formulated a learn-
ing problem where the phenotype must learn a truth table
(two-input) using the two Boolean inputs and an error sig-
nal. We are searching for a program that can modify itself
so that it can correctly output any two-input Boolean func-
tion. We emphasize that we are not looking for a program
that can output one two-input Boolean function (this is triv-
ial) but rather a program that is capable of becoming any

of the 16 possible two-input Boolean functions when pre-
sented with an error signal. The program we are looking
for cannot merely encode a function that output the correct
response for all two input Boolean functions simultaneously
as we present each problem separately. So it must utilize
the error signal. Thus we are trying to evolve a learning
algorithm itself rather than a fixed function. As far as we
are aware this problem has not been formulated before in
the GP literature.

The type of learning we are investigating is similar in some
ways to that investigated in artificial neural networks. How-
ever, in our approach, primitive functions can be any com-
putational functions and our programs can alter their own
topology and functionality at run time. The SMCGP ap-
proach is very general and neural networks could be seen as
a special case.

3. SELF MODIFYING CGP

3.1 Cartesian Genetic Programming (CGP)
Cartesian Genetic Programming is a graph-based repre-

sentation of programs [7]. Graphs are attractive data struc-
tures because of they allow multiple paths between nodes
(as opposed to trees) so that sub-functions can be re-used.
In CGP, the genotype is a fixed-length representation and
consists of a list of integers which encode the function and
connections of each node in a directed graph.

CGP uses a genotype-phenotype mapping that does not
require all of the nodes to be connected to each other, re-
sulting in a bounded variable length phenotype. This allows
areas of the genotype to be inactive and have no influence
on the phenotype, leading to a neutral effect on genotype
fitness called neutrality. This type of neutrality has been
investigated in detail [7, 10, 11] and found to be extremely
beneficial to the evolutionary process on the problems stud-
ied.

Figure 1: Conceptual view of SMCGP. The geno-
type maps directly to the initial graph of the phe-
notype. The genes control the number, type and
connectivity of each of the nodes. The phenotype
graph is then iterated to perform computation and
produce subsequent graphs.

3.2 SMCGP
As in CGP, in SMCGP each node in the directed graph

represents a particular function and is encoded by a number
of genes. The first gene encodes the function of the node.
This is followed by a number of connection genes (as in
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CGP) that indicate the location in the graph where the node
takes its inputs from. However SMCGP also has three real-
valued genes which encode parameters that may be required
for the function (primarily SM functions use these and in
many cases they are truncated to integers when necessary,
see later). It also has a binary gene that indicates if the
node should be used as an output. In this paper all nodes
take two inputs, hence each node is specified by seven genes.
An example genotype is shown in Figure 1.

As in CGP, nodes take their inputs in a feed-forward man-
ner from either the output of a previous node or from a pro-
gram input (terminal). The actual number of inputs to a
node is dictated by the arity of its function. However, unlike
previous implementations of CGP, we use relative address-
ing in which connection genes specify how many nodes back
in the graph they are connected to. Hence, if the connec-
tion gene is 1 it means that the node will connect to the
previous node in the list, if the gene has value 2 then the
node connects 2 nodes back and so on. All such genes are
constrained to be greater than 0, to avoid nodes referring
directly or indirectly to themselves.

If a gene specifies a connection pointing outside of the
graph, i.e. with a larger relative address than there are
nodes to connect to, then this is treated as connecting to zero
value. Inputs arise in the graph through special functions.
This is described in section 3.3.

This encoding is demonstrated visually in Figure 2. The
relative addressing allows sub-graphs to be placed or dupli-
cated in the graph (through SM operations) whilst retaining
their semantic validity. This means that sub-graphs could
represent the same sub-function, but acting on different in-
puts.

Section 5.1 details the available functions and any associ-
ated parameters.

3.3 Inputs and outputs
If connection genes address nodes beyond the start of the

graph they return false (or 0 for non-binary versions of SM-
CGP). Inputs are acquired to programs through the use of
special node functions, that we call INP. These are used in
the following way. The leftmost INP node outputs the first
program input, each successive INP node gets the next input
from the available set of inputs. If the INP node is called
more times than there are inputs, the counting starts from
the beginning again, and the first node is used.

Outputs are handled in a slightly different way than in-
puts. Each SMCGP node has a binary gene that defines if
the phenotype should attempt to use that node as a program
output. When an individual is evaluated, the first stage is to
identify the nodes in the graph that have their output gene
set to 1. Once these are found, the graph can be evaluated
from each of these nodes in a recursive manner.

If no nodes are flagged as outputs, the last n nodes in the
graph are used. If there are more nodes flagged as outputs
than are required, then the leftmost nodes that have flagged
outputs are used until the required number of outputs is
reached. If there are fewer nodes in the graph than required
outputs, the individual is deemed to be corrupt and it is not
evaluated (it is given a bad fitness score to ensure that it is
not selected for).

3.4 Evaluation of the SMCGP graph
The outline of the process of evaluating a genotype is as

follows. The initial phenotype is a copy of the genotype.

This graph is then executed, and if there are any modifica-
tions to be made, they alter the phenotype graph.

The genotype is invariant during the entire evaluation of
the individual as perform all modifications on the phenotype
beginning with a copy of the genotype. In subsequent itera-
tions, the phenotype will usually gradually diverge from the
genotype.

The encoded graph is executed in the same manner as
standard CGP, but with changes to allow for self-modification.
The graph is executed by recursion, starting from the out-
put nodes down through the functions, to the input nodes.
In this way, nodes that are unconnected are not processed
and do not affect the behavior of the graph at that stage.

For function nodes (e.g. AND, OR, XOR) the output
value is the result of the mathematical operation on input
values.

Each active (non-junk) graph manipulation function (start-
ing on the leftmost node of the graph) is added to a “To Do”
list of pending modifications. After each iteration, the “To
Do” list is parsed, and all manipulations are performed (pro-
vided they do not exceed the number of operations specified
in the user defined “To Do” list length). The parsing is done
in order of the instructions being appended to the list, i.e.
first in is first to be executed.

The length of the list can be limited as manipulations
are relatively computationally expensive to perform. Here
we limit the length to just 2 instructions. All graph ma-
nipulation functions use extra genes as parameters. This is
described in section 5.1.

4. EVOLUTIONARY ALGORITHM
AND PARAMETERS

We use an (1+4) evolutionary strategy for the experiments
in this paper. This has been shown to be an effective evolu-
tionary algorithm in CGP [7]. However, the initial popula-
tion consists of 50 random individuals. We then select the
best individual and generate four offspring. We test these
new individuals, and use the best of these to generate the
next population. During initial experiments, it was observed
that the length of the phenotype became extremely long and
that this would hinder understanding the programs. Selec-
tion was therefore modified to select the shorter of two phe-
notypes for individuals with the same fitness.

We have used a relatively high (for CGP) mutation rate of
0.1. This means that each gene has a probability of 0.1 of be-
ing mutated. SMCGP, like normal CGP, allows for different
mutation rates to affect different parts of the genotype (for
example functions and connections could have different mu-
tation rates). In these experiments, for simplicity, we chose
to make all the rates the same. Mutations for the function
type and relative addresses themselves are unbiased; a gene
can be mutated to any other valid value.

For the real-valued genes, the mutation operator can choose
to randomize the value (with probability 0.1) or add noise
(normally distributed, sigma 20). The evolutionary param-
eters we have used have not been optimized in any way,
so we expect to find much better values through empirical
investigations.

Evolution is limited to 10,000,000 evaluations. Trials that
fail to find a solution in this time are considered to have
failed. It is important to note we are not evolving a function
but a learning algorithm (a SMCGP program) capable of
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Figure 2: Example program execution. Showing the DUP(licate) operator being activated, and inserting a
copy of a section of the graph (itself and a neighboring functions on either side) elsewhere in the graph in
next iteration. Each node is labeled with a function, the relative address of the nodes to connect to and the
parameters for the function (see Section 3.4).

self-adapting to be any two-input Boolean function. Since
this problem has not been investigated before we do not
know how difficult a problem this is, but our experience in
using SMCGP on other problems indicates that it does have
a high level of difficulty.

These evolutionary parameter values have not been opti-
mized.

5. FUNCTION SET
The function set is defined in two parts. The computa-

tional operations as defined in table 1. The other part is the
set of modification operators. These are common to all data
types used in SMCGP.

5.1 Definition of Modification Functions
The self-modifying genotype (and phenotype) nodes con-

tain three double precision numbers, called “parameters”.
In the following discussion we denote these P0,P1,P2. We
denote the integer position of the node in the phenotype
graph that contained the self modifying function (i.e. the
leftmost node is position 0), by x. In the definitions of the
SM functions we often need to refer to the values taken by
node connection genes (which are all relative addresses). We
denote the jth connection gene on node at position i, by cij .
There are several rules that decide how addresses and pa-
rameters are treated:

• When Pi are added to the x, the result is treated as
an integer.

• Address indexes are corrected if they are not within
bounds. Addresses below 0 are treated as 0. Addresses
that reach beyond the end of the graph are truncated
to the graph length.

• Start and end indexes are sorted into ascending order
(if appropriate).

• Operations that are redundant (e.g. copying 0 nodes)
are ignored, however they are taken into account in
the ToDo list length.

The functions (with the short-hand name) are defined as
follows:

Duplicate and scale addresses (DU4) Starting from posi-
tion (P0 + x) copy (P1) nodes and insert after the node at
position (P0 +x + P1). During the copy, cij of copied nodes
are multiplied by P2.

Shift Connections (SHIFTCONNECTION) Starting at node
index (P0 + x), add P2 to the values of the cij of next P1.

ShiftByMultConnections (MULTCONNECTION) Starting
at node index (P0 + x), multiply the cij of the next P1 nodes
by P2.

Move (MOV) Move the nodes between (P0 +x) and (P0 +
x + P1) and insert after (P0 + x + P2).

Duplication (DUP) Copy the nodes between (P0 +x) and
(P0 + x + P1) and insert after (P0 + x + P2).

DuplicatePreservingConnections (DU3) Copy the nodes
between (P0 + x) and (P0 + x + P1) and insert after (P0 +
x+P2). When copying, this function modifies the cij of the
copied nodes so that they continue to point to the original
nodes.

Delete (DEL) Delete the nodes between (P0+x) and (P0+
x + P1).

Add (ADD) Add P1 new random nodes after (P0 + x).
Change Function (CHF) Change the function of node P0

to the function associated with P1.
Change Connection (CHC) Change the (P1mod3)th con-

nection of node P0 to P2.
Change Parameter (CHP) Change the (P1mod3)th pa-

rameter of node P0 to P2.
Overwrite (OVR) Copy the nodes between (P0 + x) and

(P0 + x + P1) to position (P0 + x + P2), replacing existing
nodes in the target position.

Copy To Stop (COPYTOSTOP) Copy from x to the next
“COPYTOSTOP” function node, “STOP” node or the end
of the graph. Nodes are inserted at the position the operator
stops at.

6. FITNESS FUNCTION
The evolved SMCGP programs operate on floating point

numbers (C� doubles). The function set is shown in table 1.
Each program is tested on its ability to learn a number

of different problems: 2-input truth tables. Each of the
sixteen 2-input truth tables is mapped to a numeric table in
which true is replaced with 1.0 and false by -1.0. Each of
the 16 phenotype program derived from the genotype has to
independently give the correct outputs for each of the four
rows in the table it has been assigned to. If the real valued
program outputs a number that is less than zero we say it
has output false, otherwise we say it outputs true.

Each table is referred to by the number represented by its
binary string output (i.e. table 0 outputs all zero. table 3
outputs 0011 etc).
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Function name Description

No operation (NOP) Passes through the first input.
Add, Subtract, Multiply, Divide
(DADD, DSUB, DMULT, DDIV)

Performs the relevant mathematical operation on the two inputs.

Const (CONST) Returns a numeric constant as defined in parameter P0.
Average (AVG) Returns the average of the two inputs.
Node index (INDX) Returns the index of the current node. 0 being the first node.
Input count (INCOUNT) Returns the number of program inputs.
Min, Max (MIN, MAX) Returns the minimum/maximum of the two inputs.

Table 1: Numeric and other functions.

The fitness function tests only 12 of the 16 programs to
see if they can learn a different truth table. The remaining
4 tables, tables 1, 6, 11, and 12 are reserved for testing
generality (the validation stage). The tables were chosen so
that the expected outputs of the training and validation sets
both contained 50% of TRUE bits.

The fitness score is the sum of the error of the output for
each truth table. We refer to each truth table as a test set.
A row in a truth table is a test case.

Figure 3 illustrates the process. The evolved genotype
(a) is copied into phenotype space (b) where it can be ex-
ecuted. The phenotype is allowed to develop for a number
of iterations (c). This is defined by a special gene in the
genotype. Copies of the developed phenotype are made (d)
and each copy is assigned a different truth table to learn.
The test set data is applied (e) as described in the following
section. After learning (f) the phenotype can now be tested,
and its fitness found. During (f), the individual is treated
as a static individual - and is no longer allowed to modify
itself. This fixed program is then tested for accuracy, and
its fitness used as a component in the final fitness score of
that individual.

An error is calculated for each test set, with the fitness
for the individual being the sum of the errors of all the test
sets. Hence, a lower fitness value is better.

6.1 Presenting the data to the evolved learner
During the fitness evaluation stage, a truth table is pre-

sented to a copy of the evolved phenotype (Figure 3.e). The
algorithm for that presents the data to the learning algo-
rithm is:

For each row in truth table:

Repeat 10 times:

Apply row of truth table and

last error to evolved program.

Iterate program, and get output.

Calculate error.

Execute self modification

operators (‘ToDo’ list).

If the error for that row is 0

then break.

7. DISCUSSION OF THE
FITNESS FUNCTION

The fitness function (described in section 6) aims to ad-
dress some of the issues discussed in section 2. For example:

The evolved program is tested on its ability to learn a num-
ber of different, yet related problems. Each truth table per-
forms a different computation, however they are all taken

from the same ‘set’ of problems. Each truth table also has
other tables that are very similar (e.g. 1 bit difference in
the output, or the outputs are simply the inverse of another
tables.)

The task itself is simple for a human. It is therefore hoped
that the evolved programs are relatively easy to understand
(but of course this is not guaranteed).

There are unseen problems from the same, related set that
can be tried. The fitness function breaks the full set of truth
tables into two parts (learning and validation), it is therefore
possible to see if the algorithm can generalize. Importantly,
the problems are related and therefore it would be expected
that generalization is possible. We do not test for gener-
alization on an unrelated problem e.g. a robot control or
game playing, where generalization would be unlikely.

However, there are still some potential problems with the
approach:

The evolved program may cheat. It may discover a pro-
gram that based on the error can pick between evolved so-
lutions to each of the problem. In other words, the learning
may be some form of genetic memory. However, the geno-
type used here contains only 20 nodes. It is hoped that
rather than attempt to compress 16 different truth table
representations into this space, evolution will instead opt to
produce a learning algorithm.

The program may be too hard to understand to deduce the
learning rules. In previous work with SMCGP, it has been
possible to understand the evolved programs [2]. However,
not all of the evolved solutions were easy to follow. Finding
a human comprehensible solution may be unlikely, especially
considering the complexity of the problem shown here.

8. RESULTS
111 experiments were completed. Of these, 18 experi-

ments were successfully able to produce programs that cor-
rectly learned the 12 tables. On average for the successful
runs, 4.4 million evaluations were required (minimum 0.41
million evaluations, standard deviation 2.64 million). On
average, 8.6 tables were correctly learned.

None of the evolved programs were able to generalize to
learn all the unseen truth tables. The best result had 2
errors (out of a possible 16). The worst had 9, with 50%
TRUEs in the outputs, this result is worse than guessing.
On average, solutions that learned the initial 12 tables had
5.67 (std. dev. 1.8) errors in the unseen tables.

In this section the behaviour of the best generalizing solu-
tion is examined. This individual can successfully learn 14
tables (and makes one mistake in each of the other tables).

In the figures, unconnected (or ‘junk’) nodes in the pheno-
type are represented as smaller shapes and their connections
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Figure 3: Fitness function flow chart, as described in section 6.

are omitted for clarity. The colours of each node correspond
to their function type. For space reasons, all the labeling
of the graphs cannot be shown. However, the figures do
illustrate the general form of the graph.

Figure 4 shows the phenotype (that is the same graph as
represented by the genotype) and the phenotype after the
initial development stage. In this example, the phenotype
and developed phenotype are the same, however a visual
inspection of other results show that this is atypical.

It should be noted that the genotype contains 20 nodes,
with only 8 of those used in the initial phenotype. The
self modification and learning therefore gives a very good
compression (14 accurate tables, or 62 bits out of 64). The
length of the phenotype does not appear to be related to the
complexity of the table to be learned.

After development has finished the learning stage begins.
Figure 7 shows each change to the phenotype during the
learning stage for two example tables, with table 6 on the
left and table 10 on the right.

Tables 6 and 10 both have similar output patterns (FTFT
and FTTF respectively), where the first two outputs are the
same. Looking at figure 7 it is possible to see how the phe-
notype diverges during learning. The first row in the illus-
tration shows the original phenotype. The next row in the
figure shows result of the first row of the truth table being
presented once. The second row of the truth table is pre-
sented 4 times, and we have shown the changes that happen
to the graph in the next four rows. After this, the graphs
begin to diverge. For table, 6 the third row is presented
once but when learning table 10 it is presented twice. When
learning table 6, the final row is also presented just once -
with the final row being presented 4 times when learning ta-
ble 10. The final row in the figure shows the final phenotype
that represents that truth table.

Figure 5 shows the phenotype graph for each of the 12
tables tested during the evolutionary stage. Figure 6 shows
the phenotypes for the validation tables. We see that the
phenotypes vary greatly in length and also in structure. Ta-
ble 2 compares the output of the programs on the unseen
truth tables. Of particular interest is that table 6 (XOR)
was correctly learned. Both bad tables have 1 bit wrong.

Table Expected Actual Correct?

1 (NOR) TFFF TFFT YYYN
6 (XOR) FTTF FTTF YYYY
11 TTFT TTFT YYYY
12 FFTT FFTF YYYN

Table 2: Output from validation (unseen) programs.
(T=TRUE, F=FALSE, Y=Yes, N=No).

9. CONCLUSIONS
Although we failed to evolve a program that was a per-

fect Boolean function learner we did evolve programs that
could learn up to 14 out of the sixteen possible two-input
truth tables. The mechanism of the evolved algorithm is
unclear. One goal was to remove all predefined notions of
how a learning algorithm should work. However we concede
that the method of presenting the data and error to the
phenotype may bias the search to some form of supervised
learning. In future, we would like to devise a system that
does not have this bias.

In the work described the learning signal was the error
after applying a truth table. However, the learning signal
could be viewed as an environmental condition. Perhaps
this approach is also suitable for learning tasks where there
is no natural notion of error?

Figure 5 shows that the generated phenotypes vary greatly
in form. This shows that this approach is capable of pro-
ducing a diverse set of phenotypes not only in respect to
form but to function. We believe that this should improve
evolvablity as it means that the evolved genotype is very
good at producing a wide variety of phenotypes. It is also
interesting to note that there does not appear to be any
relationship between the length of the phenotype and com-
plexity of the truth table (i.e. whether the output of the
truth table depends on either none, one or both inputs).

Previous developmental systems (such as [6]) have shown
the ability to produce a range of phenotypes for a single
problem under different environmental conditions. Others
have evolved genotypes that can take on two different phe-
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Figure 4: Initial phenotype (and genotype).

Figure 5: Phenotypes for each of the tables learned during evolution. The remaining tables (1, 6, 11, and
12) were reserved for validation on unseen examples.

Figure 6: Phenotypes for each of the tables (1, 6, 11, and 12) tested during validation. The ability for the
phenotype to generate these (mostly correct) programs helps demonstrate that there is some form of run
time learning occuring.
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Figure 7: Detail of the learning stage for tables 6 (FTTF) and 10 (FTFT). The phenotype graphs are identical
until the truth table outputs diverge and a different error signal is returned. See section 8 for a description.

notypes depending on the environment [9]. In this paper
we have shown the ability to produce a range of phenotypes
that solve many different problems. Our aim is to show that
a single phenotype is able to solve all the different possible
instances (i.e. all input combinations) of all different possi-
ble problems (i.e. all possible 2 input truth tables).

We believe that one of the benefits of SMCGP is the
consistency of the representation through evolution, dev-
elopment and now learning. Our current implementation
of the evolutionary algorithm also uses the same self modi-
fying operators that are used during evolution/development
on the genotype graph during crossover, mutation and other
house keeping tasks. This leads to the obvious next step of
attempting to use SMCGP to evolve its own evolutionary
algorithm (and by extension developmental/learning). One
could also use a different set of self-modifying operations for
development and learning.
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