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ABSTRACT
A major difficulty for anomaly detection lies in discovering
boundaries between normal and anomalous behavior, due to
the deficiency of abnormal samples in the training phase. In
this paper, a novel coevolutionary algorithm which attempts
to simulate territory establishment in ecology is conceived to
tackle anomaly detection problems. Two species in normal
and abnormal behavior pattern space coevolve competitively
and cooperatively. Competition prevents individuals in one
species from invading the other’s territory; cooperation aims
to achieve complete pattern coverage by adjusting the evolu-
tionary environment according to the pressure coming from
neighbors. In a sense, we extend the definition of coopera-
tive coevolution from “coupled fitness” to “interaction of the
evolutionary environment”. This coevolutionary algorithm,
enhanced with features like niching inside of species, global
and local fitness, and fuzzy sets, tries to balance overfitting
and overgeneralization. This provides an accurate boundary
definition. Experimental results on transactional data from
a real financial institution show that this coevolutionary al-
gorithm is more effective than the evolutionary algorithm in
evolving normal or abnormal behavior patterns only.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods

General Terms
Algorithms, Experimentation.

Keywords
Anomaly detection; Coevolutionary algorithms; Ecology; Self-
nonself space pattern construction; Parisian Approach; Fuzzy
logic; Financial Fraud
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1. INTRODUCTION
Financial fraud is a serious threat to peaceful economic

development. According to the Retail Council of Canada,
credit card fraud in Canada alone resulted in losses of $201
million to major credit card companies in 2005; debit card
fraud resulted in losses of $70.4 million [22]. Although infor-
mation or regular patterns about fraudulent transactions are
often scarce or even non-existent, fraudsters tend to show
distinct behavior from legitimate card holders. Financial
fraud is therefore an ideal application for anomaly detection
algorithms.

The traditional way of detecting anomalies is to build a
model for normal behavior. Any deviation from the model
is labeled as an anomaly. Artificial immune system (AIS)
approaches, however, address anomaly detection by modeling
abnormal behavior. The negative selection algorithm (NSA)
in AIS removes all potential patterns that match self samples
(normal data), thus resulting in a set of nonself patterns.
Any matching to nonself patterns is labeled as an anomaly.

Forrest et al. [7] first proposed the NSA. However, binary
matching rules and the need to exhaustively generate detec-
tors are two weaknesses in their model. An empirical study
conducted by Gonzalez et al. [8] pointed out that binary
matching rules cannot properly process intrinsic meaning of
difference or similarity in numeric data. They suggested fuzzy
rules [9], or real-valued representations to encode numeric
information. The later represented detectors as a vector of
real numbers, expressing various sizes [14, 19] and geometric
shapes [2, 4, 10, 19, 21]. Exhaustively generating detectors
requires excessive computational time and unmanageable
numbers of detectors, especially when the size of self pat-
terns grows [16]. In fact, antibodies in the human immune
system (analogous to detectors in AIS) are generated by
random combinations of a set of gene segments. In addi-
tion, evolution is observed in the clonal selection process to
produce effective antibodies. Therefore, Kim et al. [15] and
Dasgupta et al. [4] both suggested applying evolutionary ap-
proaches, instead of randomly generating detectors. Recent
trends in NSA, e.g. [2, 9, 19, 20, 21], are employing evolu-
tionary algorithms with niching to evolve a set of detectors
in different shapes and sizes.

Appropriately representing self data is a very important
issue in NSA. Since self data are never complete, if one uses
self data directly, the final detector set would be very sen-
sitive to unseen self data. For this reason, Dasgupta et al.
introduce a variability range r [4], which can be regarded as
the radius from a self sample. They assume that a circular
area around a self data point was entirely normal. Although
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this method provides some generality, the constant value
of r produces the “boundary dilemma” [13]. Hang et al.
and Ostaszewski et al. both devised the idea of constructing
self patterns from self samples. Hang [11] exploited a “co-
evolutionary” genetic algorithm to evolve normal patterns.
Essentially, each subpopulation evolved a particular pattern
of normal behavior. In order to restrain self patterns from
covering nonself space, nonself data was required to remove
these overgeneral self patterns. Ostaszewski et al. [18, 19]
extended the variability range r to a vector, which saved
intervals for every dimension, thus allowing the construction
of more accurate self patterns. A competitive “coevolution-
ary” algorithm was used in their research to guarantee the
coverage of nonself patterns. However, in our opinion, Hang
and Ostaszewski’s algorithms cannot be labeled “coevolution-
ary”. Coevolution means reciprocal evolutionary change in
interacting species. In Hang’s work there is no interaction
between subpopulations; in Ostaszewski’s work the second
population consists of constant nonself samples. No evolution
happens in this population.

In summary, anomaly detection is searching for boundaries
between self and nonself space by taking only self data as
training samples. Such boundaries should best minimize the
impact of overfitting and overgeneralization, which cause false
positive and false negative errors (shown in Figure 1). In this

Figure 1: An anomaly detection system attempts to discover the boundary
between normal and anomaly [12].

paper, we propose a coevolutionary algorithm, an extension
of current NSA research, to address the “boundary dilemma”.
This algorithm is inspired by a phenomenon from ecology
that colonial species establish territories through interaction
with neighbors. In our algorithm, fuzzy self and nonself
patterns are evolved simultaneously as two species. However,
they also compete and cooperate mutually. Through the
competitive interactions between species, and niching inside
of species, appropriate generality of self and nonself patterns
will be produced. Cooperative interactions promote and
achieve thorough space coverage in each species by adjusting
the evolutionary environment. Fuzzy patterns give a natural
estimate of the amount of deviation from normal, hence
providing a better definition of the boundaries. Experimental
results demonstrate that this coevolutionary algorithm is
effective than the evolutionary algorithm in searching only
for self or nonself patterns.

The remainder of this paper is organized as follows: Section
2 presents a general framework of our algorithm; section 3
describes the algorithm in detail; section 4 discusses the data
set, experimental setup and experimental results; section 5
offers conclusion and discusses for future work.

2. GENERAL FRAMEWORK
In nature, aggressive animals, such as lions, some ants and

birds, forage and occupy exclusive territories. Territorial
owners are bound socially to adjacent neighbors, due to the
diverse roles neighbors play in territory acquisition. They
can be enemies. Their territories are established by boundary
disputes among neighboring residents. Each resident applies
pressure, such as fighting and display, against its neighbors.
Numerous experiments have shown that neighbors restrict
one another’s territory area. As a result, the boundary will
be formed along where pressure exerted by adjacent residents
is equal. They also can be friends when they encounter an
unsettled group searching for a territory [1].

This interesting ecological phenomenon sheds light on dis-
covering the boundaries in anomaly detection. Two species
in the form of if-then rules, one living in anomaly space,
and the other living in normal space, develop independently,
and forage and expand their own territories. When either of
them intrudes a neighbor’s territory, it will be fought back.
In the end, boundaries between normal and anomaly space
will be defined by the outcome of interactions with neighbors.
Compared with the evolution of only one species, coevolu-
tion in this context has two main advantages. Firstly, two
species constrain each other from being overgeneral (over
the boundaries), hence effectively decrease false negative
and false positive errors; secondly, they reference each other.
By sensing the pressure given by its neighbors, a species is
able to adjust its evolutionary process. When the pressure
that a species receives from its neighbor becomes intensive,
generating an individual who can successfully claim an uncov-
ered space becomes difficult. Hence, the rules size, crossover
rate, mutation rate, and selection pressure should adapt to
pressure changing in order to generate qualified individuals.

The general framework of our algorithm is described in
Figure 2. Details will be discussed in the next section.

We start our algorithm with initializing the populations.
We build rules in the first population of the positive species by
feeding input data as seeds rather than starting from scratch.
This is due to the fact that each positive rule must cover
at least one normal data point, and due to the assumption
of anomaly detection: normal behavior exhibits predictable,
consistent patterns. For the negative species, we randomly
generate rules in the initial population because it should
cover everything else.

When updating populations, we choose a steady-state
approach. In this model, the currently best rules are auto-
matically maintained in the population, while weaker rules
are being replaced by stronger ones. Hence, as the evolution-
ary process proceeds, a rule set will incrementally be built
as a single solution.

Here we define two populations in each species, one is
called new population (denoted as Pn), which is the initial
population or the population generated by crossover and
mutation; the other is the current population (denoted as Pc)
which saves the best rules found so far and is used to breed
a new generation. Pn will be merged into Pc by inserting,
deleting and replacing rules. Subsequently, a niching method
is applied on Pc to minimize overlaps inside a species.

After the two species are evolved in parallel, coevolution
will bring them together, and check if there are any rule’s
overlaps (rp∩rn) between two Pcs. Overlaps imply that some
rules cover the wrong territories. Overlapped rules have to
fight, thus coevolution here is competitive. By fighting, the
boundary dispute is resolved. Furthermore, the incomplete-
ness of rule sets has to be addressed. Generating effective
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Figure 2: Framework of Generating Anomaly Detectors by Coevolution-
ary Algorithm. Pn denotes the new population; Pc the current
population; rp a positive rule; rn a negative rule; Dnormal nor-
mal data samples; Covbest desired coverage; Genmax maximum
number of generations.

rules to fill holes will reduce detection errors. To this end,
besides niching and generating variable-sized detectors, a
dynamic evolutionary environment is controlled by coopera-
tive coevolution. We first estimate the coverage ratio of one
species by referring to the coverage of the other species; then
we use this ratio to adjust its evolutionary process in order
to increase the chance of generating a useful rule. Coopera-
tivity here means that two species help each other to achieve
maximum coverage.

Crossover and mutation are conducted on Pc of each species
to generate Pn. We repeat this process until a desired cover-
age or the maximum number of generations is reached.

3. THE ALGORITHM
Two evolutionary algorithms are used to control the evo-

lution of the two species. Both of them are instances of
genetic algorithms. This section describes implementation
details such as the representation, fitness functions, and
coevolutionary processes.

3.1 Representation
Each individual in our algorithm is a fuzzy rule with a con-

dition part and a class label part. Since rules in a species have
the same class label, we only need to represent the condition
part as a chromosome, as shown in Figure 4(a). A chromo-
some contains n genes, which correspond to n attributes in

the input data. Each gene consists of m nucleotides, where m
is the number of attribute values. The default logic operators
are “AND” between genes and “OR” between the nucleotides.

Ji and Dasgupta suggested using variable-sized detectors,
other than constant-sized detectors [14]. As illustrated in
Figure 3(a), a large number of constant-sized detectors are

(a) Constant-sized detectors (b) Variable-sized detectors

Figure 3: Constant-sized detectors V.S. Variable-sized detectors. The dark
area represents self region. The light gray circles are detectors
in the nonself region [14].

needed to cover the large area of nonself space, while no
detectors can fit in the small area of nonself space, especially
near the boundaries between self and nonself, thus leaving
holes. Variable-sized detectors deal with both issues, as
shown in Figure 3(b). The large area of non-self space is now
covered by much fewer but larger detectors; smaller detectors
work much better to cover the holes.

Learning classifier systems and Hang et al. [11] encode
detectors on a ternary alphabet {0, 1, ∗}. The size of de-
tectors is controlled by “don’t care” symbol (∗), a symbol
matching any value. The more ∗ symbols are in a rule, the
more space the rule occupies, thus the more general it is. In
our algorithm, we follow this encoding scheme. Figure 4(b)
illustrates a mapping from a genotype to a phenotype.
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0 X1

0 · · ·Xm
1
1 · · · Xn−1
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gene0 gene1 genen−1 genen
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(a) Structure of a chromosome

**** 110 0110010

attribute0

attribute0 = value0 OR value3

AND

attribute2 = value0 OR value1

AND

attribute3 = value1

1 2 3

(b) Genotype to phenotype

Figure 4: Genotype and Phenotype

3.2 Fitness Function
Our algorithm is not expected to produce a dominant in-

dividual, but a population working together as a solution.
Hence, during the evolution, performance of both individ-
uals and populations should be measured. In addition, an
individual’s contribution to the final solution should be con-
sidered. If an individual improves overall performance, it
will be rewarded by a positive feedback; otherwise, it will be
penalized by a negative feedback. Actually this is the idea
of Parisian Approach [3, 5]. We adopt this approach and
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define a local fitness for individuals and a global fitness for
populations.

Throughout this section some terms are used in fitness
functions. Their definitions are as follows:

• Rule (ri): the genotype of an individual, as shown in
Figure 4(b). Positive rules describe normal behavior,
while negative rules describe abnormal behavior.

• Atomic rule (ar): a rule in which only one bit is set to
1 in each gene. The rule shown in Figure 4(b) contains
16 (2× 4× 2× 1) atomic rules. * symbol in a gene can
be considered as 1 in every bit.

• Specificity of a rule (Nspecificity):
# of 1′s in a rule

# of bits in a rule
.

For example, the Nspecificity of the rule in Figure 4(b)

is
2 + 4 + 2 + 1

5 + 4 + 3 + 2
.

• Rule space coverage ratio of a species (Rr):
#A

ar

#A
ar′

,

where #A
ar is the number of unique atomic rules in

species A, and #A
ar′ is the number of atomic rules in

the space where species A belongs to. In other words,
this ratio is the space currently covered by species A
over the space that should be covered by species A. Be-
cause #A

ar′ cannot be calculated, we use #all −#B
ar as

an approximation, where #all is the number of atomic
rules in whole searching space, and #B

ar is the number
of unique atomic rules in species B. As the evolutionary
process of species B proceeds, #all −#B

ar approaches
#A

ar′ . This ratio has multiple roles: controlling the
adaptive evolution in cooperative coevolution, measur-
ing performance of populations, and being a termination
criterion of the coevolution.

These terms are suitable for both negative and positive rules.

• Data coverage ratio of a rule (Rdata):
# of data a rule actually covers

# of data a rule should cover
. This ratio is used

as a performance measurement of a single positive rule.
For example if a rule covers 8 data points out of 10 it
should cover, then the Rdata is 0.8.

• Data coverage ratio of a species (Rd):
# of data a population covers

# of normal data
. This ratio is used as

a performance measurement of a positive population.
For example if a population covers 98 out of total 100
normal data in the training set, then the Rd is 0.98.

The above terms are used only for positive rule sets, because
only positive rules cover normal data.

• Overlaps (Noverlap): the space shared by more than
one rule. We define it as # of atomic rules shared by
two rules.

We define our local and global fitness functions as follows:

• Local fitness for positive individuals.

flp(x) = λ×Rdata + (1− λ)× (1−Nspecificity), (1)

where λ is a weighting coefficient. Rules which cover
more data with less space will have higher fitness.

• Local fitness for negative individuals.

fln(x) = 1− min(Nspecificity, Ngeneration)

max(Nspecificity, Ngeneration)
, (2)

Ngeneration is the generation number scaled between 0
to 1. We prefer general negative rules at the beginning
of the evolutionary process, and specific rules later.

• Global fitness for the positive rule set in t generation.

fgp(t) = λ×Rd + (1− λ)× (1− #p
ar

#all
), (3)

where λ is a weighting coefficient. A positive population
is marked as good when it covers more data with less
space. That is to say that this fitness function favors
populations with less atomic rules provided they have
the same data coverage ratio.

• Global fitness for the negative rule set in t generation

fgn(t) =
#n

ar

#all
(4)

The more space the rule set covers, the better the
negative population is.

When a positive rule covers new data points, or a negative
rule covers a new niche, we will reward these rules as

f t+1
lp (x) = f t

lp(x)× (1 +Rt+1
d −Rt

d), (5a)

f t+1
ln (x) = f t

ln(x)× (1 + fgn(t+ 1)− fgn(t)), (5b)

where superscript denotes the generation number.
The advantage of considering feedback from global fitness

is to prevent rare patterns or important patterns with small
fitness from being replaced. It offers another way to maintain
diversity in the population, especially for skewed datasets.

3.3 Coevolution
Our framework integrates both competitive and cooper-

ative coevolution. Competitive coevolution happens first
with the intention of picking up rules who cross boundaries.
Crossing boundaries means two individuals from different
species cover the same part of the territories. Since territories
are the limited and exclusive resources two species are fight-
ing for, we assign it by the following principle: if a positive
rule rp overlaps with a negative rule rn, and rn covers at
least one normal sample, then rn should be penalized; if rn

covers no normal data, which implies rp covers part of the
nonself space, then we penalize rp. Note that the purpose
of coevolution is not to kill an individual but to decrease
its fitness, as it may contribute genetic material to future
generations. However, for weakened individuals, the odds
of being replaced by stronger ones are increased. Fitness is
updated according to Equation (6) every time an overlap is
detected. far(i) is the number of atomic rule i has.

flocal(i) = flocal(i) ∗ (1− Noverlap

far(i)
), (6)

Coevolution in ecology is defined as describing interac-
tions like these where adaptation in one species has evolved
in relation to adaptation in another [17], so interactions in
coevolution should not necessarily be constrained only to
“coupled fitness”. We extend the interaction to the evolu-
tionary environment, including crossover rate, mutation rate,
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and selection pressure. Like fitness, the evolutionary environ-
ment affects evolution. In our algorithm, the evolutionary
environment of a species is controlled by its coverage ratio Rr.
As previously analyzed, when Rr of a species is close to the
desired value, generating a useful individual in this species is
difficult. For this reason, we will increase the mutation rate,
decrease the crossover rate and the selection pressure, and
prefer rules in smaller size as Rr grows. A higher crossover
rate at the beginning of the evolutionary process helps to
generate rules which cover a large area in the space; rules in
a smaller size as well as a higher mutation rate and lower
selection pressure help to generate more rules which jump
away from the current optimum, or fill holes. This is cooper-
ative coevolution, because Rr is decided by the coverage of
two species. In other words, two species cooperatively adjust
each other’s evolutionary environment to achieve the best
coverage.

The evolutionary environment is updated as follows:

pxover = pu
xover − (pu

xover − pl
xover)×Rr (7a)

pmt = pl
mt + (pu

mt − pl
mt)×Rr (7b)

ts = tsu − [(tsu − tsl)×Rr] (7c)

where pxover, pmt, ts are the crossover rate, the mutation rate,
and the tournament size respectively; superscript l means
the lower bound, and superscript u means the upper bound;
[.] means round to the nearest integer; Rr is the coverage
ratio, which considers the coverage of another species.

3.4 Niching
Forrest et al. confirmed the role of niching in discovering

and maintaining multiple peaks [6]. Other authors [4, 15,
19, 20] applied niching to keep detectors separated in order
to maximize the space coverage and minimizes the overlaps
among them, thus avoiding holes. In our algorithm, we
employ niching for the same reason. Our niching equation is
defined as

flocal(i) = flocal(i) ∗
„

1−
Pn

i=1Noverlap

n× far(i)

«
, (8)

For individual i, we first calculate the average overlap be-
tween i and other individuals in the population, then we
decrease the fitness by the proportion of this average and
far(i), the number of atomic rules i has.

This fitness updating function protects rules of large size
from decreasing too fast in fitness. We favor large rules
because a population can carry only a limited number of
patterns. If we replaced large rules with several small rules,
they would take too much space without improving coverage.

3.5 Evolutionary Operators
Genetic operators allow passing genetic information be-

tween generations. Basically, the well-known operators of a
typical GA include selection, crossover and mutation. Except
for these three, here we introduce two new operators, deletion
and replacement. These two are useful in identifying weak
individuals who will be replaced in a steady-state scheme.

(a) Selection. The algorithm uses tournament selection to
select parents. Tournament size decreases when space
coverage increases. Decreasing tournament size actually
implies lessening the competitive pressure. As more
rules have a higher possibility to reproduce, the chance
of finding new local optimal is increased.

(b) Crossover and mutation. Crossover and mutation op-
erators are applied on selected individuals to produce
a new generation. Classical two-point crossover and
bit-flip mutation are applied.

(c) Replacement. Replacement happens when a new popu-
lation Pn is merged into a current population Pc. Re-
placement is based on the subsumption relationship
between two individuals, which means a rule logically
subsumes another rule. For positive rules, if rule ri in Pc

covers the same data points as rule rj in Pn does, but ri

subsumes rj , then ri is replaced by rj . This is because
rj uses less space to cover the same amount of data. For
negative rules, we prefer rules with larger space cover-
age under the premise that they cover no normal data.
Hence, we will delete rj if ri subsumes rj . If two rules
do not have a subsumption relationship, we simply copy
them from Pn to Pc. This operator effectively adjusts
the generality of self and nonself patterns.

(d) Deletion. This operator removes rules in Pc if we at-
tempt to insert rules from Pn into Pc, but Pc is full.
Currently we simply delete the least fit rule.

3.6 Fuzzy rules
Normality is not a crisp concept, so defining a sharp dis-

tinction between normal and anomaly is improper. Gonzalez
et al. [9] report that fuzzy rules provide a natural estimate of
the amount of deviation from normal, and offer some general-
ity for numeric attributes. Hence, they can avoid overfitting,
improve detection accuracy, and present results in a human
comprehensible way.

For fuzzy logic to be involved in our framework, first we
apply the k-means clustering algorithm to determine fuzzy
sets and their membership functions for continuous attributes.
Membership functions are presented in trapezoidal shapes,
where the first and the last trapezoid have open ends. The
membership function for category attributes always outputs
0 or 1. Table 1, then, are used in the inference step to map
logic operators, e.g. “AND” and “OR”, in fuzzy rules to fuzzy
operators. p and q are fuzzy sets, x is a crisp value, and µ is
the membership function associated with a fuzzy set.

Table 1: Fuzzy logic operators

Logic Operator Fuzzy Operator
p AND q min{µp(x), µq(x)}
p OR q max{µp(x), µq(x)}

When given input data Dt and a set of rules, we plug
crisp values from Dt into the membership function of the
corresponding fuzzy sets in rule Ri. According to Table 1,
we can calculate how well the data Dt matches rule Ri. The
matching threshold θ now is set to 0.6.

4. DATA SET AND EXPERIMENTS
In this section, we will evaluate the effectiveness of the

proposed coevolutionary algorithm for anomaly detection.

4.1 Data Set
We tested our algorithm on anonymized transactional data

from a real financial institution. This data set contains two-
year ABM (Automated Bank Machine) and POS (Point Of
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Sale) fraud-free transaction history of 3063 customers, with
a total of 522,728 transaction records, each with 61 fields.
For each customer, 90% of the data was used for training,
and 10% was used for testing; further test data was provided
by 346 fraud cases. Missing values were replaced by random
values within the range of normal values for each field.

In our experiments, we used 5 basic fields, which describe
type, time (hours, minutes), location, amount, and date
(week days) of a transaction. Transaction type describes
customers’ operations on ABM or POS, e.g. withdrawal, de-
posit, or purchase. Location describes where the transaction
is conducted. Transaction date tries to capture patterns like
payroll deposit. These three fields are category attributes.
The other two are continuous attributes. We fuzzified each
with a fuzzy set. In addition, 5 statistical indicators were
calculated to facilitate identifying anomalies. They recorded
the average amount of purchase, withdraw, deposit, purchase
at risky locations, as well as the throughput of an account
inside an n-transaction sliding window.

4.2 Experimental Results

4.2.1 Experiment 1 — Effectiveness of Coevolution-
ary Algorithm

The first experiment assessed the ability of the coevolu-
tionary algorithm to detect anomalies. Experiments were
carried out to compare the results obtained by the coevolu-
tionary algorithm and by a standard evolutionary algorithm
in the same running environment. The standard evolutionary
algorithm had the same representation, niching and fitness
function definition as the coevolutionary one. The parameter
setup of two algorithms is shown in Table 2.

Table 2: Parameter Setup

Parameters Coevolution Standard Evolution
Numruns 50 50

Maxgeneration 500 500
Sizepopulation 20 20
Pcrossover pu

xover = 0.8 Positive:0.4
pl

xover = 0.4 Negative:0.6
Pmutation pu

mt = 0.6 Positive:0.4
pl

mt = 0.2 Negative:0.4
Sizetournament tsu = 6

4
tsl = 2

alarm positive: < 0.6
threshold negative: >= 0.6

Table 3 presents the results of a 50-run experiment for each.
The accuracy of this algorithm is described by the detection
rate (DR) and the false alarm rate (FAR). Compared to the
coevolutionary algorithm, the standard one achieved a high
True Negative (TN) rate in the training phase, but a low
DR in the testing phase. The reason can be found in the
number of atomic rules. The positive rule set generated by
the standard one has 146 atomic rules on average, while 102
atomic rules on average for the coevolutionary algorithm.
This indicates that the former rule set incorrectly covered
some space belonging to negative rules. Overgeneralization
causes a low DR. Similarly for negative rules, the rule set
generated by the standard one has 482 atomic rules on aver-
age. It covers less space than the one from the coevolutionary
algorithm, which contains 503 atomic rules on average. If we

compare the results of the coevolutionary algorithm, we will
notice that the positive rule set has a higher FAR, while the
negative rule set has a lower DR. This implies that overfit-
ting and holes still exist in the positive and negative rule set,
respectively. We suggest combining their results to achieve a
better performance.

In conclusion, our coevolutionary algorithm outperformed
the standard evolutionary algorithm in terms of DR. The
FAR is slightly higher, but still in an acceptable range. In fact,
the cost of false alarms is only a phone call to card holders,
which is less than the costs of missing fraudulent events.
The better performance is credited to the interactions and
adaptive evolutionary environment introduced by coevolution.
We will examine their contributions in detail in the following
two experiments.

4.2.2 Experiment 2 — Effectiveness of Competitive
Interactions between Two Populations

The second experiment assessed the effectiveness of com-
petitive interactions between two populations. Competitive
interaction is one aspect of our coevolutionary algorithm. It
restrains the positive rule set from crossing the boundary and
keeps it close to the space the normal data actually occupies.

Figure 5 shows the changes in the number of atomic rules
in one run of the coevolutionary algorithm. As we can see,
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Figure 5: The competitive interactions between two populations will penal-
ize the positive rules which have crossed the boundary indicated
by the number of overlapping. As a result, these rules will be
removed from the population gradually, and consequently the
numbers of positive rules are dropping.

at the beginning of the evolutionary process, the numbers
of atomic rules for both positive and negative populations
increase quickly. Gradually, overlaps appear between two
populations; therefore the interactions will penalize positive
rules which have crossed the boundary by Equation (6). As
a result, these rules will be removed from the population,
and, consequently, the number of positive rules drops.

Another experiment was conducted to compare the co-
evolutionary algorithm with the standard algorithm. This
experiment considers two factors in the positive rule set: rule
space coverage and data space coverage. The results of one
run for each algorithm are shown in Figure 6 and 7.

In Figure 6, we can see that for most of the time the rule
space coverage in the standard algorithm is higher than 1.0,
so the rule set is overgeneral. What’s more, when rule space
coverage drops, often the data space coverage drops too.
This phenomenon actually implies that when replacing rules
from the population, overlapping positive rules are not given
priority. Comparatively speaking, in Figure 7 the data space
coverage is hovering around 1.0 while rule space coverage
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Table 3: Average Algorithm Performance in 50 Runs

Training Testing
TN # of atomic rules Time DR FAR

Coevolution positive 99.479% 102
76 sec.

98.266% 4.138%
negative 100% 503 97.688% 2.878%

Standard positive 100% 146 23 sec. 92.486% 0.689%
Evolution negative 100% 482 26 sec. 95.376% 0.689%
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Figure 6: In the standard algorithm, the rule space coverage is higher than
1.0 for most of the time; when rule space coverage drops, often
the data space coverage drops too.

fluctuates. So the changes in rule space coverage do not affect
data space coverage very much. Accordingly, given same
data space coverage, coevolution is inclined to find a rule set
with less atomic rules, thus avoiding overgeneralization to a
certain degree. This experiment further confirms the advan-
tage of competitive interactions between two populations in
coevolutionary algorithm.
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Figure 7: In the coevolutionary algorithm, the data space coverage is hov-
ering around 1.0 while rule space coverage fluctuates. So the
changes in rule space coverage do not affect data space coverage
very much.

4.2.3 Experiment 3 — Effectiveness of Dynamic Evo-
lutionary Environment

The adaptive evolutionary environment is another aspect of
our coevolutionary algorithm. It is controlled by the pressure
from the other species. In our algorithm, we increase the
mutation probability and decrease crossover probability and
tournament size as the estimated negative rule space grows.
Compared with positive space, negative space is wider and
more continuous. Therefore, a higher crossover rate at the
beginning of the evolutionary process helps to cover space
with more volume first; a higher mutation rate and a smaller
tournament size help to cover holes later. In this experiment,

the coevolutionary algorithm is compared with the standard
algorithm on generating a negative rule set. One sample run
is shown in Figure 8.
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Figure 8: The rule space coverage in the coevolutionary algorithm in-
creased quicker than in standard evolutionary algorithm.

We can easily see that the rule space coverage in the coevo-
lutionary algorithm increases from 0.4 to nearly 1.0 during
the first 100 generations. For the rest of the generations,
though the increase is very small, it is constantly improving
toward 1.0. However, rule space coverage in the standard one
increases slowly. In the end it might find the same results,
but it will require many more generations. The average num-
ber of atomic rules (Avgar) and the generation returns the
best result (Genbest) in 50 runs are shown in Table 4.

Table 4: Avgar and Genbest for Negative Rule Set

Avgar Genbest

Mean SDV Mean SDV
Coevolution 503.42 3.64 336.78 42.90

Standard 482.42 9.64 461.76 30.26

5. CONCLUSION
This paper proposed a coevolutionary algorithm to tackle

the anomaly detection problem, which, in our opinion, is
a process of discovering the boundary between normal and
abnormal behavior. Inspired by territory establishment in
ecology, this boundary is identified through the coopera-
tive and competitive interactions between self and nonself
patterns. Competition penalizes individuals who cross the
boundary, and cooperation adjusts evolutionary process of
a species. Experimental results on detecting financial fraud
demonstrated that this coevolutionary algorithm is more
effective than the standard algorithm in the evolution of
negative or positive rule set only.

This coevolutionary algorithm has the following advan-
tages: competitive interactions between populations mini-
mize detection errors; the adaptive evolutionary environment
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accelerates the process of finding good solutions; global fitness
and local fitness provide good criteria for selecting solutions;
the rewarding mechanism helps to maintain useful individ-
uals but with small fitness, hence a complete rule set can
be guaranteed; Fuzzy rules improve detection accuracy, and
allow to present results in a human comprehensible way.

This work is our preliminary effort to map an anomaly de-
tection system to territory acquisition. There are many issues
in need of further study. First of all, the fighting between
two species should be modeled more accurately. Currently
we simply consider the overlapping area as a factor. In fact,
the fighting ability in ecology is decided by biomass of the de-
fending colony, territory size and the distance to the colony’s
nest [1]. Secondly, we oversimplified the cooperation between
populations. Actually, cooperation plays an important role
in the colony establishment process, so it should be thor-
oughly researched in ecology, and then carefully mapped to
a computer algorithm. Thirdly, to get further insight from
our algorithm, we will need to apply it to some benchmark
data.
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