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Expensive Multi-Objective Evolutionary
Optimization Assisted by Dominance Prediction

Yuan Yuan and Wolfgang Banzhaf

Abstract—We propose a new surrogate-assisted evolution-
ary algorithm for expensive multi-objective optimization. Two
classification-based surrogate models are used, which can predict
the Pareto dominance relation and θ-dominance relation between
two solutions, respectively. To make such surrogates as accurate
as possible, we formulate dominance prediction as an imbalanced
classification problem and address this problem using deep
learning techniques. Furthermore, to integrate the surrogates
based on dominance prediction with multi-objective evolutionary
optimization, we develop a two-stage preselection strategy. This
strategy aims to select a promising solution to be evaluated among
those produced by genetic operations, taking proper account of
the balance between convergence and diversity. We conduct an
empirical study on a number of well-known multi- and many-
objective benchmark problems, over a relatively small number
of function evaluations. Our experimental results demonstrate
the superiority of the proposed algorithm compared with several
representative surrogate-assisted algorithms.

Index Terms—Surrogate-assisted evolutionary computation,
expensive multi-objective optimization, many-objective optimiza-
tion, deep neural networks, metamodeling.

I. INTRODUCTION

MULTI-OBJECTIVE optimization problems (MOPs)
arise naturally in most scientific and engineering dis-

ciplines. Evolutionary algorithms (EAs) are well suited for
solving MOPs due to the population-based nature that allows
the generation of the Pareto front (PF) approximation in a
single run. Additionally, multi-objective EAs (MOEAs) can
tackle MOPs with complex features (e.g., non-convex, mixed-
integer and black-box) where traditional multi-objective op-
timization techniques are not easily applicable. MOEAs have
been extensively studied [1], and recent research efforts [2], [3]
mainly focus on making MOEAs scalable to MOPs with more
than three objectives, often called many-objective optimization
problems (MaOPs). In many practical MOPs, the evaluation
of objective functions involves a computationally expensive
simulation or experimental procedure [4] that can take up
to hours or even days. This poses a serious obstacle to the
use of multi-objective optimizers, particularly MOEAs, which
usually require thousands or even tens of thousands of function
evaluations to obtain satisfactory results. A common approach

Manuscript received xxx; revised yyy.
Y. Yuan and W. Banzhaf are with the Department of Computer Science

and Engineering and the BEACON Center for the Study of Evolution in
Action, Michigan State University, East Lansing, MI 48824 USA (e-mail:
yyuan@msu.edu; banzhafw@msu.edu).

This article has supplementary downloadable material available at
https://ieeexplore.ieee.org, provided by the authors.

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.XXX.XXX

for addressing this issue is to develop cheap approximations
to expensive objective functions. With the guidance of these
approximations, known as surrogates or metamodels [4], [5],
it is possible for an optimizer to achieve good performance
with just very few number of function evaluations.

One popular class of surrogate-assisted algorithms for
expensive MOPs is based on ideas about single-objective
efficient global optimization (EGO) [6]. This optimization
paradigm is also known as Bayesian optimization [7]. EGO
uses a Kriging (also called Gaussian process regression) model
to approximate the true objective function, and selects the next
sample point for evaluation by optimizing an infill criterion
called expected improvement (EI). Because EI is generally
a non-convex function, its optimization usually resorts to an
evolutionary algorithm. To extend EGO to MOPs, the key issue
is how to convert multiple objective functions into a scalar
function. A typical way to do this is to use a set of predefined
scalarizing weight vectors (e.g., ParEGO [8] and MOEA/D-
EGO [9]). However, a major problem with this approach is
that the use of uniformly distributed weight vectors does not
necessarily result in a good distribution of non-dominated
solutions in the objective space [8], [10], so that the related
algorithms may suffer from a loss of diversity. Another way
to extend EGO for MOPs is to use a set-based performance
indicator called hypervolume (HV) [11] (e.g., SMS-EGO [12]
and SUR [13]). However, the computation of HV is costly
and its time complexity grows exponentially with the number
of objectives, limiting the applicability of such algorithms in
MaOPs. For an overview and a taxonomy of EGO-based multi-
objective optimizers, the reader is referred to [14], [15]. A
recent study [16] discussed several alternative scalarization
strategies for MOPs within the EGO framework.

Another prominent class of surrogate-assisted algorithms for
expensive MOPs is based on existing MOEAs. These algo-
rithms mostly build one surrogate model for each objective. A
variety of machine learning models, such as Kriging, neural
networks and support vector machine (SVM), have been used
to build such surrogate models in MOEAs. There are mainly
two strategies in terms of how to then use those surrogates:
fitness replacement and preselection. In fitness replacement, a
conventional MOEA is run as usual, but most solutions use
the predicted objective values by the surrogate models, and
only occasionally several solutions selected from the current
population use true objective values provided by function
evaluation. As a result, survival selection may be based on
both true and predicted objective values. Typical surrogate-
assisted MOEAs using fitness replacement can be found in
[17]–[21]. On the other hand, in the alternative preselection
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method, surrogate models serve as filters which select only
a few of offspring solutions for function evaluation in each
generation and discard the rest. Evaluated offsprings will
then undergo survival selection in a MOEA. So unlike in
fitness replacement, survival selection in preselection is always
based on true objective values. Several notable surrogate-
assisted MOEAs using preselection can be found in [22]–
[24]. Note that no matter which of these methods is used,
the newly evaluated solutions are usually employed to update
the surrogates. One current important trend in the design
of surrogate-assisted MOEAs is to leverage recent advances
in evolutionary many-objective optimization so as to better
balance convergence and diversity (e.g., K-RVEA [21] and
HSMEA [24]). General reviews of existing surrogate-assisted
MOEAs can be found in various sources [25]–[28].

Although building one surrogate model for each objective is
a straightforward way to construct surrogate-assisted MOEAs,
the cumulative approximation errors from each metamodel can
become detrimental to the overall accuracy of the optimization
process [29], [30]. In addition, building surrogates in this
way will incur higher computational costs as the number of
objectives increases. To overcome such limitations, another
research direction on surrogate-assisted MOEAs that has been
less explored is to form a single surrogate model combining all
objectives. Loshchilov et al. [31] proposed a mono-surrogate
combining ideas from SVM regression and one-class SVM,
where all current non-dominated solutions are mapped onto a
single value (up to some tolerance) and all dominated solutions
are rendered to be on one side of this value. The same
authors [29] later refined the mapping mechanism using rank-
based SVM. Seah et al. [32] exploited the non-domination
levels obtained by non-dominated sorting, thereby building
an ordinal regression based surrogate that can predict the
level of a new solution. Yu et al. [33] also proposed an
ordinal regression based surrogate, where the ordinal level of
a solution is assigned based on how far it is from the archived
PF. Zhang et al. [34] introduced a binary classification based
surrogate where the evaluated solutions form two classes, non-
dominated and dominated solutions. Pan et al. [35] took a
different approach to building a classification based surrogate:
the evaluated solutions are divided into two classes using a
set of reference solutions. Note that since mono-surrogate
MOEAs do not directly model the objective functions, they
are typically implemented with a preselection strategy. One
potential downside of these algorithms is that the function to
be modeled could be more complex due to the combination
of all objectives, calling for more powerful computational
models.

Because dominance comparisons constitute the core pro-
cedure in a lot of MOEAs, a machine learning model that
can predict the dominance relation between two solutions
would mesh well with the classification based mono-surrogate
approach. However, surprisingly, dominance prediction has
received little attention in the literature. The first attempt at
Pareto dominance prediction by Guo et al. [36] used a Gaus-
sian naive Bayes classifier. But this work was just exploratory
and the adopted simple model required strong assumptions that
are probably not adequate for learning nonlinear dominance

relations. Bandaru et al. [37] conducted a more comprehensive
study that investigated ten different classification algorithms
for Pareto dominance prediction. Their work is highly relevant
to our paper here since it involves a feedforward neural
network (FNN) model. However, they adopted a still shallow
model of a FNN with just one hidden layer, trained using
traditional techniques, likely restricting the ability to model
complex nonlinear relations. Given the remarkable progress
in deep learning [38] over recent years, it is desirable to use
deep models for this prediction purpose. In single-objective
Bayesian optimization, deep FNNs have already been used
as an alternative to Gaussian processes to model distributions
over functions [39].

One very important limitation of [37] (just as the prelimi-
nary work by Guo et al. [36]) is that it does not study how
to effectively integrate surrogate models based on dominance
prediction with a MOEA for expensive multi-objective opti-
mization. It might even be the case that Pareto dominance
prediction alone is not enough to constitute a good surrogate-
assisted MOEA. On the one hand, Pareto dominance com-
parisons can facilitate the convergence to the PF, but they
cannot regulate the diversity of solutions. On the other hand,
if the number of objectives is high, Pareto dominance may
not provide enough selection pressure toward the PF [2], [40],
leading to poor convergence. In light of the above limitations
in current research on dominance prediction, our paper makes
the following contributions:

1) We formulate dominance prediction as an imbalanced
classification problem and address this problem in the
context of modern deep learning methods, which is
expected to better capture complex nonlinear dominance
relations. An additional benefit of using deep neural
networks as surrogates is that the model can be updated
online with mini-batch gradient descent. This fits well
with the expensive optimization scenario where the
evaluated solutions become available sequentially.

2) We consider for the first time dominance prediction
in terms of an additional dominance relation called θ-
dominance [41], [42]. θ-dominance explicitly preserves
diversity and is able to impose moderate selection pres-
sure even in high-dimensional objective spaces, compen-
sating for the limitations of Pareto dominance.

3) We propose a new surrogate-assisted MOEA called θ-
DEA-DP for expensive MOPs, which combines θ-DEA
[42] with the dominance prediction based surrogates. θ-
DEA-DP is characterized by a two-stage preselection
strategy assisted by Pareto dominance and θ-dominance
prediction, in order to carefully maintain the balance be-
tween convergence and diversity in the objective space.

The rest of this paper is organized as follows. Section II
introduces the background knowledge of this paper. Section
III describes the proposed θ-DEA-DP in detail. Section IV
provides experimental results and discussions. Finally, the
conclusion is drawn in Section V.

II. PRELIMINARIES AND BACKGROUND

This section presents the basic concepts and background
information that are vital to the work in this paper.
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A. Multi-Objective Optimization

A multi-objective optimization problem (MOP) can be for-
mally stated as follows:1

min f(x) = (f1(x), f2(x), . . . , fm(x))>

subject to x ∈ Ω ⊆ Rn
(1)

x is a n-dimensional decision vector in the decision space Ω,
and f : Ω → Θ ⊆ Rm, is an objective vector consisting of
m objective functions, mapping Ω to the attainable objective
space Θ. In the literature, a MOP is known as a many-objective
optimization problem (MaOP) [2], [3] when m > 3.

Definition 1 (Pareto Dominance): A solution u ∈ Ω is
said to Pareto dominate another solution v ∈ Ω, denoted
by u ≺ v, iff ∀i ∈ {1, 2, . . . ,m} : fi(u) ≤ fi(v) and
∃j ∈ {1, 2, . . . ,m} : fj(u) < fj(v).

Typically the objectives of a MOP are conflicting with each
other, so there is no single solution that Pareto dominates all
the others. Instead, there exists a set of equally good solutions
in terms of Pareto dominance, called the Pareto Set (PS).

Definition 2 (Pareto Set): For a given MOP, the Pareto set
is defined as PS := {x∗ ∈ Ω | @x ∈ Ω,x ≺ x∗}.

The mapping of the PS into objective space is referred to
as the Pareto front (PF), which is defined as follows:

Definition 3 (Pareto Front): For a given MOP, the Pareto
front is defined as PF := {f(x∗) | x∗ ∈ PS}.

Generally, the goal of multi-objective optimization is to
approximate the PF as much as possible. That is, the obtained
objective vectors should be close to the PF (i.e., convergence),
and also distributed as evenly as possible over the PF (i.e.,
diversity).

B. θ-Dominance

θ-dominance [41], [42] is a new dominance relationship that
incorporates the decomposition idea. In θ-dominance, we need
to predetermine a set of N uniformly distributed weight vec-
tors (also called reference vectors) in the normalized objective
space2, denoted as w1,w2, . . . ,wN . For any solution x ∈ Ω,
suppose point P is its mapping in the normalized objective
space and point H is the projection of P on the direction
wi, then we can compute two distances corresponding to wi,
that is, di,1(x) = |OH| and di,2(x) = |PH|, where O is
the origin. Further, the penalty boundary intersection (PBI)
function [43] is defined as Fi(x) = di,1(x) + θdi,2(x), where
θ is a penalty parameter. To some extent, Fi(x) measures how
close a solution x is to the PF along the direction wi. Fig. 1(a)
illustrates di,1 and di,2 in two-dimensional objective space.

In θ-dominance, the N weight vectors serve the purpose of
dividing the objective space into N clusters C1, C2, . . . , CN .
Every solution is exclusively assigned to one cluster according
to the perpendicular distance from the weight vectors (i.e.,
di,2). Formally, x ∈ Cj , iff j = argminNi=1 di,2(x). Fig. 1(b)
illustrates the division of objective space with N = 4 weight
vectors. As an example, point E belongs to C2 because it is
closest to w2 in terms of the perpendicular distance.

1In this paper, we shall assume that the goal is to minimize objectives.
2Without loss of generality, we assume that all the normalized objective

values are greater than or equal to 0.
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Fig. 1. Illustration of θ-dominance in the normalized objective space.

With the introduction of the PBI function and the clustering
operator, θ-dominance is defined as follows:

Definition 4 (θ-Dominance): A solution u ∈ Ω is said to
θ-dominate another solution v ∈ Ω, denoted by u ≺θ v, iff
∃j ∈ {1, 2, ..., N}: u ∈ Cj , v ∈ Cj and Fj(u) < Fj(v).

In essence, θ-dominance only distinguishes the solutions in
the same cluster. In Fig. 1(b), B and F are θ-non-dominated
to each other since they belong to different clusters; B θ-
dominates E because they are both in cluster C2 and B
achieves a better PBI function value with respect to w2.

Similar to Pareto dominance, θ-dominance defines a strict
partial order over solutions [42]. As for non-dominated sorting
based on θ-dominance, we can first rank the solutions in
each cluster Cj according to Fj . Then the best solutions
in each cluster constitute the first θ-non-domination level,
the second best solutions constitute the second level, and so
on. Note that, unlike Pareto dominance, θ-dominance stresses
both convergence and diversity. So when conducting survival
selection, the solutions in the last θ-non-domination level to be
included can be randomly chosen instead of using a secondary
criterion such as crowding distance [44]. In Fig. 1(b), A, B,
C and D constitute the first θ-non-domination level, while E,
F and G constitute the second θ-non-domination level.

Note that θ-dominance is not Pareto compliant, which sup-
ports our approach of predicting both Pareto and θ-dominance
in this paper. Moreover, owing to using the PBI function,
θ-dominance can usually maintain higher selection pressure
toward the PF in many-objective optimization compared to
Pareto dominance [42].

C. Deep Feedforward Neural Networks

Deep feedforward neural networks (FNNs) are among the
most typical deep learning models. Given a set of input-output
examples T = {(x(1),y(1)), (x(2),y(2)), . . . , (x(M),y(M))},
called training set, the goal of the FNN is to approximate the
function that maps input x to output y. To this end, the FNN
defines a parametric function with the architecture as shown
in Fig. 2. In a FNN with depth D,3 there is an input layer (i.e.,
the 0-th layer) that just receives the input data x and an output
layer (i.e., the D-th layer) that gives the output y. Between the
input and output layers, there are D−1 hidden layers. In the l-
th layer (1 ≤ l ≤ D), it accepts the output of the (l−1)-th layer

3Generally, a feedforward neural network can be seen as a “deep” model
if the depth D is higher than 2.
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a[l−1] as input, and produces its output a[l] via the nonlinear
transformation: a[l] = h(W [l]a[l−1] + b[l]), where a[0] = x;
W [l] and b[l] are the weight and bias parameters for the l-th
layer respectively; h(·) is a nonlinear activation function. The
learning task is to determine the parameters W [l] and b[l],
l = 1, 2, . . . , D on the basis of training set T.
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Fig. 2. The fully-connected deep feedforward neural network.

FNNs are commonly used for multiclass classification.
In this case, the number of units in the output layer is
equal to the number of classes K, and the softmax func-
tion is further employed to a[D] = (a

[D]
1 , a

[D]
2 , . . . , a

[D]
K )>

to obtain a discrete probability distribution for K classes:
pk(x) = exp(a

[D]
k )/

∑K
k=1 exp(a

[D]
k ), where k = 1, 2, . . . ,K.

In multiclass classification, a target y(i), i = 1, 2, . . . ,M
in training set T is usually expressed as a one-hot vector
y(i) = (y

(i)
1 , y

(i)
2 , . . . , y

(i)
K ), where y

(i)
k = 1 iff x(i) belongs

to class k otherwise y
(i)
k = 0, k = 1, 2, . . . ,K. To learn

the parameters W = (W [1],W [2], . . . ,W [D]) and b =
(b[1],b[2], . . . ,b[D]), the following loss function for T, called
cross-entropy loss, is minimized with backpropagation [45].

J(W ,b) = − 1

M

M∑
i=1

K∑
k=1

y
(i)
k log(pk(x(i))) (2)

With learned parameters, the predicted class at a new input
x is given by t(x) = argmaxKk=1 pk(x). In addition, FNN can
also indicate the probability (or confidence) that x belongs to
the predicted class, which is given by p(x) = maxKk=1 pk(x).

In the deep learning era, a rectified linear unit (ReLU) is the
most popular nonlinear activation function, which can usually
make learning much faster compared to tanh or sigmoid
function [38]. Furthermore, many more advanced techniques in
parameter initialization (e.g., Kaiming initialization [46]), reg-
ularization (e.g., dropout [47]) and gradient-based optimization
(e.g., Adam optimizer [48]) have been invented for efficient
training of deep neural networks.

III. THE PROPOSED ALGORITHM

A. Overview

The framework of the proposed θ-DEA-DP is described
in Algorithm 1. First, we use the same approach as in θ-
DEA [42] to generate a set of N structured weight vectors.
In Step 2, we generate a set of initial solutions P using Latin
hypercube sampling as described for ParEGO [8]. The number
of solutions in P is set to 11n − 1, where n is the number
of decision variables. In Steps 3–9, all solutions in P are

evaluated and added to an external archive A, which is used
to save all the evaluated solutions so far.

Algorithm 1 Framework of the Proposed θ-DEA-DP
1: {w1,w2, . . . ,wN} ← InitializeWeightVectors(m)
2: P← LatinHypercube(n)
3: evals← 0
4: A← ∅
5: for x ∈ P do
6: Evaluate(x)
7: evals← evals+ 1
8: A← A ∪ x
9: end for

10: p-net← Initiate-Pareto-Net(A)
11: θ-net← Initiate-θ-Net(A)
12: {x∗1,x∗2, . . . ,x∗N} ← Get-θ-Reps(A)
13: {y∗1,y∗2, . . . ,y∗N} ← Get-Pareto-Reps(A)
14: P← TruncatePopulation(P, N)
15: while evals < MaxEval do
16: j ← ChooseTargetClusterIndex(N)
17: Q← GenerateOffsprings(P, N∗)
18: z∗ ← TwoStagePreSelection(Q,x∗j ,y∗j , p-net, θ-net)
19: Evaluate(z∗)
20: evals← evals+ 1
21: A← A ∪ z∗

22: Update-Pareto-Net(p-net, A)
23: Update-θ-Net(θ-net, A)
24: Update-θ-Reps({x∗1,x∗2, . . . ,x∗N}, A)
25: Update-Pareto-Reps({y∗1,y∗2, . . . ,y∗N}, A)
26: P← TruncatePopulation(P ∪ z∗, N)
27: end while

In Step 10, we train a neural network for Pareto dominance
prediction using the solutions in A, which we call Pareto-Net.
Once Pareto-Net is trained, its functionality is that, when given
any two solutions u and v, it can output the predicted Pareto
dominance relation between u and v (i.e., u ≺ v, v ≺ u
or u ' v) 4 along with a probability of belonging to the
predicted dominance relation, without knowing their objective
values. Similarly, in Step 11 we train a neural network called
θ-Net for θ-dominance prediction.

As described in Section II-B, N weight vectors divide the
objective space into N clusters C1, C2, . . . CN . In Steps 12–
13, we determine the θ-representative solution x∗j and Pareto-
representative solution y∗j for each cluster Cj , where x∗j and
y∗j are both chosen from A. The meaning of θ and Pareto
representative solutions will be explained later.

In θ-DEA-DP, the population size is set to N , that is the
same as the number of weight vectors. But the initial size of
population P is 11n− 1 which could be larger than N . So in
Step 14, we use non-dominated sorting based on θ-dominance
to select N elite solutions if 11n− 1 > N .

Steps 15–27 are iterated until the maximum number of
evaluations (MaxEval) is reached. In each iteration, we first
select a cluster Cj to be considered (i.e., Step 16). To ensure

4For convenience, u ' v (or u 'θ v) denotes u and v are Pareto (or θ)
non-dominated to each other.
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each cluster is approximately equally considered during opti-
mization, all clusters are considered in rounds one by one, but
their order is shuffled for each round.

In Step 17, we create an offspring population Q (with size
N∗) from the current population P by using simulated binary
crossover (SBX) and polynomial mutation [49]. As in θ-DEA,
we adopt random mating selection. Note that N∗ � N , so that
good candidate solutions are very likely to be included in Q.

Now we have a selected cluster Cj and a set of candidate
solutions Q. In Step 18, we use a two-stage preselection
strategy to select a single solution z∗ from Q for evaluation,
assisted by the trained Pareto-Net and θ-Net. The solution z∗

is expected to achieve considerable improvement over the θ-
representative solution x∗j and Pareto-representative solution
y∗j .

Since we have a newly evaluated solution z∗, we can create
some new training examples for Pareto-Net and θ-Net. By
combing previous and new training examples, we update the
Pareto-Net and the θ-Net in Steps 22 and 23, respectively. Also
because of z∗, we need to update θ and Pareto representative
solutions in Steps 24 and 25, respectively. In Step 26, we
truncate the population size back to N using θ-non-dominated
sorting.

Note that θ-DEA-DP does not incorporate a special normal-
ization procedure. Currently, θ-DEA-DP uses the same method
as ParEGO [8] to normalize the objective functions at the
beginning of optimization.

In the following, Section III-B illustrates the concept of
θ and Pareto representative solutions; Section III-C describes
how to initiate and update Pareto-Net and θ-Net; Section
III-D details the two-stage preselection strategy; Section III-E
discusses several design principles of θ-DEA-DP.

B. Representative Solutions
For a cluster Cj , its θ-representative solution x∗j satisfies

x∗j ∈ A ∩ Cj and @x ∈ A,x ≺θ x∗j . According to Definition
4, x∗j is indeed the solution that achieves the minimum value
of Fj among all solutions in A∩Cj . Note that x∗j can be null
if there is no solution in A falling into Cj (i.e., A ∩ Cj = ∅).

Suppose that we have obtained all θ-representative solutions
{x∗1,x∗2, . . . ,x∗N}. Among them (null solutions are ignored),
we can find Pareto non-dominated solutions, and the set of
their indices is denoted by I = {i1, i2, . . . , iN ′}. For a cluster
Cj , if j ∈ I, its Pareto-representative solution y∗j is the same
with its θ-representative solution x∗j . If j /∈ I and x∗j is not
null, we can certainly find an index i ∈ I satisfying x∗i ≺ x∗j ,
and then y∗j is set to x∗i . Note that if there is more than one
such index i in I, we pick the one that leads to the shortest
Euclidean distance between wi and wj . Lastly, if x∗j is null,
the Pareto-representative solution y∗j is necessarily null.

Fig. 3 further illustrates representative solutions. In this
figure, there is no representative solution for C1; A, B and C
are θ-representative solutions for C2, C3 and C4, respectively.
Because B and C are Pareto non-dominated solutions among
the three θ-representative solutions, B and C are also Pareto-
representative solutions for C3 and C4 respectively. As for C2,
B is set to its Pareto-representative solution. This is because
B Pareto dominates A, and w2 is closer to w3 than to w4.

PF

~

f2

~

f1

w3

w4

w1

w2

o

C2

C3

C4

C1

A

B

C

Fig. 3. Illustration of θ and Pareto representative solutions.

C. Surrogates Based on Dominance Prediction

Since the procedures presented in this subsection apply
to Pareto-Net and θ-Net similarly, Pareto-Net is used as the
example for illustration. We formulate dominance prediction
as a three-class classification problem (A dominates B, B
dominates A, or neither dominates the other).

1) Initiate the Surrogates: To initiate Pareto-Net in Step
10 of Algorithm 1, we need to first construct a training set
T using the evaluated solutions in archive A. Suppose A =
{x1,x2, . . . ,xS}, where S is the current number of solutions
in A. The input of each training example in T is a vector that
concatenates any two solutions xi and xj from A (i 6= j)
denoted by xi,j = [xi,xj ], and its corresponding output yi,j
is a one-hot vector indicating the class xi,j belongs to. In this
paper, we say that xi,j belongs to class 1 iff xi ≺ xj , belongs
to class 2 iff xj ≺ xi, and belongs to class 3 iff xi ' xj .
In this way, we create a training set T containing S(S − 1)
input-output examples.

With this training set we train the classifier (i.e., Pareto-
Net) which is a fully-connected FNN as shown in Fig. 2.
During training, we use Kaiming initialization [46] to initialize
the FNN parameters, use weight decay as a regularizer to
reduce overfitting, and run the Adam optimizer [48] with a
fixed minibatch size to optimize FNN parameters. These are
standard techniques for training deep FNNs and have been
implemented in PyTorch [50].

Our key observation for dominance prediction is that it is
usually an imbalanced classification problem [51], which will
be further discussed in Section III-E. To alleviate class imbal-
ance, we adopt the common strategy to introduce a weighting
factor for each class in cross-entropy loss. Corresponding to
Eq. (2), the weighted cross-entropy loss is defined as:

J(W ,b) = − 1

M

M∑
i=1

K∑
k=1

αky
(i)
k log(pk(x(i))) (3)

where αk (k = 1, 2, . . . ,K) is the inverse class frequency of
class k in the training set.

Given a concatenated vector of two solutions denoted by
[u,v], the trained Pareto-Net can predict the class of [u,v] that
is given by t(u,v), and also provide the estimated probability
of belonging to the predicted class that is given by p(u,v).
The drawback of this prediction function is that the predicted
dominance relation between u and v may depend on whether
the input vector is [u,v] or [v,u] when Pareto-Net does not
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perfectly capture the characteristics of Pareto dominance. For
example, Pareto-Net may output t(u,v) = 1 indicating u ≺ v
and output t(v,u) = 3 indicating u ' v, which leads to
inconsistency. To remedy this, we use the input vector that
results in larger prediction probability/confidence to determine
the dominance relation, so the predicted class of [u,v] and the
corresponding prediction probability is revised to:

t̂(u,v) =


t(u,v), if p(u,v) ≥ p(v,u)

3− t(v,u), if p(u,v) < p(v,u) and t(v,u) 6= 3

3, if p(u,v) < p(v,u) and t(v,u) = 3

(4)

and p̂(u,v) = max{p(u,v), p(v,u)}. For convenience, we
specify t̂(u,v) = p̂(u,v) = 0 if either u or v is null.

Analogously, we have the prediction function t̂θ(u,v) along
with the prediction probability p̂θ(u,v) for θ-Net. t̂θ(u,v) =
1, t̂θ(u,v) = 2 and t̂θ(u,v) = 3 imply the predicted θ-
dominance relation u ≺θ v, v ≺θ u and u 'θ v, respectively.

2) Update the Surrogates: In each iteration, we intend
to update the Pareto-Net (i.e., Step 22 of Algorithm 1). If
|A| < Tmax, all solutions in A are used to update Pareto-Net,
otherwise only the Tmax most recently evaluated solutions in
A are considered in order to reduce computational cost, where
Tmax is a predefined parameter.

Suppose z∗ is a newly evaluated solution that has just been
added to A (see Step 21 of Algorithm 1), so it will definitely
be considered in the updating. The other solutions considered
except z∗ constitute the set A′ = {xi1 ,xi2 , . . . ,xiT ′}, where
T ′ = max{|A|, Tmax} − 1. We can construct 2T ′ new exam-
ples that have not been seen by the Pareto-Net, with input of
these examples as [xi1 , z

∗], [xi2 , z
∗], . . . , [xiT ′ , z

∗], [z∗,xi1 ],
[z∗,xi2 ], . . . , [z∗,xiT ′ ]. To estimate the current performance
of Pareto-Net, we test it on the 2T ′ examples. Note that
due to class imbalance, the overall accuracy is usually not
a meaningful indicator of performance. Hence we record the
accuracy on each class, denoted by acc1, acc2 and acc3
respectively, and obtain accmin = min3

k=1 acck.
With accmin, we first determine whether to update or not.

If accmin > γ (γ is an accuracy threshold), Pareto-Net may
currently work pretty well so we just keep it unchanged.
Otherwise, we continue training Pareto-Net to update its model
parameters. The targeted training set here is constructed by
pairing any two solutions in A′∪z∗. Due to the gradient-based
training mechanism, we do not need to train Pareto-Net from
scratch. Instead, we use the current parameters of Pareto-Net
as starting point for the Adam optimizer.

The last issue for the updating is to determine the number
of training epochs5 denoted by Eupd. Suppose that Einit is the
number of training epochs used in initiating Pareto-Net, then
we specify Eupd according to accmin and Einit as follows:

Eupd = (1− accmin

γ
)Einit (5)

This equation incorporates two considerations: 1) It is rea-
sonable that Eupd is generally smaller than Einit since the
Pareto-Net has already been trained for some time before the

5One epoch means one complete pass through all the training examples.

updating; 2) A higher estimated accuracy accmin is likely to
require smaller adjustments of model parameters.

D. Two-Stage Preselection Strategy

In each iteration, we first choose a target cluster Cj and
sample a set of candidate solutions Q (see Steps 16–17 of
Algorithm 1). Our goal is to select a single solution from Q
for evaluation with the aid of Pareto-Net and θ-Net. To achieve
this, we employ a two-stage preselection strategy.

1) Comparison With Representative Solutions: The first
stage is responsible for selecting a subset of Q in which
solutions are likely to make improvements to the current rep-
resentative solutions. According to whether a θ-representative
solution x∗j is null or not, there are two cases in the first stage
that need to be handled separately.

If x∗j is not null, we compare each solution in Q with x∗j
in terms of θ-dominance, and compare it with y∗j in terms of
Pareto dominance. More specifically, for every solution z in
Q, we obtain t̂θ(z,x

∗
j ) and t̂(z,y∗j ) using θ-Net and Pareto-

Net, respectively. According to these values we can divide the
solutions in Q into four categories:

1) Q1 = {z ∈ Q | t̂θ(z,x∗j ) = 1 ∧ t̂(z,y∗j ) = 1}
2) Q2 = {z ∈ Q | t̂θ(z,x∗j ) = 1 ∧ t̂(z,y∗j ) = 3}
3) Q3 = {z ∈ Q | t̂θ(z,x∗j ) = 3 ∧ t̂(z,y∗j ) = 1}
4) Q4 = {z ∈ Q | t̂θ(z,x∗j ) = 2 ∨ t̂(z,y∗j ) = 2}
We shall ignore solutions in Q4 because all are predicted to

be θ-dominated by x∗j or Pareto dominated by y∗j . Among
Q1, Q2 and Q3, we only select one category for further
consideration and ignore solutions of the other categories.
In the proposed algorithm, Q1 is selected with the highest
priority, followed by Q2 and Q3. If Q1 6= ∅, we just select
Q1. Q2 or Q3 are selected only if the categories with higher
priority are empty.

If x∗j is null, this implies that at least one cluster does not
have evaluated solutions. In this case, we want to find a solu-
tion belonging to the unexplored cluster in order to enhance
diversity. So we only consider solutions in Q that are θ-non-
dominated to all current non-null θ-representative solutions.
We designate this set as category Q5, formally defined as:
Q5 = {z ∈ Q | ∀i ∈ {1, 2, . . . , N}, t̂θ(z,x∗i ) = 3}.

Note that for both cases, we only keep a maximum of Qmax

solutions if the number of solutions in the selected category
is larger than parameter Qmax. To do this, we compute the
sum of prediction probabilities related to each solution z in
the selected category, denoted by psum(z). This reads for the
first case psum(z) = pθ(z,x

∗
j )+p(z,y∗j ), while for the second

case we have psum(z) =
∑N
i=1 pθ(z,x

∗
i ). Then we can select

Qmax largest solutions in terms of psum(z).6

2) Comparison Within the Selected Category of Solutions:
Suppose that in the first stage, we have selected a cat-
egory Qk, k ∈ {1, 2, 3, 5} for consideration, denoted as
Qk = {z1, z2, . . . , zQ}. The second preselection stage is now
responsible for selecting one solution from Qk that is likely to

6Although it rarely occurs, we may fail to select any solution if Q1 =
Q2 = Q3 = ∅ in the first case and Q5 = ∅ in the second case. At this time,
we just resample the set of candidate solutions Q using genetic operators.
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yield the largest improvement over the representative solutions.
To do this, we first use Pareto-Net (θ-Net) to predict the Pareto
dominance (θ-dominance) relation between any two solutions
in Qk. Then for each solution zi in Qk, we define the following
metric, which we call expected dominance number (EDN):

e(zi) =
∑
j 6=i

I(t̂(zi, zj) = 1)p̂(zi, zj) (6)

where I(·) is the indicator function. This metric basically
counts the number of solutions in Qk that are predicted to
be Pareto dominated by zi, weighted by the probability with
which zi Pareto dominates. Similarly, we can define an EDN
in terms of θ-dominance for zi as follows:

eθ(zi) =
∑
j 6=i

I(t̂θ(zi, zj) = 1)p̂θ(zi, zj) (7)

Finally, we rank the solutions in Qk according to the sum
esum(zi) = e(zi) + eθ(zi). The solution with maximal value
esum(zi) is selected for function evaluation.

E. Discussion

In θ-DEA-DP, we combine Pareto and θ-dominance pre-
diction. As explained in Section I, it is undesirable to only
use Pareto dominance prediction. On the other hand, it is
also not a good practice to only use θ-dominance prediction,
because this may lead to slow convergence speed. Take Fig.
3 for an illustration and suppose that we are searching for a
solution that θ-dominates the current θ-representative solution
A in cluster C2, assisted by θ-Net. The selected solution for
evaluation will likely fall into the shaded area in Fig. 3 and
will thereby be Pareto dominated by solution B in another
cluster C3. As a result, many newly evaluated solutions may
not help to improve the overall quality of the current solution
set, hindering fast convergence towards the PF. For a similar
reason, we distinguish Pareto and θ-representative solutions for
a cluster. For example, if we use A as the Pareto representative
solution for C2 instead of B, then many promising solutions
recognized by Pareto-Net would be located in the shaded
area, which indeed cannot contribute to an overall quality
improvement. Another potential benefit of using both Pareto-
Net and θ-Net is that the optimization process may still be
guided well even if one of the two surrogates performs poorly,
leading to better robustness of optimization.

In θ-DEA-DP, the number of offsprings N∗ should be suf-
ficiently large to sample more and better candidate solutions.
However, if N∗ is too large, the surrogates will be used too
frequently for comparing solutions. This may introduce too
much approximation noise into the selection process since
surrogates are usually imperfect, thereby making it hard to
pick out a very good solution. A large N∗ may also incur
unaffordable computational costs. For these reasons we have to
set a maximum category size Qmax in two-stage preselection.

As mentioned in Section III-C1, it is important to view
dominance prediction as an imbalanced classification problem.
For Pareto dominance, it is well known that the overwhelming
majority of solutions will become non-dominated to each other
as the number of objectives increases. As for θ-dominance, an

extreme case is that all solutions involved in the training set
are in the same cluster. In this case, there will be no training
example belonging to class 3. Conversely, if all solutions are
uniformly distributed in N clusters and each cluster has L
solutions, then we can deduce that there are L(L − 1)N/2
training examples in both class 1 and class 2, and N(N−1)L2

in class 3. We therefore know that the ratio between class 3
and class 1 (or class 2) is larger than 2(N − 1) : 1. Since the
value of N usually ranges from tens to hundreds, the class
distribution will be highly imbalanced.

In the training of Pareto-Net and θ-Net, we do not apply
dropout [47]. Although dropout is commonly used as a reg-
ularization strategy in deep learning, we find that it usually
worsens the final optimization performance in our experiments
and a very modest weight decay without dropout is usually
a better configuration. Interestingly, Snoek et al. [39] had a
similar observation in the context of single-objective Bayesian
optimization. An analysis of the underlying reasons will be
undertaken in future work.

In two-stage preselection, it is intuitive that solutions in
Q1 are considered with highest priority, since each solution
in Q1 can improve both Pareto and θ-representative solutions
according to the surrogates. We further prefer to promote con-
vergence without disturbing the diversity preservation mecha-
nism, so Q2 is given higher priority than Q3.

The main difference between θ-DEA-DP and θ-DEA lies
in which offspring solutions are evaluated and then involved
in the survival selection process. In θ-DEA, all offspring
solutions are evaluated, whereas in θ-DEA-DP, only a single
offspring solution is picked out for evaluation via a two-stage
preselection assisted by dominance prediction.

IV. EXPERIMENTS

In this section, we first provide the basic settings of our
experiments. Then we evaluate and validate the performance of
θ-DEA-DP on multi-objective and many-objective optimiza-
tion problems, respectively. Lastly, we investigate the effects
of different components of θ-DEA-DP.

A. Experimental Design

1) Test Problems: We select test problems from three
widely used multi-objective benchmark suites.

The first benchmark suite, ZDT [52], contains six two-
objective test problems, which introduce different problem
difficulties for evolutionary optimization using a scheme sug-
gested by Deb [53]. We choose four unconstrained problems
here, referred to as ZDT1–ZDT4.

The second benchmark suite, DTLZ [54], defines a set of
problems that are scalable to any number of objectives. Fol-
lowing the practice in [8], we consider four of these problems
called DTLZ1, DTLZ2, DTLZ4 and DTLZ7. Moreover, for
DTLZ1, we replace 20π in the cosine term with 2π to reduce
the ruggedness of the function, as suggested in [8].

The third benchmark suite, WFG [55], is constructed via a
series of transformations that are sequentially applied to deci-
sion variables. Each transformation can introduce a desirable
feature (e.g., non-separability) into the problem. Similar to
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DTLZ, each WFG problem is also scalable in the number of
objectives. Here we choose two problems WFG6 and WFG7
for investigation, as in [40].

In the supplementary material, we report on additional
experiments that have been conducted on another four WFG
problems (i.e., WFG4, WFG5, WFG8 and WFG9) and four
real-world problems including a pressure vessel design prob-
lem, a two-bar truss design problem, a welded beam design
problem and a conceptual marine design problem.

TABLE I
MULTI-OBJECTIVE TEST PROBLEMS USED IN THIS STUDY

Problem No. of Objectives No. of Variables Features(m) (n)

ZDT1 2 10 Convex
ZDT2 2 10 Concave
ZDT3 2 10 Convex, Disconnected
ZDT4 2 10 Concave, Multi-modal

DTLZ1 2 6 Linear, Multi-modal
DTLZ2 3 8 Concave
DTLZ4 3 8 Concave, Biased
DTLZ7 3 8 Mixed, Disconnected
WFG6 3 10 Concave, Non-separable
WFG7 3 10 Concave, Biased

In Table I, we summarize the MOPs (with two or three
objectives) used in our experiments, which have a variety
of features. Moreover, for DTLZ1, DTLZ2, DTLZ4, DTLZ7,
WFG6 and WFG7, we also consider their five and eight-
objective versions, in order to evaluate the performance on
MaOPs. The number of decision variables is set to 10 for all
five and eight-objective problems.

Note that the position-related parameter needs to be speci-
fied for WFG6 and WFG7. In the experiments, this parameter
is always set to m − 1 according to [56] and [42], where m
is the number of objectives.

2) Performance Indicator: We use the inverted generational
distance (IGD) to evaluate the performance of an algorithm.
Let P∗ be a set of uniformly distributed points on the PF and
S be the set of points obtained by an algorithm in the objective
space. Then IGD can be computed as follows:

IGD(S,P∗) =
∑
v∈P∗

d(v,S)

|P∗|
(8)

where d(v,S) is the minimum Euclidean distance between v
and the points in P∗. IGD can provide combined information
about convergence and diversity of a solution set, and smaller
IGD value means better performance. To calculate IGD reli-
ably, |P∗| should be large enough to represent the PF very
well. In our experiments, |P∗| is roughly 500, 103, 105 and
106 for 2, 3, 5 and 8-objective problems, respectively.

Note that hypervolume (HV) [11] is another popular indi-
cator of performance used in the literature. HV provides a
well-established alternative to IGD when the true PF is not
known a prior. So in the supplementary material, we use HV
for the performance evaluation on four real-world problems.

3) Algorithms in Comparison: We compare the proposed
θ-DEA-DP with the following related algorithms:
• θ-DEA [42]: This algorithm combines Pareto and θ-non-

dominated sorting to rank solutions in survival selection.

Although θ-DEA is not a surrogate-assisted MOEA per
se, we include it as a baseline for comparison considering
its close relationship with θ-DEA-DP.

• ParEGO [8]: This algorithm aggregates multiple objec-
tive values of a solution into a single function value
via a parameterized weight vector. Then, similar to EGO
[6], a solution is selected for evaluation by maximizing
the expected improvement (EI) criterion with respect to
the current aggregation function. By choosing a different
weight vector in each iteration ParEGO is expected to
implicitly maintain the diversity of evaluated solutions.

• DomRank [16]: This algorithm is also an extension of
EGO for MOPs like ParEGO. But it uses a different
scalarization scheme based on Pareto dominance. In
DomRank, the aggregation function value of a solution
is proportional to the number of evaluated solutions that
dominate it.

• MOEA/D-EGO [9]: This algorithm employs a similar
scalarization scheme as ParEGO. But unlike ParEGO,
MOEA/D-EGO considers all aggregation functions rather
than a single one in each iteration and maximizes their
corresponding EI values simultaneously using MOEA/D-
DE [57] in order to generate several points for function
evaluation.

• CSEA [35]: This algorithm selects a set of reference
solutions from the evaluated solutions to construct the
classification boundary. Based on this, a classifier is built
to divide the candidate solutions into good and bad so as
to guide the selection of promising solutions for function
evaluation.

Similar to ParEGO and MOEA/D-EGO, θ-DEA-DP uses a
number of weight vectors to aggregate objectives, which is
reflected in θ-dominance. In the second stage of preselection,
θ-DEA-DP ranks the candidate solutions by dominance com-
parisons, which is somewhat similar to DomRank. Like CSEA,
θ-DEA-DP is also based on classification-based surrogates.

We implement θ-DEA-DP and θ-DEA in Python. In θ-DEA-
DP, the deep learning models are built using PyTorch [50].
For the sake of reproducible research, the source code of θ-
DEA-DP has been made available online.7 For ParEGO and
DomRank, we use the Python implementation8 by Rahat et al.
[16]. As for MOEA/D-EGO and CSEA, we use the Matlab
implementation9 available in the PlatEMO [58] platform.

We run each algorithm 21 times independently on each test
problem. For each run, we use the Pareto non-dominated set of
all evaluated solutions to calculate IGD. To test for statistical
significance, we carry out the Wilcoxon rank sum test at a 5%
significance level on IGD results obtained from two competing
algorithms. Moreover, the Holm-Bonferroni method is used to
counteract the problem of multiple comparisons.

4) Parameter Settings: In all algorithms compared, Latin
hypercube sampling is used to generate 11n− 1 initial points
for function evaluation, where n is the number of decision
variables. To ensure fair comparison, all of them use the same

7https://github.com/yyxhdy/tdeadp
8https://bitbucket.org/arahat/gecco-2017
9https://github.com/BIMK/PlatEMO
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termination criterion per run. That is, the maximum number of
function evaluations is set to 250 for two and three-objective
problems [8], 300 for five-objective problems, and 400 for
eight-objective problems.

TABLE II
WEIGHT VECTOR SETTINGS

No. of Objectives (m) Divisions (H) No. of Weight Vectors (N )

2 10 11
3 4 15
5 2, 2 30
8 2, 1 44

In θ-DEA-DP, θ-DEA, ParEGO and MOEA/D-EGO, a set
of predefined weight vectors is required. We use the same
method as in [42] to produce structured weight vectors. Table
II lists weight vector settings for the problem with different
number of objectives, where H is a parameter that controls
weight vector generation. To avoid only generating boundary
weight vectors, two-layered weight vectors [40] are used for
problems with five and eight objectives.

For θ-DEA-DP and θ-DEA, the penalty parameter θ in the
PBI function is set to 5, and population size is set to the
number of weight vectors. CSEA adopts the same population
size.

TABLE III
PARAMETER SETTING FOR θ-DEA-DP

Module Parameter Value

Evolution

Crossover Probability (pc) 1.0
Mutation Probability (pm) 1/n
Distribution Index for Crossover (ηc) 30
Distribution Index for Mutation (ηm) 20
Number of Sampled Offsprings (N∗) 7000

Surrogate

Depth of FNN (D) 3
No. of Units in Each Hidden Layer (U ) 200
Weight Decay Coefficient (λ) 0.00001
Epochs for Initiating FNN (Einit) 20
Batch Size (B) 32
Learning Rate (ε) 0.001
Maximum Size for Updating (Tmax) 11n+ 24
Accuracy Threshold (γ) 0.9
Maximum Category Size (Qmax) 300

For θ-DEA-DP, other parameter values are shown in Table
III grouped by different modules. Pareto-Net and θ-Net share
the same hyperparameter setting. Note that these parameter
values are just set to make θ-DEA-DP perform reasonably
well but are probably not the best. The careful parametric
study will be left for future research.

As for the other parameters in θ-DEA, ParEGO, DomRank,
MOEA/D-EGO and CSEA, we simply follow parameter set-
ting recommendations of the original studies [8], [9], [16],
[35], [42].

B. Performance on Multi-Objective Optimization Problems

Table IV shows the results on the multi-objective problems
depicted in Table I, where the best, median, and worst IGD
values are reported. For each problem, the +, − and ≈
symbols indicate that, compared to θ-DEA-DP, the corre-
sponding algorithm performs significantly worse, significantly

better or comparable, respectively. From Table IV, θ-DEA-
DP significantly outperforms all the other algorithms on 8 out
of 10 problems. For the remaining two problems, the next-
best algorithm is barely statistically comparable to θ-DEA-DP
(i.e., CSEA on DTLZ4 and MOEA/D-EGO on DTLZ7). θ-
DEA generally performs much worse than θ-DEA-DP, demon-
strating the effectiveness of the dominance prediction based
surrogates. Moreover, it is worth highlighting that θ-DEA-DP
usually outperforms the other compared algorithms by a large
margin on ZDT1–ZDT3, DTLZ1 and DTLZ7. Particularly on
ZDT2 and DTLZ1, the median IGD values achieved by θ-
DEA-DP are about one order of magnitude lower than those
by the best-performing counterparts (i.e., MOEA/D-EGO on
ZDT2 and ParEGO on DTLZ1).

TABLE IV
BEST, MEDIAN AND WORST IGD VALUES ON TWO AND

THREE-OBJECTIVE TEST PROBLEMS. BEST PERFORMANCE IS SHOWN IN
BOLD

Problem θ-DEA
θ-DEA ParEGO DomRank MOEA/D CSEA-DP -EGO

ZDT1

1.16E-02 3.46E-01 1.00E-01 1.18E-01 3.52E-02 1.61E-01
1.61E-02 5.94E-01 1.37E-01 2.47E-01 6.30E-02 3.86E-01
2.28E-02 9.74E-01 2.65E-01 4.37E-01 2.50E-01 7.91E-01

+ + + + +

ZDT2

1.49E-02 7.25E-01 1.61E-01 1.30E-01 3.02E-02 4.09E-01
1.85E-02 1.30E+00 2.71E-01 1.80E-01 1.36E-01 1.06E+00
2.84E-02 2.04E+00 4.32E-01 2.81E-01 3.74E-01 1.70E+00

+ + + + +

ZDT3

3.82E-02 2.77E-01 7.04E-02 4.21E-02 1.57E-01 1.66E-01
6.05E-02 4.38E-01 1.03E-01 1.04E-01 2.85E-01 4.12E-01
1.35E-01 5.91E-01 1.75E-01 1.81E-01 5.85E-01 7.43E-01

+ + + + +

ZDT4

1.05E+01 2.41E+01 3.40E+01 4.38E+01 6.16E+01 2.34E+01
2.80E+01 3.53E+01 5.70E+01 6.80E+01 8.46E+01 4.78E+01
3.68E+01 4.97E+01 7.54E+01 8.51E+01 9.49E+01 6.66E+01

+ + + + +

DTLZ1

2.15E-02 4.74E-01 1.93E-01 1.05E+00 1.55E+00 2.64E+00
5.38E-02 6.26E+00 4.12E-01 4.61E+00 4.55E+00 1.22E+01
1.14E-01 1.99E+01 1.75E+00 1.66E+01 1.14E+01 4.39E+01

+ + + + +

DTLZ2

1.10E-01 1.46E-01 1.47E-01 1.59E-01 2.24E-01 1.69E-01
1.23E-01 1.77E-01 1.58E-01 1.82E-01 2.58E-01 2.20E-01
1.44E-01 2.11E-01 1.70E-01 2.43E-01 2.83E-01 2.85E-01

+ + + + +

DTLZ4

1.21E-01 1.99E-01 3.99E-01 3.92E-01 4.54E-01 1.45E-01
2.12E-01 3.23E-01 4.78E-01 4.80E-01 5.32E-01 2.25E-01
3.13E-01 6.01E-01 5.44E-01 5.68E-01 6.31E-01 6.03E-01

+ + + + ≈

DTLZ7

7.26E-02 5.93E-01 2.30E-01 1.93E-01 8.09E-02 2.59E-01
9.43E-02 8.80E-01 2.95E-01 5.02E-01 1.07E-01 8.77E-01
1.72E-01 1.59E+00 4.42E-01 1.01E+00 1.33E-01 1.51E+00

+ + + ≈ +

WFG6

1.51E-01 1.91E-01 2.31E-01 2.00E-01 2.07E-01 2.01E-01
2.04E-01 2.19E-01 2.41E-01 2.26E-01 2.22E-01 2.10E-01
2.30E-01 2.46E-01 2.65E-01 2.57E-01 2.37E-01 2.33E-01

+ + + + +

WFG7

1.28E-01 1.46E-01 1.82E-01 1.64E-01 1.73E-01 1.55E-01
1.46E-01 1.61E-01 1.94E-01 1.77E-01 1.94E-01 1.77E-01
1.70E-01 1.86E-01 2.09E-01 1.89E-01 2.01E-01 1.85E-01

+ + + + +

+/−/≈ 10/0/0 10/0/0 10/0/0 9/0/1 9/0/1

To illustrate the distributions of solutions in the objective
space, Fig. 4 shows final non-dominated solutions obtained
in the run with median IGD value for each surrogate-assisted
algorithm for ZDT2, ZDT3, DTLZ1 and DTLZ2. From Fig.
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Fig. 4. Final solution sets with the median IGD values in the objective space on ZDT2, ZDT3, DTLZ1 and DTLZ2.

Fig. 5. Evolution of the median of IGD values (over 21 runs) versus the number of function evaluations on ZDT and DTLZ problems.
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4, we can derive the following observations:
1) On ZDT2, θ-DEA-DP achieves a very good approxima-

tion of the PF; ParEGO, DomRank and MOEA/D-EGO
miss a large part of the PF, suffering from the diversity
issue; CSEA struggles to converge toward the PF.

2) The PF of ZDT3 has five disconnected parts. All al-
gorithms considered have difficulty in covering them
all, but θ-DEA-DP can obtain the best approximation
in terms of both convergence and diversity.

3) DTLZ1 is constructed using a multi-modal g function
[8], [54], which poses a great difficulty for convergence
to the PF. Surprisingly, θ-DEA-DP can still converge to
the PF of DTLZ1 very well while maintaining a good
spread of solutions. ParEGO can only obtain very few
solutions near to the PF. As for DomRank, MOEA/D-
EGO and CSEA, their solutions are far away from the
PF. Note that ZDT4 is another problem with a multi-
modal feature, but its fitness landscape is too rugged,
containing 219 local PFs. So on ZDT4, although θ-
DEA-DP obtains a solution quality higher than all the
other algorithms, it indeed fails to approach the PF as
indicated by the large IGD values in Table IV.

4) On DTLZ2, all solutions obtained by θ-DEA-DP are
close to the PF, whereas some solutions of the other
four algorithms are far away from the PF.

TABLE V
BEST, MEDIAN AND WORST IGD VALUES ON FIVE-OBJECTIVE TEST

PROBLEMS. BEST PERFORMANCE IS SHOWN IN BOLD

Problem θ-DEA
θ-DEA ParEGO DomRank MOEA/D CSEA-DP -EGO

DTLZ1

5.38E-01 1.30E+01 2.57E+00 3.57E+00 1.01E+01 3.01E+00
1.29E+00 3.78E+01 7.51E+00 4.02E+01 5.43E+01 1.54E+01
6.09E+00 8.02E+01 1.85E+01 1.11E+02 9.93E+01 3.34E+01

+ + + + +

DTLZ2

2.46E-01 3.05E-01 3.59E-01 3.62E-01 3.89E-01 3.45E-01
2.65E-01 3.41E-01 3.77E-01 4.07E-01 4.41E-01 4.10E-01
3.01E-01 3.96E-01 4.07E-01 4.48E-01 5.07E-01 4.73E-01

+ + + + +

DTLZ4

3.42E-01 4.43E-01 5.68E-01 6.10E-01 6.32E-01 3.72E-01
4.45E-01 6.30E-01 6.23E-01 6.64E-01 7.12E-01 4.10E-01
5.57E-01 8.82E-01 7.01E-01 7.62E-01 7.70E-01 5.48E-01

+ + + + ≈

DTLZ7

3.52E-01 1.05E+00 4.81E-01 5.63E-01 5.19E-01 1.03E+00
6.88E-01 1.18E+00 5.37E-01 8.36E-01 6.47E-01 1.44E+00
1.01E+00 1.76E+00 5.73E-01 1.06E+00 7.65E-01 1.83E+00

+ − ≈ ≈ +

WFG6

2.63E-01 2.94E-01 3.13E-01 3.33E-01 2.96E-01 2.83E-01
2.91E-01 3.11E-01 3.28E-01 3.60E-01 3.13E-01 3.18E-01
3.15E-01 3.46E-01 3.49E-01 3.80E-01 3.23E-01 3.61E-01

+ + + + +

WFG7

2.56E-01 2.64E-01 2.95E-01 2.82E-01 2.93E-01 2.67E-01
2.69E-01 2.82E-01 3.37E-01 2.97E-01 3.13E-01 2.96E-01
3.01E-01 3.17E-01 3.54E-01 3.11E-01 3.57E-01 3.47E-01

+ + + + +

+/−/≈ 6/0/0 5/1/0 5/0/1 5/0/1 5/0/1

Fig. 5 plots the evolutionary trajectories of median IGD
values (over 21 runs) with the number of function evaluations
for each algorithm on ZDT and DTLZ problems. From Fig.
5 we can see that θ-DEA-DP can always reach a much lower
IGD value at a much faster convergence rate than θ-DEA,
suggesting that the surrogates in θ-DEA-DP are very powerful.

Moreover, as observed from these trajectories, θ-DEA-DP also
achieves very competitive performance at any time during
the optimization process among all the algorithms considered.
This implies that θ-DEA-DP can be successfully applied to
many different optimization scenarios where the allowed num-
ber of function evaluations varies. Another interesting finding
is that ParEGO often converges very fast during earlier stages
of optimization (sometimes even faster than θ-DEA-DP), but
then almost stagnates. This phenomenon is particularly clear
on ZDT2, ZDT3 and DTLZ1, where ParEGO outperforms
θ-DEA-DP in the early period but is surpassed by θ-DEA-
DP later. We conjecture that ParEGO may be more suitable
for optimization scenarios with a much smaller number of
function evaluations (e.g., 120).

C. Performance on Many-Objective Optimization Problems

Table V shows the best, median and worst IGD results on
five-objective test problems. As can be seen from Table V,
θ-DEA-DP still shows overwhelming advantage over all other
algorithms compared.

TABLE VI
BEST, MEDIAN AND WORST IGD VALUES ON EIGHT-OBJECTIVE TEST

PROBLEMS. BEST PERFORMANCE IS SHOWN IN BOLD

Problem θ-DEA
θ-DEA ParEGO DomRank MOEA/D CSEA-DP -EGO

DTLZ1

3.21E-01 5.67E-01 6.89E-01 5.95E-01 8.23E-01 4.32E-01
4.99E-01 2.38E+00 1.37E+00 1.31E+00 6.89E+00 7.52E-01
1.28E+00 7.43E+00 3.46E+00 3.79E+00 2.56E+01 2.22E+00

+ + + + +

DTLZ2

3.90E-01 4.09E-01 5.15E-01 4.75E-01 4.75E-01 5.20E-01
4.41E-01 4.51E-01 5.48E-01 5.13E-01 5.12E-01 5.82E-01
4.91E-01 4.97E-01 5.85E-01 5.52E-01 5.70E-01 6.49E-01

+ + + + +

DTLZ4

4.95E-01 5.80E-01 6.14E-01 6.38E-01 6.47E-01 4.98E-01
5.35E-01 6.23E-01 6.30E-01 6.55E-01 6.65E-01 5.63E-01
6.08E-01 6.98E-01 6.57E-01 6.85E-01 7.12E-01 6.59E-01

+ + + + +

DTLZ7

1.00E+00 9.64E-01 6.79E-01 7.14E-01 7.27E-01 1.15E+00
1.24E+00 1.10E+00 7.18E-01 8.77E-01 8.01E-01 1.33E+00
1.38E+00 1.39E+00 7.67E-01 1.23E+00 9.00E-01 1.51E+00

≈ − − − ≈

WFG6

3.71E-01 4.05E-01 4.60E-01 4.55E-01 4.22E-01 4.56E-01
4.14E-01 4.46E-01 4.97E-01 4.83E-01 4.37E-01 5.00E-01
4.75E-01 4.78E-01 5.30E-01 5.29E-01 4.77E-01 5.41E-01

+ + + + +

WFG7

4.47E-01 4.50E-01 5.31E-01 4.50E-01 4.57E-01 4.72E-01
4.81E-01 4.71E-01 5.56E-01 4.82E-01 5.19E-01 5.54E-01
5.44E-01 5.21E-01 5.84E-01 5.16E-01 5.76E-01 6.18E-01

≈ + ≈ + +

+/−/≈ 4/0/2 5/1/0 4/1/1 5/1/0 5/0/1

On the five-objective DTLZ4, CSEA obtains a smaller
median and worse IGD values than θ-DEA-DP, although there
is no statistical difference between the results. Recalling that
CSEA also performs comparably to θ-DEA-DP on three-
objective DTLZ4, CSEA may be good at handling a biased
search space.

On five-objective DTLZ7, θ-DEA-DP is significantly out-
performed by ParEGO and is statistically comparable to Dom-
Rank and MOEA/D-EGO. The unsatisfactory performance of
θ-DEA-DP here may be attributed to the fact that five-objective
DTLZ7 has up to 16 disconnected PF regions. So the diversity
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Fig. 6. Evolution of the median of IGD values (over 21 runs) versus the number of function evaluations on five- and eight-objective test problems.

preservation mechanism in θ-DEA-DP, which assumes the PF
shape is regular, may not work well. One possible remedy is
to adjust the distribution of weight vectors dynamically [59].

Table VI reports the IGD results on eight-objective test
problems. Overall, θ-DEA-DP is compared favorably with
any of the other algorithms on these problems. Several more
detailed observations are as follows:

1) θ-DEA becomes competitive to all surrogate-assisted
algorithms including θ-DEA-DP in the eight-objective
case. Compared to θ-DEA-DP, θ-DEA performs compa-
rably on DTLZ7 and WFG7. A possible reason is that
the higher number of objectives makes it much more
difficult to build surrogates with good accuracy, so that
the guidance provided by surrogates may become very
limited.

2) On eight-objective DTLZ7, θ-DEA-DP becomes less
competitive than on five-objective DTLZ7, which is
significantly outperformed by three other algorithms.
This is not surprising considering that the number of
disconnected PF regions of DTLZ7 increases exponen-
tially with the number of objectives.

3) The number of objectives can dramatically influence the
competitive relationship between algorithms. For exam-
ple, θ-DEA-DP is significantly better than CSEA on
eight-objective DTLZ4, but is just statistically compara-
ble to CSEA on the three- and five-objective instances.
Another more obvious example is the comparison with
CSEA on DTLZ1, where it performs worst among all
compared algorithms on the two-objective instance but
is second only to θ-DEA-DP on the eight-objective
instance.

Fig. 6 shows the convergence curves of the median IGD
obtained with the number of function evaluations on some

five- and eight-objective problems, in order to have a better
understanding of the optimization process of each algorithm.
It is clear that θ-DEA-DP can usually reduce the IGD values
more quickly than the other algorithms.

TABLE VII
THE AVERAGE CPU TIME CONSUMED IN MANAGING SURROGATES

θ-DEA-DP ParEGO DomRank

CPU Time (min.) 37.74 31.36 41.45

In our experiments, θ-DEA-DP, ParEGO and DomRank are
all implemented in Python and run in the same computing
environment. So we can fairly compare average CPU times
over all runs consumed by these three algorithms in managing
the surrogates. From Table VII, θ-DEA-DP costs reasonable
time for surrogates compared to ParEGO and DomRank. Note
that this metric is not very important in practice since function
evaluations usually dominate the overall computation time in
expensive optimization.

D. Investigations into the Components of θ-DEA-DP

First, we would like to investigate how well deep learning
performs on dominance prediction compared to traditional
machine learning approaches. To do this, we need to have
training sets and test sets. For a multi-objective problem, we
use Latin hypercube sampling to generate 11n − 1 solutions,
and construct a training set using these solutions as described
in Section III-C1. Then we randomly generate 1,000 examples
for each class, constituting a test set with size 3,000. We
choose support vector machine (SVM) [60], random forest
(RF) [61] and complement naive Bayes (CNB) [62] for com-
parison. CNB is specially designed for imbalanced classifica-
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TABLE VIII
COMPARISON OF DIFFERENT MACHINE LEARNING MODELS ON THE DOMINANCE PREDICTION PROBLEM. BEST PERFORMANCE IS SHOWN IN

BOLD. STANDARD DEVIATION IS SHOWN IN THE BRACKET

Problem m n
Pareto Dominance Prediction Accuracy (%) θ-Dominance Prediction Accuracy (%)

Pareto-Net Pareto-Net∗ SVM RF CNB θ-Net θ-Net∗ SVM RF CNB

ZDT1 2 10 97.37(0.54) 96.20(0.72)+ 81.40(0.63)+ 38.33(1.37)+ 63.80(2.58)+ 67.77(1.38) 65.70(1.73)+ 66.50(1.65)+ 34.23(1.48)+ 49.10(2.04)+

ZDT2 2 10 97.73(0.37) 97.67(0.70)≈ 85.30(0.87)+ 59.73(3.83)+ 67.03(1.22)+ 79.60(2.23) 79.90(2.31)≈ 63.63(1.27)+ 64.93(3.99)+ 51.43(1.53)+

ZDT3 2 10 79.93(1.57) 76.23(1.94)+ 73.27(1.23)+ 40.63(2.28)+ 61.53(1.92)+ 61.53(1.73) 57.87(1.44)+ 59.73(1.26)+ 33.37(0.06)+ 44.50(1.08)+

DTLZ1 2 6 76.33(2.65) 70.90(3.57)+ 71.23(2.78)+ 38.50(2.36)+ 34.57(1.61)+ 70.23(1.57) 55.60(2.30)+ 56.50(1.83)+ 33.33(0.00)+ 33.50(1.65)+

DTLZ2 3 8 65.47(3.88) 44.37(2.87)+ 56.80(3.64)+ 33.43(0.42)+ 43.87(1.49)+ 58.03(1.40) 46.03(1.34)+ 50.13(1.65)+ 33.33(0.02)+ 36.80(0.81)+

DTLZ4 3 8 78.87(2.42) 68.10(2.82)+ 75.63(1.67)+ 41.83(2.64)+ 58.77(2.85)+ 53.67(2.29) 54.33(2.06)≈ 54.53(2.40)− 80.87(4.33)− 37.30(1.99)+

DTLZ7 3 8 94.00(0.78) 89.87(1.79)+ 85.30(0.80)+ 40.10(2.52)+ 63.53(3.88)+ 63.23(1.54) 55.03(2.30)+ 58.87(1.81)+ 33.60(0.61)+ 46.23(0.72)+

WFG6 3 10 49.10(3.06) 37.93(1.39)+ 40.87(1.54)+ 33.33(0.03)+ 46.27(1.56)+ 52.17(1.62) 46.93(1.53)+ 48.20(1.04)+ 34.77(3.28)+ 40.90(1.58)+

WFG7 3 10 62.43(2.75) 55.53(2.62)+ 59.00(3.29)+ 34.00(0.56)+ 51.53(1.70)+ 53.30(2.06) 48.93(1.98)+ 50.13(1.75)+ 34.23(0.51)+ 46.90(0.92)+

+, − and ≈ indicate that the result is significantly worse, better or comparable compared to that of Pareto-Net (θ-Net), respectively, according to the Wilcoxon rank
sum test at a 5% significance level.

tion. In SVM and RF, we use the same method as in Pareto-
Net and θ-Net for alleviating class imbalances. To illustrate
the necessity of handling imbalance, we also consider variants
of Pareto-Net and θ-Net, denoted respectively as Pareto-Net∗

and θ-Net∗, which use the conventional cross-entropy loss
instead of the weighted version. For all the compared learning
algorithms, we do not conduct hyperparameter optimization,
which is itself an expensive procedure and is usually not
desirable for surrogates in practice. So for deep learning
algorithms, we just use the hyperparameter setting given in
Table III. As for the other learning algorithms, we use the
default hyperparameter values provided in scikit-learn [63].

Table VIII shows the median prediction accuracy (over 21
runs) and the standard deviation of different algorithms. Note
that in each run the training is conducted over a set of different
Latin hypercube samples. As can be seen, Pareto-Net (θ-
Net) generally achieves much higher accuracy than SVM, RF
and CNB on Pareto (θ) dominance prediction, demonstrating
the superiority of deep learning algorithms. Compared to
Pareto-Net∗ (θ-Net∗), Pareto-Net (θ-Net) usually performs
much better, suggesting that it is necessary to consider the
imbalance issue in dominance prediction. Moreover, all the
algorithms usually obtain lower accuracy on θ-dominance
prediction than on Pareto dominance prediction, indicating that
θ-dominance relations may be much harder to learn.

Although the accuracy of surrogates is not the only factor
that impacts the performance of surrogate-assisted MOEAs
[5], we find some interesting correlations. For example, Pareto-
Net and θ-Net have very high accuracy on ZDT2, which can
partly explain why θ-DEA-DP achieves a very small IGD
value on this problem.

To study the impact of different parameters in θ-DEA-DP,
Fig. 7 plots the evolutionary trajectories of median IGD for
two-objective DTLZ1 under various parameter settings. Fig. 7
offers the following insights:

1) U , N∗ and Qmax need to be sufficiently large. On the
other hand, larger values may not always be helpful as
it can sometimes harm final performance.

2) Larger D and γ can be beneficial to final performance.
But a comprise should be made since computation time
for surrogates will be increased thereby.

3) Smaller Tmax is usually preferred, which implies that

Fig. 7. Evolution of the median of IGD values (over 21 runs) on two-objective
DTLZ1 in the last 100 function evaluations, under various parameter settings.

we should focus more on the most recently evaluated
solutions when updating the surrogates.

4) The neural networks cannot be too complex, otherwise
it may lead to overfitting due to the limitation of data.

V. CONCLUSION

In this paper, we have described θ-DEA-DP, a surrogate-
assisted MOEA for expensive multi-objective optimization. θ-
DEA-DP maintains two deep neural networks as surrogates,
one for Pareto dominance prediction (i.e., Pareto-Net) and
another for θ-dominance prediction (i.e., θ-Net). The two sur-
rogates interact with the evolutionary optimization process of
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θ-DEA via a two-stage preselection strategy. More specifically,
at each iteration every candidate solution is compared with
Pareto and θ-representative solutions for the target cluster,
then the surviving candidates are further compared with each
other, giving rise to a winner for function evaluation. All these
comparisons between solutions are in terms of dominance
relations predicted by Pareto-Net or θ-Net, taking into account
the confidence of these predictions. With the newly evaluated
solution, Pareto-Net and θ-Net are updated in an ad-hoc
way according to their current estimated accuracy. Owing to
the characteristics of θ-dominance, θ-DEA-DP is expected to
provide enough selection pressure even in a high-dimensional
objective space, while preserving the desired diversity explic-
itly through uniformly distributed weight vectors.

Experimental results on a number of multi/many-objective
benchmark problems have shown that θ-DEA-DP performs
considerably better than several typical surrogate-assisted al-
gorithms. It is noteworthy that θ-DEA-DP has a great ad-
vantage in addressing multi-modal multi-objective problems
(e.g., DTLZ1). In addition, we demonstrated that deep learn-
ing is usually superior to traditional learning algorithms on
dominance prediction, and investigated the impact of several
key parameters in θ-DEA-DP. Currently, the performance of
θ-DEA-DP is not satisfactory on problems with very high
numbers of objectives (e.g., 10 or more), which needs to be
improved by the further study. In the future, it is also worth
exploring the applications of θ-DEA-DP in expensive real-
world engineering problems [64], [65].
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