
Learning to Move a Robot with RandomMorphologyPeter Dittrich1 , Andreas B�urgel1 and Wolfgang Banzhaf121 Dept. of Computer Science, University of Dortmund,44221 Dortmund, Germanyhttp://ls11-www.informatik.uni-dortmund.dedittrich j buergel j banzhaf@LS11.informatik.uni-dortmund.de2 Presently at: International Computer Science Institute, Berkeley, CA, 94708Abstract. Complex robots inspired by biological systems usually con-sist of many dependent actuators and are di�cult to control. If no modelis available automatic learning and adaptation methods have to be ap-plied. The aim of this contribution is twofold: (1) To present an easyto maintain and cheap test platform, which ful�ls the requirements of acomplex control problem. (2) To discuss the application of Genetic Pro-gramming for evolution of control programs in real time. An extensivenumber of experiments with two real robots has been carried out.Keywords genetic programming, real-time robotics, random morphol-ogy robot, hardware evolution1 Complex Bio-Inspired RobotsConventional industrial robots are designed in such a way that a model canbe derived easily and the inverse kinematic can be calculated. In operation,the inverse kinematics is used to compute the trajectory for movement betweengiven points in the working area of the robot. Connections between actuators aremade as sticky as possible to yield (near) linear behaviour [7]. Perception relieson sense-model-plan-act cycle, where for planning a mostly prede�ned model ofthe system is required.For the development of robots which are inspired by biological systems 1\controllability" is not a primary design principal. Thus, their actuators aremostly dependent. A model usually does not exist, is very hard to derive ortoo complex so that a model-based calculation of motor commands requires toomuch time for reactive tasks. There is no obvious optimal control strategy for adesired action (e.g. movement) because of the complex interdependencies of allthe actuators and a non-linear feedback from the environment. Examples of (atleast partially) bio-inspired robots are modular robots like the robot snake [2, 3]and robot �shes like the robot tuna build at MIT Ocean Engineering [4].But even if a model exists, a robot can get into a situation where this modelis not valid anymore, e.g. through malfunctioning of parts. If the control strategyis based on the model and an unexpected error occurs (e.g. the breaking of a1 Shortly called: bio-inspired robot.

joint between two actuators) the model breaks down and the control strategy islikely to fail 2.In this case a learning mechanismwould be very useful that is able to generatea new control program adapted to the new situation.In other words, every robot can turn into what we call a random morphology("RM-") robot, where \RM-robot" refers to a robot with an arbitrary, com-plex architecture. In this paper, we study a 6-servo robot (see Figure 1) as anRM-robot. The term RM-robot does, however, not imply non-deterministic be-haviour.If the robot is on its own, an adaptation mechanism is needed which is ableto cope with an unexpected architecture and which makes as few assumptionsas possible about the hardware. In the following we will (1) present an easy tomaintain real robot platform to test such mechanisms and (2) discuss GeneticProgramming (GP) as a mechanism to cope with a RM robot.It should be noted that the RM robot is also inspired by Sims's work onevolving morphologies [1]. From this point of view the RM robot can be seen asa step towards a physical instantiation of Sims's virtual box creatures.
servo 5 servo 2

servo 1

servo 4

servo 3

servo 0

joint 0
joint 1

joint 2
joint 3

joint 7

joint 8

joint 9

joint 10

joint 11

joint 12

coupling

joint 13

joint 14

joint 5

joint 4

joint 6Fig. 1. The mechanics of the random morphology (RM-) robot. It consists of six con-ventional servos coupled arbitrarily by thin metal joints.2 Strictly speaking. the breaking of a joint is not an unexpected error, because we havealready expected it. Thus, its very hard, maybe impossible, to model unexpectederrors.

2 The RM-RobotActuators:The RM robot is composed of a couple of servos which are connected ar-bitrarily (randomly). The servos are conventional cheap RC (remote control)servo motors available for hobby air planes and cars. These devices possess acomplete servo system including: motor, gear box, feedback device, servo con-trol circuitry, and drive circuit. The connections are made by brass poles alsoavailable for hobby modelling. They can be easily connected to the servos, thusone can set up or change an architecture quickly, which should be useful forevolutionary experiments in hardware. The complexity of the mechanics can beincreased by connecting poles and servos with springs.Sensors:Movement of the RM-robot is measured by a computer mouse device, me-chanically connected to the robot. This device allows precise measurement ofmotion in the 2-D plane. There are also light detecting sensors which are, how-ever, not considered in this contribution.Control:The servos are controlled by a pulse signal that occurs at about 50 Hz. Thewidth of the pulse determines the position of the servo motors. To generate thissignal we use a simple micro-controller, connected to the host computer by aserial RS232 interface. The host is a PC running LINUX which is fast enougheven without a real-time LINUX kernel. A piece of interface software was writtento control the servos via the serial RS232 line and to measure analog voltageinput via a A/D PC card. Figure 2 shows the overall system architecture.
Mouse

A/D-Demon

A/D-Adapter

Sensors

Mouse-Demon

Servos

 Servo-Interface

 Servo-Daemon

User-Program

Operators
Interface-Drivers

Robot Mechanics

GP-System

 Kernal Fitnes

Fig. 2. Overview of the system architecture.

Discussion:The system is composed of conventional and cheap parts. It is easy to main-tain and to construct. It provides an interesting and very
exible test platformfor adaptive and learning algorithms that have to cope with complex, unex-pected architectures. Its main limitation is the external control by a desktopcomputer, which is not a problem from a scienti�c point of view. A wireless,fully autonomous version would make experiments and demonstrations simpler.At the moment the robot has to be watched constantly by an experimentatorbecause it may interact with its wire which would bias the results.3 Evolving Control ProgramsIn this section we will show how control programs can be generated by an evolu-tionary process using Genetic Programming [10,5]. There are various ways howEvolutionary Algorithms (EA) can be applied to generate or optimize robotcontrollers [17,6, 16]:1. The �tness evaluation can be performed by a simulator, as in [11]. Theadvantages of this method are: Di�erent controllers can be tested underexactly the same environmental conditions. A simulation is usually cheaperand faster than a real robot. Stability, robustness and correction correctnessof solutions be proven { although not in general { which is important for anindustrial application. On the other hand, problems with this approach are:A model must be available and this model or simulationmight have artifacts,e.g. deadlocks. The individuals might exploit simpli�cation or artifacts in themodel [1].3 As a result, the evolved controller might not work (reliably) onthe real robot.2. The �tness can be evaluated using the real robot [15, 12, 13]. The majorqualitative di�erences to the simulator-based evaluation are: Fitness eval-uation is now a stochastic process and real-world time plays an importantrole. In addition to the robot learning system, a changing environment mustbe taken into account where time
ow is not synchronised with the learningsystem. For instance, changes of the environment might be slowed-down orstopped in a simulation whereas this is not possible in the real world. An ad-vantage is that one may encounter \unexpected errors" which do not appearin simulations.3. A combination of (1) and (2) can be used [17]. A controller generated by asimulation is �ne tuned on the real robot. To evolve complex control systemsthe task is usually divided into subtasks (e.g. behaviours) which are indepen-dently evolved either by simulation or using the real robot. The behavioursare combined by an action selection mechanism which can be evolved, too[9].Fitness evaluation can also be characterised by a time scale:3 This e�ect can be put to use when testing models or simulators.

1. Global or goal-oriented �tness evaluation: The robot is run for a long timeduring which it is able to reach the desired goal once, or even many timesstarting from the same or di�erent positions. Fitness can be easily derivedfrom a measure how well the goal has been reached. This method is usuallyused in simulations.2. Local �tness evaluation: The robot is run only for a very short time (in [12]only a fraction of a second). The �tness evaluation will be much faster, butde�ning the �tness function on local actions such that the global goal willbe reached is more di�cult than in the previous case.Of course, it cannot be stated in general that one method is better than theother. It is very probable that in most applications a combination of di�erentmethods is favourable. Here, we shall concentrate on one method in GeneticProgramming which we will use with only a few small modi�cations.The motivation for using GP is: (1) We would like to examine whether ornot GP is able to learn complex robot movements in real-time and uncoverthe bene�ts and limitations of this approach. (2) GP produces automaticallyprograms. A program is a very
exible and most commonly used representationof a computable function.3.1 The Genetic Programming SystemThe learning method is a conventional steady-state tree-based GP algorithmusing a local �tness evaluation on a real robot with the following settings.We use local �tness evaluation with a steady-state algorithm. An individualwill control the robot only for a short while. For this it is executed ne times.Its performance is measured as the robots advance in the desired direction.Backward movement will be punished by a factor of two and stagnation willbe equal to the worst backward movement so far. The Fitness is evaluated atcreation time not during the selection process. In tournaments, an individualis selected by drawing an number of individuals uniformly distributed from thepopulation and choosing the individual with the best (or worst) �tness value.As in in conventional GP one subtree in each parent is selected randomly andexchanged. In mutation, each node is mutated by a probability pnodeMutation.For this the node is replaced by a node randomly selected from the set of nodeswith the same arity. So, a terminal is always replaced by another terminal. Thearity of a node will never be changed by mutation.The set of functions in Tab. 1 is explained in more detail in Tab. 3. Theterminal set is explained in Tab. 3.3.2 AlgorithmBecause in real-time evolutionary learning it is important exactly when and howthe �tness is evaluated, the algorithm is given in more detail below. Implemen-tation is based on gpquick [14].

Objective Find a program that moves the robot straighton as far as possibleRaw �tness The sum of pixels the mouse pointer travelsin a desired direction minus the sum of pix-els the mouse pointer travels in the oppositedirection. (See text.)Fitness Equal to raw �tness, except in the case whenthe raw �tness is zero the �tness is equal tothe worst �tness so far encountered.Executions per �tness evaluation nrepetitions = 4Terminal set GETSERVO0, GETSERVO1, GETSERVO2,GETSERVO3, GETSERVO4, GETSERVO5,GETSERVO6, CONSTFunction set ADD, SUB, MUL, DIV, SINE, DELAY,SETSERVO0, SETSERVO1, SETSERVO2,SETSERVO3, SETSERVO4, SETSERVO5,SETSERVO6, IF, IFLTE, SEQUENCE2,PROG4Population size M = 50; 100Maximal number of nodes lmax = 100; 200 nodesProbability of mutation pm = 0:13Probability of node mutation pnodeMutation = 0:99; 0:15Probability of crossover pc = 0:86Probability of reproduction pr = 0:01Tournament size for genetic operators Tr = 4Tournament size for replacement Tk = 2Termination criteria running time excess or decision by experi-menterTable 1. Koza tableau of the evolution of motion control programs for the RM-robot.ADD(a,b), SUB(a,b), MUL(a,b), SINE(a) normal arithmetic operationDIV(a,b) protected division, returns 1 if b = 0DELAY(t) delays the execution of the program for ttime stepsSETSERVO0(a), SETSERVO1(a), . . . ,SETSERVO5(a) Commands servo to position a. No delay isexecuted. Returns current position of theservo. Values a > 127 and a < �127 re-sult in a maximal left or right turn, respec-tively.IF(a,b,c) if a > 0, returns b, else cIFLTE(a,b,c,d) if a � b, returns c, else d.SEQUENCE2(a,b) evaluates a, then b, returns result of bPROG4(a,b,c,d) evaluates a, then b, then c, then d, returnsresult of dTable 2. Function set of the GP system.

GETSERVO0, GETSERVO1, . . . ,GETSERVO5 returns current position of servo nCONST a �xed random constant out of [-127, 127]Table 3. Terminal set of the GP system.Initialisation:1. Generate a random population P of size M .2. For each individual in P , evaluate its �tness.The GP execution cycle:1. Delete one individual from P , which is selected by a tournament of size Tk(worst individual from Tk randomly drawn individuals).2. Draw a random number x out of [0; 1].3. If x < pc:Select I1 from P by a tournament of size Tr .Select I2 from P by a tournament of size Tr .Create o�spring Io via crossover of I1; I2.4. If pc < x < pc + pm:Select I from P by a tournament of size Tr .Create o�spring Io via mutation of I.5. If pc + pm < x < pc + pm + pr:Select I from P by a tournament of size Tr .Create o�spring Io with Io = I.6. Evaluate �tness for o�spring Io.7. Add o�spring Io to population P .A tournament of size Tr means that Tr individuals are randomly drawn fromthe population and the best according to its �tness is selected. Note that the �t-ness of each individual has been evaluated before, either during initialisation orin step (6). Although this is an e�cient procedure, it might become a signi�cantproblem, because �tness values can become obsolete. The above algorithm willfail if the environment changes very quickly, which is not the case, however, inthe experiments described here. The problem could be overcome by evaluatingthe �tness again for each individual during a tournament, like in [12].Evaluation of �tness f of individual I:1. Clear mouse event queue.2. Execute nrepetitions times Individual I. This creates a mouse event queue ofsize nq.3. For each mouse event i set Ei to the distance the pointer moved in thedesired direction represented by this event. Backward movement results ina negative Ei.4. f Pnqi=1Ei (Variant B: f (Pnqi=1;Ei>0Ei)2 � 2(Pnqi=1;Ei<0Ei)2)5. fmin min(fmin; f).6. if f = 0, set f fmin.

3.3 ResultsBefore describing the results with the 6-servo RM robot, preliminary experimentswith a 3-servo robot will be shortly summarised.3.4 Preliminary ExperimentsA series of 55 experiments has been performed with the preliminary 3-servorobot shown in Figure 3. An experiment is a run of the robot with the algorithmdescribed above. The preliminary robot consists of two servos able to retardthe front wheels and the rear wheels, respectively. The third servo can bendthe robot in the middle. In these experiments, we were able to evolve programsfor movement in the plane and even on a gradient. The gradient is much moredi�cult because the two servos functioning as breaks must be synchronised veryaccurately. Furthermore, the experiments showed that{ punishment of zero-movement decreases the average number of non-movingindividuals and increases convergence speed.{ learning how to delay is important. However, increasing the DELAY concen-tration only (no. of DELAY operations in the population) is not enough. Thearguments of DELAY have to be large. This is achieved by multiplication oflarge numbers or (more seldom) by division by very small numbers.{ a MUL operation as an argument of a SETSERVOn operation usually createsan over
ow (a value greater 127) that results in a maximumturn of the servo.It could not been convincingly shown, that the over
ow behaviour is exploitedfor protection against crossover and mutation.3.5 Experiments with the 6-Servo Random Morphology RobotA series of 32 experiments has been performed with the 6-servo RM-robot. As inthe previous section an experiment is a run of the GP algorithm described above.A single run lasts several hours. Details can be found in Tab. 4 which gives anoverview of all 32 experiments. There are 16 experiments with a population sizeM = 50 and max. individual size Imax = 50 and 16 experiments with M = 100and Imax = 100(500). In addition the operator set has been varied in orderto explore the parameter space and to test the robustness of the GP systemaccording to its setting. In each experiment the operator set consists at least ofa core set F2 = fSETSERV O0; SETSERV O1; : : : ; SETSERV O5; DELAY gand an arithmetic function.From these experiments, it becomes clear that the same system which learnsto move the 3-servo preliminary robot is also able to move the 6-servo RM-robot.Although it is obvious that no signi�cant conclusion can be made about whichparameter setting is best, the following tendencies should be noted:{ Fitness evaluation using variant A (sum over Ei) together with a populationsize of M = 100 is better than using variant B and M = 50.

1997 f M lmax Operator set Tests Bst Wst Avg56 11.8 B 50 50 F2[fADD, SUB, MUL, DIVg 8000 69 -25 4057 14.8 B 50 50 F2[fADDg 4350 20 -17 958 16.8 B 50 50 F2[fADD, SUB, MUL, DIVg 5150 52 -23 2959 19.8 B 50 50 F2[fADD, SUB, MUL, DIVg 5000 54 -42 2260 21.8 B 50 50 F2[fADD, SUB, MUL, DIVg 8000 45 -25 1461 22.8 B 50 50 F2[fADD, SUB, MUL, DIVg 7000 35 -34 1462 23.8 B 50 50 F2[fADD, SUB, MUL, DIVg 4400 40 -20 763 24.8 B 50 50 F2[fADD, SUB, MUL, DIV, IF, IFLTE,GETSERVOXg 7000 53 -29 2364 25.8 B 50 50 F2[fSUB, MULg 5600 23 -25 965 25.8 B 50 50 F2[fSUB, MULg 1500 16 -22 366 25.8 B 50 50 F2[fADD, SUB, MUL, DIV, IF, IFLTEg 7000 32 -29 967 26.8 B 50 50 F2[fADD, SUB, MUL, DIV, IF, IFLTEg 2600 26 -29 1068 27.8 B 50 50 F2[fADD, SUB, MUL, DIV, IF, IFLTEg 9100 33 -29 1671 27.8 B 50 50 F2[fADD, MULg 2000 22 -31 472 28.8 A 50 50 F2[fADD, MULg 7850 22 -22 1073 1.9 A 50 100 F2[fADD, SUB, MUL, DIVg 2850 20 -25 574 3.9 A 100 100 F2[fADD, SUB, MUL, DIVg 3800 136 -64 7075 4.9 A 100 100 F2[fADD, SUB, MUL, DIVg 4000 22 -18 876 5.9 A 100 100 F2[fADD, MULg 2500 180 -60 14877 8.9 A 100 100 F2[fADD, MULg 2000 115 -31 8278 9.9 A 100 100 F2[fADD, MULg 4000 20 -14 479 10.9 A 100 100 F2[fADD, MULg 1800 135 -44 12080 11.9 A 100 100 F2[fADD, SUB, MUL, DIV, IF, IFLTEg 3100 26 -23 1481 13.9 A 100 100 F2[fADD, SUB, MUL, DIV, IF, IFLTEg 1700 19 -17 982 14.9 A 100 500 F2[fADD, SUB, MUL, DIV, IF, IFLTEg 4100 22 -21 1383 15.9 A 100 500 F2[fADD, SUB, MUL, DIVg 3800 148 -24 12784 17.9 A 100 500 F2[fADD, MULg 1400 147 -33 10885 18.9 A 100 100 F2[fADD, SUB, MUL, DIVg 1600 177 -14 16886 19.9 A 100 100 F2[fADD, SUB, MUL, DIV, IFLTEg 3000 31 -25 1387 19.9 A 100 100 F2[fADD, MUL, IFLTEg 2500 77 -22 6888 22.9 A 100 100 F2[fMUL, IFLTEg 3000 36 26Table 4. Overview of the experiments with the 6-servo RM-robot. The table showsfrom left to right: experiment number, day of experiments realization, variant of �tnesscalculation, population size M , max. number of nodes per individual lmax, operatorset, total number of �tness evaluation, best/worst/average �tness in �nal population.F2 = fSETSERV O0; SETSERV O1 : : : ; SETSERV O5; DELAY g

Fig. 3. The preliminary robot with 3 servos. Two servos are used as brakes for thefront and rear wheels, respectively. The third servo is able to bend the robot in themiddle.{ Conditional operators (IF, IFLTE) are not necessary to evolve good pro-grams and do not increase the quality signi�cantly. On the contrary, table 4suggests that they inhibit the evolutionary process.{ There is no increase in quality of the best individual when going fromM =100 to M = 500 (only 3 experiments with M = 500 have been performed).{ In successful experiments (e.g. 83 and 84), the program length increases(Figure 4).Figure 5 shows the average forward movement of the robot during a veryinteresting run. In this run all six servos are involved into the movement untilat time step 3300, an important joint (the clevis of joint 0, Fig. 1) betweentwo servos broke accidently. Joint 0 connects servo 3 with servo 4 and is theonly connection to the rudder horn of servo 3. The forward movement decreaseddrastically. However, after a short while (about 200 �tness tests), the GP systemwas able to compensate the error.As an example, Figure 6 gives an impression of the behaviour of the followinghigh-�tness individual that uses all 6 servos for movement:

(DIV (DIV (DELAY (SETSERVO4 (SETSERVO1 (ADD (MUL (SETSERVO5(SETSERVO1 -103)) (DELAY (DELAY (SUB -56 (SETSERVO0 (SETSERVO5(SETSERVO2 83))))))) (DIV (DELAY (SETSERVO4 (SETSERVO1 (ADD (MUL(SETSERVO5 (DELAY -40)) (DELAY -38)) (ADD (MUL -79 -8) (ADD(MUL (SETSERVO5 (SETSERVO1 -103)) (DELAY (DELAY (SUB 49 (DE-LAY (SETSERVO4 (SUB 49 (SETSERVO3 (SETSERVO5 (SETSERVO2 -36)))))))))) (DIV (DELAY (SETSERVO4 (SETSERVO1 (ADD (SETSERVO5(SETSERVO1 -104)) (DELAY (MUL (SETSERVO5 (DELAY -40)) (DELAY-38))))))) (SETSERVO3 (DELAY (SETSERVO3 -38)))))))))) (SETSERVO3(SETSERVO3 (SETSERVO0 (SETSERVO4 (DELAY (DIV (DELAY (SETSERVO4(SETSERVO1 (ADD (MUL (SETSERVO5 (SETSERVO1 -103)) (DELAY (DE-LAY (SUB 49 (SETSERVO0 (SETSERVO5 (SETSERVO1 -100))))))) (DIV (DE-LAY (SETSERVO4 (SETSERVO1 (ADD (MUL (SETSERVO5 (SETSERVO1 -104)) (DELAY -38)) (DELAY (DELAY (SETSERVO4 -37))))))) (SETSERVO3(DELAY (SETSERVO3 -38)))))))) (SETSERVO3 (DELAY (SETSERVO3 -40)))))))))))))) (ADD (MUL (DELAY (SETSERVO4 -37)) (DELAY (DE-LAY (SUB 49 (SETSERVO0 (SETSERVO0 (SETSERVO5 (DELAY (DELAY(SETSERVO1 -104)))))))))) (DIV (DELAY (SETSERVO5 (SETSERVO1 (ADD(DIV (SETSERVO5 (SETSERVO3 -104)) (DELAY -38)) (DELAY (SUB 105126)))))) (SETSERVO3 (DELAY (SETSERVO3 -38)))))) (SETSERVO3 (DELAY(SETSERVO3 -40))))Best individual of experiment 85 in prae�x notation (ID: 1320/85)
0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
ve

ra
ge

 L
en

gt
h

of
 In

di
vi

du
al

 (
in

 N
od

es
)

Fitness Tests/Generations

82
83
84

Fig. 4. Average individual length over time of three typical experiments. The suc-cessful experiments (83, 84) show a drastic increase of program length compared tounsuccessful run 82.

-10

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000 3500 4000

A
ve

ra
ge

 M
ov

em
en

t

Fitness TestsFig. 5. Adaptation to an unexpected error (experiment 83). The average moved dis-tance (running average over 100 �tness evaluations) is shown over time. The suddendecrease at time 3300 results from a break of an important joint connecting to servos.The increase shows that the system is able to adapt to the new situation.4 Summary and ConclusionAn easy-to-maintain and cheap robot architecture has been presented, which hasbeen shown to be useful as a platform for testing and demonstrating learningtechniques for bio-inspired robots. It has also been shown that Genetic Program-ming can be used to evolve control programs in real time for an architecture forthat no model exists.The algorithm presented here needs only a very low amount of computationalresources because the �tness evaluation that is performed by the robot takesmost of the time. The huge amount of remaining processor time can be used tospeed up the learning process, e.g. by learning from the past sensory data.Another future direction will be to include sensor information. In the experi-ments presented here only the moved distance is measured and used as an inputto the learning GP system. By adding sensors, two aspects will become impor-tant. The robot has to cope with sensor information (e.g., in order to follow awall), so the operator set of the GP system has to be extended to process sen-sory data. Secondly, sensors may provide information about internal states of therobot, which may result in a faster learning process and a robust control strategy.

-150

-100

-50

0

50

100

150

125950 126000 126050 126100 126150 126200 126250 126300 126350 126400

S
er

vo
 P

os
iti

on

Time in 1/16 s step

Servo 0
Servo 1
Servo 2
Servo 3
Servo 4
Servo5

Fig. 6. Behaviour of the best individual of experiment 85. The �gure should give animpression of the complex movement where all six servos are involved.ACKNOWLEDGEMENTSupport has been provided by the DFG (Deutsche Forschungsgemeinschaft)under grant Ba 1042/2-2. W.B. acknowledges partial support by the Interna-tional Computer Science Institute, UC Berkeley, CA.References1. Sims, K.: Evolving 3D Morphology and Behavior by Competition, Proceedings ofthe 4th International Workshop on the Synthesis and Simulation of Living Systems,Arti�cial Life IV, pp. 28-39, MIT Press, July (1994)2. Paap, K.L., Dehlwisch, M., Klaassen, B.: GMD-Snake: A Semi-Autonomous Snake-like Robot, In: Distributed Autonomous Robotic Systems 2, Springer-Verlag, Tokio,(1996)3. Ostrowski J.P., Burdick, J.W.: Gait Kinematics for a Serpentine Robot, Int. Conf.on Robotics and Automation (1996)4. Triantafyllou, M. S., Triantafyllo, G. S.: An e�cient swimmingmachine, Scienti�c American, 272, pp. 64-70 (1995), see also:http://web.mit.edu/towtank/www/projects.html5. Banzhaf, W., Nordin P., Keller, R.E., Francone F.: Genetic Programming - anIntroduction Morgan Kaufmann, (1997)

6. Mataric, M. J., Cli�. D.: Challenges in evolving controllers for physical robots.Journal of Robotics and Autonomous Systems 19 (1), 67{83 (1996).7. Davidor, Y.: Genetic Algorithms and Robotics. World Scienti�c, Singapore, 1990.8. Dorigo, M., Schneph, U.: Genetics-based machine learning and behavior basedrobotics. IEEE Transactions on Systems, Man and Cybernetics, 23(1), 1993.9. Koza. J.R.: Evolution of subsumption using genetic programming. In F. J. Varelaand P. Bourgine, editors, Proceedings of the First European Conference on Arti�cialLife. Towards a Practice of Autonomous Systems, pages 110{119, Paris, France,11-13 December 1992. MIT Press.10. Koza, J.R.: : Genetic Programming, MIT Press, Cambridge MA, (1992)11. Lee, W.-P. Hallam, J., Lund. H.H.: Learning complex robot behaviors by evo-lutionary approaches. In 6th European Workshop on Learning Robots, EWLR-6,pages 42{51, Hotel Metropole, Brighton, UK, 1-2 August 1997.12. Nordin, P., Banzhaf, W.: Genetic programming controlling a miniature robot. InE. V. Siegel and J. R. Koza, editors, Working Notes for the AAAI Symposium onGenetic Programming, pages 61{67, MIT, Cambridge, MA, USA, 10{12 November1995. AAAI.13. Olmer, M., Banzhaf, W., Nordin. P.: Evolving real-time behavior modules for areal robot with genetic programming. In Proceedings of the international symposiumon robotics and manufacturing, Montpellier, France, May 1996.14. Singleton, A.: gpquick (Steady-state tree-based C++ GP-Sytem),ftp.cc.utexas.edu/pub/genetic-programming/code.15. Salomon. R.: Scaling behavior of the evolution srategy when evolving neuronalcontrol architectures for autonomous agents. In Evolutionary Programming 6 6thInternational Conference, EP97, pages 48{57, Indianapolis, Indiana, USA, apr 1997.16. Steels, L.: Emergent functionality in robotic agents through on-line evolution. InRodney A. Brooks and Pattie Maes, editors, Proceedings of the 4th InternationalWorkshop on the Synthesis and Simulation of Living Systems ArtificialLifeIV ,pages 8{16, Cambridge, MA, USA, July 1994. MIT Press.17. Nol�, S., Floreano, D., Miglino, O., Mondada. F.: How to evolve autonomousrobots: Di�erent approaches in evolutionary robotics. In Rodney A. Brooks andPattie Maes, editors, Proceedings of the 4th InternationalWorkshop on the Synthesisand Simulation of Living Systems ArtificialLifeIV , pages 190{197, Cambridge,MA, USA, July 1994. MIT Press.

