Learning to Move a Robot with Random
Morphology

Peter Dittrich! | Andreas Biirgel'! and Wolfgang Banzhaf?

! Dept. of Computer Science, University of Dortmund,44221 Dortmund, Germany
http://1sll-www.informatik.uni-dortmund.de
dittrich | buergel | banzhaf@LS11.informatik.uni-dortmund.de
2 Presently at: International Computer Science Institute, Berkeley, CA, 94708

Abstract. Complex robots inspired by biological systems usually con-
sist of many dependent actuators and are difficult to control. If no model
is available automatic learning and adaptation methods have to be ap-
plied. The aim of this contribution is twofold: (1) To present an easy
to maintain and cheap test platform, which fulfils the requirements of a
complex control problem. (2) To discuss the application of Genetic Pro-
gramming for evolution of control programs in real time. An extensive
number of experiments with two real robots has been carried out.
Keywords genetic programming, real-time robotics, random morphol-
ogy robot, hardware evolution

1 Complex Bio-Inspired Robots

Conventional industrial robots are designed in such a way that a model can
be derived easily and the inverse kinematic can be calculated. In operation,
the inverse kinematics is used to compute the trajectory for movement between
given points in the working area of the robot. Connections between actuators are
made as sticky as possible to yield (near) linear behaviour [7]. Perception relies
on sense-model-plan-act cycle, where for planning a mostly predefined model of
the system 1is required.

For the development of robots which are inspired by biological systems
“controllability” is not a primary design principal. Thus, their actuators are
mostly dependent. A model usually does not exist, is very hard to derive or
too complex so that a model-based calculation of motor commands requires too
much time for reactive tasks. There is no obvious optimal control strategy for a
desired action (e.g. movement) because of the complex interdependencies of all
the actuators and a non-linear feedback from the environment. Examples of (at
least partially) bio-inspired robots are modular robots like the robot snake [2, 3]
and robot fishes like the robot tuna build at MIT Ocean Engineering [4].

But even if a model exists, a robot can get into a situation where this model
is not valid anymore, e.g. through malfunctioning of parts. If the control strategy
is based on the model and an unexpected error occurs (e.g. the breaking of a

1

! Shortly called: bio-inspired robot.

joint between two actuators) the model breaks down and the control strategy is
likely to fail 2.

In this case a learning mechanism would be very useful that is able to generate
a new control program adapted to the new situation.

In other words, every robot can turn into what we call a random morphology
("RM-") robot, where “RM-robot” refers to a robot with an arbitrary, com-
plex architecture. In this paper, we study a 6-servo robot (see Figure 1) as an
RM-robot. The term RM-robot does, however, not imply non-deterministic be-
haviour.

If the robot is on its own, an adaptation mechanism is needed which is able
to cope with an unexpected architecture and which makes as few assumptions
as possible about the hardware. In the following we will (1) present an easy to
maintain real robot platform to test such mechanisms and (2) discuss Genetic
Programming (GP) as a mechanism to cope with a RM robot.

It should be noted that the RM robot is also inspired by Sims’s work on
evolving morphologies [1]. From this point of view the RM robot can be seen as
a step towards a physical instantiation of Sims’s virtual box creatures.

- joint 12

servo 5 servo 2

joint 8

\joint 9

servo 1

joint 7

servo 4
servo 0

Fig. 1. The mechanics of the random morphology (RM-) robot. It consists of six con-
ventional servos coupled arbitrarily by thin metal joints.

2 Strictly speaking. the breaking of a joint is not an unexpected error, because we have
already expected it. Thus, its very hard, maybe impossible, to model unexpected
€rTors.

2 The RM-Robot

Actuators:

The RM robot is composed of a couple of servos which are connected ar-
bitrarily (randomly). The servos are conventional cheap RC (remote control)
servo motors available for hobby air planes and cars. These devices possess a
complete servo system including: motor, gear box, feedback device, servo con-
trol circuitry, and drive circuit. The connections are made by brass poles also
available for hobby modelling. They can be easily connected to the servos, thus
one can set up or change an architecture quickly, which should be useful for
evolutionary experiments in hardware. The complexity of the mechanics can be
increased by connecting poles and servos with springs.

Sensors:

Movement of the RM-robot 1s measured by a computer mouse device, me-
chanically connected to the robot. This device allows precise measurement of
motion in the 2-D plane. There are also light detecting sensors which are, how-
ever, not considered in this contribution.

Control:

The servos are controlled by a pulse signal that occurs at about 50 Hz. The
width of the pulse determines the position of the servo motors. To generate this
signal we use a simple micro-controller, connected to the host computer by a
serial RS232 interface. The host is a PC running LINUX which is fast enough
even without a real-time LINUX kernel. A piece of interface software was written
to control the servos via the serial RS232 line and to measure analog voltage
input via a A/D PC card. Figure 2 shows the overall system architecture.

;
E GP-System User-Program
: Kernal Fitnes

v Operators

Interface-Drivers

| Servo-Daemon | | Mouse-Demon : A/D-Demon |
. | Servo-interface | | Mouse | A/D-Adapter |i
! Y | A :
H
H Servos Sensors i
: H
i

Robot Mechanics

Fig. 2. Overview of the system architecture.

Discussion:

The system is composed of conventional and cheap parts. It is easy to main-
tain and to construct. It provides an interesting and very flexible test platform
for adaptive and learning algorithms that have to cope with complex, unex-
pected architectures. Its main limitation is the external control by a desktop
computer, which is not a problem from a scientific point of view. A wireless,
fully autonomous version would make experiments and demonstrations simpler.
At the moment the robot has to be watched constantly by an experimentator
because it may interact with its wire which would bias the results.

3 Evolving Control Programs

In this section we will show how control programs can be generated by an evolu-
tionary process using Genetic Programming [10,5]. There are various ways how
Evolutionary Algorithms (EA) can be applied to generate or optimize robot
controllers [17,6, 16]:

1. The fitness evaluation can be performed by a simulator, as in [11]. The
advantages of this method are: Different controllers can be tested under
exactly the same environmental conditions. A simulation is usually cheaper
and faster than a real robot. Stability, robustness and correction correctness
of solutions be proven — although not in general — which is important for an
industrial application. On the other hand, problems with this approach are:
A model must be available and this model or simulation might have artifacts,
e.g. deadlocks. The individuals might exploit simplification or artifacts in the
model [1].3 As a result, the evolved controller might not work (reliably) on
the real robot.

2. The fitness can be evaluated using the real robot [15,12,13]. The major
qualitative differences to the simulator-based evaluation are: Fitness eval-
uation is now a stochastic process and real-world time plays an important
role. In addition to the robot learning system, a changing environment must
be taken into account where time flow is not synchronised with the learning
system. For instance, changes of the environment might be slowed-down or
stopped in a simulation whereas this is not possible in the real world. An ad-
vantage is that one may encounter “unexpected errors” which do not appear
in simulations.

3. A combination of (1) and (2) can be used [17]. A controller generated by a
simulation is fine tuned on the real robot. To evolve complex control systems
the task is usually divided into subtasks (e.g. behaviours) which are indepen-
dently evolved either by simulation or using the real robot. The behaviours
are combined by an action selection mechanism which can be evolved, too

[9].
Fitness evaluation can also be characterised by a time scale:

This effect can be put to use when testing models or simulators.

1. Global or goal-oriented fitness evaluation: The robot is run for a long time
during which it is able to reach the desired goal once, or even many times
starting from the same or different positions. Fitness can be easily derived
from a measure how well the goal has been reached. This method is usually
used in simulations.

2. Local fitness evaluation: The robot is run only for a very short time (in [12]
only a fraction of a second). The fitness evaluation will be much faster, but
defining the fitness function on local actions such that the global goal will
be reached is more difficult than in the previous case.

Of course, it cannot be stated in general that one method is better than the
other. It is very probable that in most applications a combination of different
methods is favourable. Here, we shall concentrate on one method in Genetic
Programming which we will use with only a few small modifications.

The motivation for using GP is: (1) We would like to examine whether or
not GP is able to learn complex robot movements in real-time and uncover
the benefits and limitations of this approach. (2) GP produces automatically
programs. A program is a very flexible and most commonly used representation
of a computable function.

3.1 The Genetic Programming System

The learning method is a conventional steady-state tree-based GP algorithm
using a local fitness evaluation on a real robot with the following settings.

We use local fitness evaluation with a steady-state algorithm. An individual
will control the robot only for a short while. For this it 1s executed n. times.
Its performance is measured as the robots advance in the desired direction.
Backward movement will be punished by a factor of two and stagnation will
be equal to the worst backward movement so far. The Fitness is evaluated at
creation time not during the selection process. In tournaments, an individual
is selected by drawing an number of individuals uniformly distributed from the
population and choosing the individual with the best (or worst) fitness value.
As in in conventional GP one subtree in each parent is selected randomly and
exchanged. In mutation, each node is mutated by a probability pnoederrutation-
For this the node is replaced by a node randomly selected from the set of nodes
with the same arity. So, a terminal is always replaced by another terminal. The
arity of a node will never be changed by mutation.

The set of functions in Tab. 1 is explained in more detail in Tab. 3. The
terminal set is explained in Tab. 3.

3.2 Algorithm

Because in real-time evolutionary learning it is important exactly when and how
the fitness is evaluated, the algorithm is given in more detail below. Implemen-
tation is based on gpquick [14].

Objective

Find a program that moves the robot straight
on as far as possible

Raw fitness

The sum of pixels the mouse pointer travels
in a desired direction minus the sum of pix-
els the mouse pointer travels in the opposite
direction. (See text.)

Fitness

Equal to raw fitness, except in the case when
the raw fitness is zero the fitness is equal to
the worst fitness so far encountered.

Executions per fitness evaluation

Nrepetitions — 4

Terminal set

GETSERVO0, GETSERVO1, GETSERVO2,
GETSERVO3, GETSERVO4, GETSERVOS5,
GETSERVO6, CONST

Function set

ADD, SUB, MUL, DIV, SINE, DELAY,
SETSERVO0, SETSERVO1, SETSERVOZ2,
SETSERVO3, SETSERVO4, SETSERVOS,
SETSERVO6, IF, IFLTE, SEQUENCEZ2,
PROG4

Population size M = 50,100

Maximal number of nodes lmaz = 100, 200 nodes
Probability of mutation pm = 0.13

Probability of node mutation PrnodeMutation = 0.99,0.15
Probability of crossover pc = 0.86

Probability of reproduction pr = 0.01

Tournament size for genetic operators|7, = 4

Tournament size for replacement Ty =2

Termination criteria

running time excess or decision by experi-

menter

Table 1. Koza tableau of the evolution of motion control programs for the RM-robot.

ADD(a,b), SUB(a,b), MUL(a,b), SINE(a) |normal arithmetic operation

DIV(a,b)

protected division, returns 1if b =10

DELAY (t)

delays the execution of the program for ¢
time steps

SETSERVOO(a), SETSERVOI(a),
SETSERVO5(a)

..,|Commands servo to position a. No delay is
executed. Returns current position of the
servo. Values a > 127 and a < —127 re-
sult in a maximal left or right turn, respec-

tively.
IF(a,b,c) if a > 0, returns b, else ¢
IFLTE(a,b,c,d) if a < b, returns c, else d.
SEQUENCE2(a,b) evaluates a, then b, returns result of b

PROGA4(a,b,c,d)

evaluates a, then b, then c, then d, returns
result of d

Table 2. Function set of the GP system.

GETSERVOO, GETSERVO1, ...,|returns current position of servo n
GETSERVO5
CONST a fixed random constant out of [-127, 127]
Table 3. Terminal set of the GP system.
Initialisation:
1. Generate a random population P of size M.

2.

For each individual in P, evaluate its fitness.

The GP execution cycle:

1.

(@]

Delete one individual from P, which is selected by a tournament of size T
(worst individual from T} randomly drawn individuals).

. Draw a random number z out of [0, 1].
LI < pe:

Select I; from P by a tournament of size 7.
Select I from P by a tournament of size 7.
Create offspring I, via crossover of Iy, I.

I pe <z < petpm:

Select I from P by a tournament of size 7,.
Create offspring [, via mutation of I.

I pe+pm < T < pe+ pm + Pt

Select I from P by a tournament of size 7,.
Create offspring I, with 7, = I.

. Evaluate fitness for offspring /.
. Add offspring I, to population P.

A tournament of size T, means that 7} individuals are randomly drawn from

the population and the best according to its fitness is selected. Note that the fit-
ness of each individual has been evaluated before, either during initialisation or
in step (6). Although this is an efficient procedure, it might become a significant
problem, because fitness values can become obsolete. The above algorithm will
fail if the environment changes very quickly, which is not the case, however, in
the experiments described here. The problem could be overcome by evaluating
the fitness again for each individual during a tournament, like in [12].

Evaluation of fitness f of individual I:

1.
2.

ot

Clear mouse event queue.

Execute nyepetitions times Individual 1. This creates a mouse event queue of
size ng.

For each mouse event ¢ set E; to the distance the pointer moved in the
desired direction represented by this event. Backward movement results in
a negative F;.

fe i B (Variant B: f (Z?:ql,E,>0 Ey)? — 2(2?:1,E,<0 E;)?)

if f=0,set f+ frn-

3.3 Results

Before describing the results with the 6-servo RM robot, preliminary experiments
with a 3-servo robot will be shortly summarised.

3.4 Preliminary Experiments

A series of b5 experiments has been performed with the preliminary 3-servo
robot shown in Figure 3. An experiment is a run of the robot with the algorithm
described above. The preliminary robot consists of two servos able to retard
the front wheels and the rear wheels, respectively. The third servo can bend
the robot in the middle. In these experiments, we were able to evolve programs
for movement in the plane and even on a gradient. The gradient is much more
difficult because the two servos functioning as breaks must be synchronised very
accurately. Furthermore, the experiments showed that

— punishment of zero-movement decreases the average number of non-moving
individuals and increases convergence speed.

— learning how to delay is important. However, increasing the DELAY concen-
tration only (no. of DELAY operations in the population) is not enough. The
arguments of DELAY have to be large. This is achieved by multiplication of
large numbers or (more seldom) by division by very small numbers.

— a MUL operation as an argument of a SETSERVOn operation usually creates
an overflow (a value greater 127) that results in a maximum turn of the servo.

It could not been convincingly shown, that the overflow behaviour is exploited
for protection against crossover and mutation.

3.5 Experiments with the 6-Servo Random Morphology Robot

A series of 32 experiments has been performed with the 6-servo RM-robot. As in
the previous section an experiment is a run of the GP algorithm described above.
A single run lasts several hours. Details can be found in Tab. 4 which gives an
overview of all 32 experiments. There are 16 experiments with a population size
M = 50 and max. individual size I, = b0 and 16 experiments with M = 100
and Iynqe = 100(500). In addition the operator set has been varied in order
to explore the parameter space and to test the robustness of the GP system
according to its setting. In each experiment the operator set consists at least of
a core set Fo = {SETSERVO0,SETSERVOL1,... SETSERVO5, DELAY }
and an arithmetic function.

From these experiments, it becomes clear that the same system which learns
to move the 3-servo preliminary robot is also able to move the 6-servo RM-robot.
Although it is obvious that no significant conclusion can be made about which
parameter setting is best, the following tendencies should be noted:

— Fitness evaluation using variant A (sum over F;) together with a population
size of M = 100 is better than using variant B and M = 50.

|# |1997| f| M|lmw|0perator set |Tests|Bst|Wst|Avg|

56] 11.8|B] 50] 50[F2U {ADD, SUB, MUL, DIV} 2000 69] -25] 40
57| 14.8|B| 50] 50|F5U {ADD} 4350 20| -17] 9
58/ 16.8|B| 50| 50|F2U {ADD, SUB, MUL, DIV} 5150 52| -23] 20
59/ 19.8|B[50 50|F>U {ADD, SUB, MUL, DIV} 5000 54| -42| 22
60| 21.8|B| 50| 50|F»U {ADD, SUB, MUL, DIV} R000| 45| -25] 14
61| 22.8|B| 50| 50|F»U {ADD, SUB, MUL, DIV} 7000 35| -34] 14
62[23.8|B] 50| 50|F»U {ADD, SUB, MUL, DIV} 4400 40| -20] 7
63[24.8|B] 50| 50|F»U {ADD, SUB, MUL, DIV, IF, IFLTE,|7000]| 53| -29| 23
GETSERVOX}
64| 25.8|B| 50| 50|F»U {SUB, MUL} 5600 23| -25] O
65/ 25.8|B| 50| 50|»U {SUB, MUL} 1500 16] 22| 3
66/ 25.8|B| 50| 50|»U {ADD, SUB, MUL, DIV, IF, IFLTE}|7000]| 32| 20| 9
67/26.8|B| 50| 50|»U {ADD, SUB, MUL, DIV, IF, IFLTE}|2600]| 26| -20| 10
63[27.8|B| 50| 50|F»U {ADD, SUB, MUL, DIV, IF, IFLTE}|9100]| 33| -29| 16
71| 27.8|B| 50] 50|F>U {ADD, MUL} 2000 22| -31] 4
72| 28.8[A] 50] 50|F>U {ADD, MUL} 7850 22| -22] 10
73] 1.9|A| 50] 100|F5U {ADD, SUB, MUL, DIV} 2850 20| -25] 5
74| 3.9|A[100[100|F5U {ADD, SUB, MUL, DIV} 3300 [136] -64] 70
75| 4.9|A[100[100|F5U {ADD, SUB, MUL, DIV} 4000] 22| -18] 8
76| 5.9/A[100[100[F5U {ADD, MUL} 2500 |180| -60] 148
77| 8.9|A[100[100[F>U {ADD, MUL} 2000 |115] -31| 82
78] 9.9|A[100[100[F>U {ADD, MUL} 4000] 20| -14] 4
79/ 10.9|A[100[100[F>U {ADD, MUL} 1800 [135] —44] 120
80| 11.9|A[100[100|F»U {ADD, SUB, MUL, DIV, IF, IFLTE}|3100]| 26| -23| 14
81| 13.9|A[100[100[F»U {ADD, SUB, MUL, DIV, IF, IFLTE}|1700] 19| -17| 9
82/ 14.9|A[100[500[F»U {ADD, SUB, MUL, DIV, IF, IFLTE}|4100] 22| -21| 13
83/ 15.9|A[100[500|F5U {ADD, SUB, MUL, DIV} 3800 |148| -24] 127
84/ 17.9]A[100[500{F»U {ADD, MUL} 1400 [147] -33[108
85| 18.9|A[100[100[F»U {ADD, SUB, MUL, DIV} 1600 [177] -14] 168
86/ 19.9|A[100[100[F>U {ADD, SUB, MUL, DIV, IFLTE} |3000] 31| -25| 13
87/ 19.9|A[100[100[F>U {ADD, MUL, IFLTE} 2500 77| -22] 68
88[22.9]A[100[100|FU {MUL, IFLTE} 3000 36 26

Table 4. Overview of the experiments with the 6-servo RM-robot. The table shows
from left to right: experiment number, day of experiments realization, variant of fitness
calculation, population size M, max. number of nodes per individual l,,q., operator
set, total mumber of fitness evaluation, best/worst/average fitness in final population.

F, = {SETSERVO0,SETSERVO1...,SETSERV O5, DELAY}

Fig.3. The preliminary robot with 3 servos. Two servos are used as brakes for the
front and rear wheels, respectively. The third servo is able to bend the robot in the

middle.

— Conditional operators (IF, IFLTE) are not necessary to evolve good pro-
grams and do not increase the quality significantly. On the contrary, table 4
suggests that they inhibit the evolutionary process.

— There is no increase in quality of the best individual when going from M =
100 to M = 500 (only 3 experiments with M = 500 have been performed).

— In successful experiments (e.g. 83 and 84), the program length increases
(Figure 4).

Figure 5 shows the average forward movement of the robot during a very
interesting run. In this run all six servos are involved into the movement until
at time step 3300, an important joint (the clevis of joint 0, Fig. 1) between
two servos broke accidently. Joint 0 connects servo 3 with servo 4 and is the
only connection to the rudder horn of servo 3. The forward movement decreased
drastically. However, after a short while (about 200 fitness tests), the GP system
was able to compensate the error.

As an example, Figure 6 gives an impression of the behaviour of the following
high-fitness individual that uses all 6 servos for movement:

(DIV (DIV (DELAY (SETSERVO4 (SETSERVO1 (ADD (MUL (SETSERVO5
(SETSERVO1 -103)) (DELAY (DELAY (SUB -56 (SETSERVOO (SETSERVO5
(SETSERVO2 83))))))) (DIV (DELAY (SETSERVO4 (SETSERVO1 (ADD (MUL
(SETSERVO5 (DELAY -40)) (DELAY -38)) (ADD (MUL -79 -8) (ADD
(MUL (SETSERVO5 (SETSERVO1 -103)) (DELAY (DELAY (SUB 49 (DE-
LAY (SETSERVO4 (SUB 49 (SETSERVO3 (SETSERVO5 (SETSERVO2 -
36)))))))))) (DIV (DELAY (SETSERVO4 (SETSERVO1 (ADD (SETSERVOS5
(SETSERVO1 -104)) (DELAY (MUL (SETSERVO5 (DELAY -40)) (DELAY
-38))))))) (SETSERVO3 (DELAY (SETSERVO3 -38)))))))))) (SETSERVO3
(SETSERVO3 (SETSERVOO (SETSERVO4 (DELAY (DIV (DELAY (SETSERVO4
(SETSERVO1 (ADD (MUL (SETSERVO5 (SETSERVO1 -103)) (DELAY (DE-
LAY (SUB 49 (SETSERVOO (SETSERVO5 (SETSERVO1 -100))))))) (DIV (DE-
LAY (SETSERVO4 (SETSERVO1 (ADD (MUL (SETSERVO5 (SETSERVO1 -
104)) (DELAY -38)) (DELAY (DELAY (SETSERVO4 -37))))))) (SETSERVO3
(DELAY (SETSERVO3 -38)))))))) (SETSERVO3 (DELAY (SETSERVO3 -
20)))))))))))) (ADD (MUL (DELAY (SETSERVO4 -37)) (DELAY (DE-
LAY (SUB 49 (SETSERVOO (SETSERVOO (SETSERVO5 (DELAY (DELAY
(SETSERVO1 -104)))))))))) (DIV (DELAY (SETSERVOS5 (SETSERVO1 (ADD
(DIV (SETSERVO5 (SETSERVO3 -104)) (DELAY -38)) (DELAY (SUB 105
126)))))) (SETSERVO3 (DELAY (SETSERVO3 -38)))))) (SETSERVO3 (DELAY
(SETSERVO3 -40))))

Best individual of experiment 85 in praefir notation (ID: 1320/85)

450

82 +-—
A 83 —+-
400 #o 8463+
/ \\J“‘+~+
f
350 ‘
m /
[} 1
5 |
2 /
= 300 i
K] !
3 /
g 250 o /
= ;
s !
= 200 ! i
o ; !
& / /
g i /
© 150 ; ;
o : +
[H /
2 ! !
100 : /
: +
El //I
50 = N /+/* NN e
" e ee M
i i
o e BT
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Fitness Tests/Generations

Fig.4. Average individual length over time of three typical experiments. The suc-
cessful experiments (83, 84) show a drastic increase of program length compared to
unsuccessful run 82.

60

50 YM,

: \
: /

10
M/

-10

Average Movement

0 500 1000 1500 2000 2500 3000 3500 4000
Fitness Tests

Fig.5. Adaptation to an unexpected error (experiment 83). The average moved dis-
tance (running average over 100 fitness evaluations) is shown over time. The sudden
decrease at time 3300 results from a break of an important joint connecting to servos.
The increase shows that the system is able to adapt to the new situation.

4 Summary and Conclusion

An easy-to-maintain and cheap robot architecture has been presented, which has
been shown to be useful as a platform for testing and demonstrating learning
techniques for bio-inspired robots. It has also been shown that Genetic Program-
ming can be used to evolve control programs in real time for an architecture for
that no model exists.

The algorithm presented here needs only a very low amount of computational
resources because the fitness evaluation that is performed by the robot takes
most of the time. The huge amount of remaining processor time can be used to
speed up the learning process, e.g. by learning from the past sensory data.

Another future direction will be to include sensor information. In the experi-
ments presented here only the moved distance is measured and used as an input
to the learning GP system. By adding sensors, two aspects will become impor-
tant. The robot has to cope with sensor information (e.g., in order to follow a
wall), so the operator set of the GP system has to be extended to process sen-
sory data. Secondly, sensors may provide information about internal states of the
robot, which may result in a faster learning process and a robust control strategy.

o
" =]
I <
©
~
—
o
0
™
©
~
—
o
S
@
©
N
-
o
re]
I
©
I
—
=3
Qo
O+
R4
Qo
©
o
o
=
oc
[E
g2
AN .=
—
o
S
| =
©
N
—
o
0
o
©
~
—
o
=]
=]
©
N
—
o
: 0
o
e re]
2
o o o o o o od
0 =] n el =] n
= = _ & e

uonIsod OAIBS

Fig. 6. Behaviour of the best individual of experiment 85. The figure should give an

impression of the complex movement where all six servos are involved.

ACKNOWLEDGEMENT

Support has been provided by the DFG (Deutsche Forschungsgemeinschaft)
under grant Ba 1042/2-2. W.B. acknowledges partial support by the Interna-

tional Computer Science Institute, UC Berkeley, CA.

References

1. Sims, K.: Evolving 3D Morphology and Behavior by Competition, Proceedings of

the 4th International Workshop on the Synthesis and Simulation of Living Systems,

Artificial Life IV, pp. 28-39, MIT Press, July (1994)
2. Paap, K. L., Dehlwisch, M., Klaassen, B.: GMD-Snake: A Semi-Autonomous Snake-

like Robot, In: Distributed Autonomous Robotic Systems 2, Springer-Verlag, Tokio,

(1996)
3. Ostrowski J. P., Burdick, J. W.: Gait Kinematics for a Serpentine Robot, Int. Conf.

on Robotics and Automation (1996)

swimming

An efficient
64-70

G.S.:

Triantafyllo,

American,

M.S.,

4. Triantafyllou,

also:

see

(1995),

pp-

272,

Scientific

http://web.mit.edu/towtank /www /projects.html
5. Banzhaf, W., Nordin P., Keller, R.E., Francone F.: Genetic Programming - an

machine,

Introduction Morgan Kaufmann, (1997)

6. Mataric, M. J., Cliff. D.: Challenges in evolving controllers for physical robots.
Journal of Robotics and Autonomous Systems 19(1), 67-83 (1996).

7. Davidor, Y.: Genetic Algorithms and Robotics. World Scientific, Singapore, 1990.

8. Dorigo, M., Schneph, U.: Genetics-based machine learning and behavior based
robotics. IEEE Transactions on Systems, Man and Cybernetics, 23(1), 1993.

9. Koza. J. R.: Evolution of subsumption using genetic programming. In F. J. Varela
and P. Bourgine, editors, Proceedings of the First Furopean Conference on Artificial
Life. Towards a Practice of Autonomous Systems, pages 110-119, Paris, France,
11-13 December 1992. MIT Press.

10. Koza, J.R.: : Genetic Programming, MIT Press, Cambridge MA, (1992)

11. Lee, W.-P. Hallam, J., Lund. H.H.: Learning complex robot behaviors by evo-
lutionary approaches. In 6th Furopean Workshop on Learning Robots, EWILR-6,
pages 42-51, Hotel Metropole, Brighton, UK, 1-2 August 1997.

12. Nordin, P., Banzhaf, W.: Genetic programming controlling a miniature robot. In
E. V. Siegel and J. R. Koza, editors, Working Notes for the AAAI Symposium on
Genetic Programming, pages 61-67, MIT, Cambridge, MA, USA, 10-12 November
1995. AAAL

13. Olmer, M., Banzhaf, W., Nordin. P.: Evolving real-time behavior modules for a
real robot with genetic programming. In Proceedings of the international symposium
on robotics and manufacturing, Montpellier, France, May 1996.

14. Singleton, A.: gpquick (Steady-state tree-based C++ GP-Sytem),
ftp.cc.utexas.edu/pub/genetic-programming/code.

15. Salomon. R.: Scaling behavior of the evolution srategy when evolving neuronal
control architectures for autonomous agents. In Fuvolutionary Programming 6 6th
International Conference, FP97, pages 48-57, Indianapolis, Indiana, USA, apr 1997.

16. Steels, L.: Emergent functionality in robotic agents through on-line evolution. In
Rodney A. Brooks and Pattie Maes, editors, Proceedings of the jth International
Workshop on the Synthesis and Simulation of Living Systems Artificial LifelV,
pages 8-16, Cambridge, MA, USA, July 1994. MIT Press.

17. Nolfi, S., Floreano, D., Miglino, O., Mondada. F.: How to evolve autonomous
robots: Different approaches in evolutionary robotics. In Rodney A. Brooks and
Pattie Maes, editors, Proceedings of the 4th International Workshop on the Synthesis
and Simulation of Living Systems Artificial LifelV | pages 190-197, Cambridge,
MA, USA, July 1994. MIT Press.

