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Abstract There is growing interest in the use of analogies of biolalgitevelopment for
problem solving in computer science. Nature is extremetycate when com-
pared to human designs, and incorporates features sucle abitity to scale,
adapt and self-repair that could be usefully incorporatéd human-designed
artifacts. In this chapter, we discuss how the metaphor abbical develop-
ment can be used in artificial systems and highlight some ettallenges of
this emerging field.
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1. Introduction

Organic processes can serve as inspiration for compugdtiystems. The
design and functionality of organic systems is both a chgleand an exis-
tence proof of achievements of Nature posed to the humagraesi In this
context it has turned out that the level of complexity comdehin the design
of natural systems is still unparalleled. To put the scéitglof biological sys-
tems into perspective: Microsoft’s latest version of Windchas10° lines of
code, some Linux distributions hawé” lines of computer code, but there are
10 cells in the human body each much more complex than a line @g.co
Such complexity would be out of reach of human designers, aviea struggle
to keep the simplest designs and manufacturing procestag-fiee. With the
increasing complexity of both hardware and software, tieeneed is growing
for new design techniques that allow us to work with such dewmity.

Evolutionary algorithms that mimic Darwinian evolutiorMegprovided part
of the answer to this problem. Algorithms such as genetiordalgms and ge-
netic programming [Banzhaf et al., 1998, Eiben and Smitl32Mitchell,
1996] allow us to quickly search through vast search spdicelng novel so-
lutions to our problems. However, there are limits to howlheslole certain
applications are, especially those that - with a naive impigtation - would
require long genotypes. Under such circumstances evolgtn find it diffi-
cult to fine tune the genotype - mutations are more likely tdiseuptive than
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beneficial and the combinatorics of search spaces is ptveibilt would be
impossible to evolve a functioning computer program withlioris of lines

of code, or a circuit with a hundred million components witlr present-day
methods. So how does nature correctly assemble a systeairgogttrillions

of cells?

Nature uses the process of development, by which a fedilexgy grows
into a fully mature individual. Here we shall discuss how cae grow com-
plicated programs and other structures by starting fronrt#icel zygote. For
example, Figure 1 shows a single artificial cell developinip ia predefined
pattern [Miller, 2004]. Each cell contains a computer pemgy discovered by
evolution, that when executed contains instructions fongng the virtual or-
ganism. In this chapter, we shall provide a brief discussibthe biology of
development, and shall link it to artificial development. Wi also present
some ideas for improving the current state of developmentalels, in partic-
ular the use of physical analogies.
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Figure 1. Miller's French Flag Problem

2. Embryogenesis

Embryogenesis is the first stage of the developmental pgdmes/hich the
embryo is formed. The development starts with the zygotechwis the fer-
tilized ovum. The zygote undergoes a process called cleavalgere mitosis
splits the cell into two (and later more) identical cells. eBvat this stage,
spatial patterns are being produced. Egg cells are asymmatd the first
cleavage occurs along one axis, the second cleavage onsapeapendicular
to it. The developing embryo receives a substantial amotimfarmation in
the starting configuration from its zygote - this is calledlecolar prepattern-
ing [Nusslein, 2006]. In insect ovaries, in addition to thyg ethere are other
cells, such as nurse cells, which produce proteins reqtoragtrowth, and pass
these into the egg cell. They contain maternal DNA that hasaortant role
in the embryo’s growth.
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Mitosis repeats until 128 cells have been produced, at whidht the next
phase of development, called blastulation, occurs. Atgtage, the cells are
still stem cells - they have yet to differentiate into a spézed cell type. In
mammals, the cells organize into a spherical structureeatal blastocoele,
which subsequently develops into a blastocyst. The outkr (@alled the tro-
phoblast) will go on to form the placenta, and the inner qelldled the embry-
oblast) will form the embryo. Subsequently, the blastoedetms three layers,
the ectoderm, endoderm, and mesoderm, that develop iniatdreal organs
of the animal.

The cells differentiate into their organ types, and groupafcertain phys-
ical shapes. Shapes themselves are the result of a smallenwhtifferent
processes, governed by differences in cell adhesion aed aitdifferentia-
tion. The cells can form tubes or sheets, or condense inttecks We further
discuss the role of physics in Section 5.

Positional information, used by the genes of the embryo sdinoen chem-
ical gradients that are set up by proteins from the materhl.R hese divide
the space inside the egg, and form the axes along whichdiffeilevelopmen-
tal processes occur. For example in Drosophila, nurse aslihored at one
end of the egg, contain a gene that produces a protein (Bitloéd diffuses
across the egg, setting up a gradient. As a morphogen, theegwation of
this protein determines whether certain other genes anessgd and hence
control the fate of cells: A high concentration results ia tbrmation of head
and thorax. The embryo develops, however, without thegeresif the gra-
dient is artificially suppressed.

The genes in the embryo are responsible for the majorityeofldvelopmen-
tal process. They produce proteins which not only build #lkitar structures,
but also form part of the control process. The program storegenes is the
aspect typically replicated by evolved programs in arafidevelopmental pro-
cesses. The genes form networks of interactions, wheredthaviour of one
gene represses or triggers the behaviour of others. Hovitegemportant to
note that in addition there are maternal genes that sit dbghef this complex
hierarchy of gene interactions. Maternal genes influeneeztfyotic genes,
which in this instance are labeled gap genes, since in Dhilsop mutation in
one of these genes results in a gap in the developing body Plese genes in
turn then influence other layers in the gene hierarchy - abditiom of this di-
agram are genes that influence the development of the wirifggtiizely, each
layer in the hierarchy occurs at different stages in the ldgweental cycle,
with the lowest level occurring last, and interacting theskewith the maternal
RNA.

Development is sensitive to its environmental conditiohsiounts of food,
water, sun and other resources play an important role inidgfthe growth of
an animal as well as do external signals. If any of these resslis deficient,
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the body develops in a different way. For example, fish reldesmones into
the water that prevent further growth if their concentratits too high. This
prevents overuse of food resources in the wild, but alscagxphwhy the size
of fish held in captivity is dependent on their tank size. Blaymow to fit their
containers - or their roots flow around rocks and other olestamderground.

In recent years, some researchers have started to look ay@gebesis as
an inspiration for the development of electronic circuithuis field of inquiry
has been namddambryonicOrtega-Sanchez et al., 2000].

3. Scalability, Plasticity and Robustness

Multicellular organisms start from a single cell, which dps into a com-
plete organism - potentially containing trillions of cellsach cell contains the
genetic information, encoded in DNA, that controls the rtips of that cell.
However, DNA does not directly specify the properties of kh ¢estead, DNA
instructs the construction and development of a cell, uagmgnuch environ-
mental information and material as possible. The humanmenmnsists of
about3.2 x 10° base pairs, coding for approximately 25,000 genes which in
turn producel0'* cells. A large portion of the genome contains regulatory
information.

Scalability

A good example of scalability in artificial development canieom neural
networks. Scalability in this context means that it is polesio grow more
neurons if they are needed in the neural net to solve harddigms. Spec-
ifying the properties of each cell would be computationatifeasible due to
combinatorics and training algorithms like back-propamgatvould be unsuit-
able. As aresult, direct evolution of weights and topolo§ithe net sooner or
later will encounter a size barrier, where training is nog@incomputationally
practicable

Can we write a computer program that will grow an arbitrasiged neural
net of the right properties? Is this easier than evolvingri®vork directly?
Here we are combining evolution, development and learn@auld we make
the neural network perform difficult tasks? For example, waywanted to
write a voice recognition program. The scalable approactladveequire that
we make it work satisfactorily on a cell phone processor,dgoo a desktop
and amazingly well on a supercomputer. In this example, gx@would allow
the program to fit the processor and memory availability. Maove find that
evolution/development will discover unusual topologieattone would not
have considered otherwise?

Kitano was one of the first to use artificial development todpie neu-
ral networks [Kitano, 1990]. Kitano evolved L-system rubkst produced



Artificial Development 5

the connection matrix of neurons, specifying the networtfslogy and their
weights. He found that, unlike a conventional direct enagdithe develop-
mental encoding scaled well. Kitano developed a method Yolving the

architecture of an artificial neural network using a matexariting system
that manipulated adjacency matrices [Kitano, 1990]. Adicay to his results,
this method produced results superior to direct methods &ifixed architec-
ture, directly encoded and evolved). It was later claimegyéver, that the two
approaches were of equal quality [Siddigi and Lucas, 1998].

Gruau devised a graph re-writing method called celluladmy [Gruau,
1994]. Cellular encoding is a language for local graph fiamnsations that
controls the division of cells growing into artificial neunaetworks. The
cells, which we can identify as nodes in the ANN, store cotiorcstrengths
(weights) and a threshold value. The cells also store a geaninee that de-
fines the graph re-writing rules and a register that definesstart position
in the grammar tree. The grammar tree was evolved using dotevary
algorithm and the method was shown to be effective at opingisoth the ar-
chitecture and weights at the same time. It scaled bettaraltirect encoding
where all the weights had to be independently evolved [Gaial., 1996].

Federici has successfully evolved spiking neural netwdhled are con-
structed with a developmental system [Federici, 2005].eHlee developmen-
tal system outperformed the direct encoding by a consitieralrgin. How-
ever, as the parameters of either experiment were not gadnit may not be
a fair test of the algorithm’s ability.

Human designs are often limited by their ability to scalel adapt to chang-
ing needs. Our rigid design processes often constrain tigrdeo solving the
immediate problem, with only limited scope for change. Qigas, on the
other hand, appear to be able to maintain functionalityughoall stages of de-
velopment, despite a vast change in the number of cells fheneibryo to a
mature individual. It would be advantageous to empower hudesigns with
this on-line adaptability through scaling, whereby a systan change com-
plexity depending on conditions. We should expect orgaoimuting to solve
a related problem: Adaptation of the complexity of algarith approaches to
problems of variable difficulty.

Plasticity

In nature we find that designs scale, as is evident from thetgrof ani-
mals after gestation: The various functions of the orgarssithwork all the
way from infancy to adulthood. This gives organisms theitghib grow to
sizes that fit the environment, without sacrificing reprdtheccapability. The
hormones in the water already mentioned limit the growth gi,fiand this
prevents fish from becoming too large if there is not enougimicand hence
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allow the fish to survive with less competition for resourc&milar effects
can be found in artificial developmental systems. For examipl Linden-

mayer systems the models of plants can be run to any size tidlmdtain the

same morphology or shape, L-systems were originally usedaddel the de-
velopment of plants, however they have also been used falupitog neural
networks [Carrascal et al., 2003], protein structure mtguh [Escuela et al.,
2005] and object design [Hornby and Pollack, 2001].

These results, both in natural and artificial contexts, e some confi-
dence that if we wish to produce designs with a large numbeowiponents,
we should be able to utilize the developmental approach.ekample, if we
wish to build a control system for a large plant, such as a pstetion, the de-
sign should yield a stable, fail-safe control system. Aait mechanical and
electrical systems, faults develop over time. It would bedfigial for the sys-
tem to cope with component failure, and the system shouldlgeta maintain
its function in the event that a sensor fails. As the needs®fplant change,
the system may be required to grow to accommodate new feafpeehaps a
boiler would be added with new sensors, actuators and tatsjicould we use
the principles of developmental systems to allow the corslystem to auto-
matically “grow” and adapt to accommodate this?

Robustness

Biological systems are remarkably tolerant to failuresndividual com-
ponents, and this is clearly a desirable attribute for esgyied systems. The
ability to regenerate lost or damaged limbs, tissues orngs common in
animals - although the abilities vary. Some animals, sucheags have the
ability to re-grow entire limbs. Humans cannot regenelatbs, however they
can re-grow ribs and fingertips. The liver is also able to megate, and the
skin is constantly being replaced.

The processes involved in development and regeneratiorekted. For
example, during the early development of a fetus it is pdsditr it to fully
recover from a deep cut. However, later during developntentegrowth is not
as effective and the fetus becomes scarred.The self-refidie newt involves
a layer of cells growing over the injured stump, which reverstem cells.
These stem cells, like those in the developing embryo, canrbe any cell
type and allow the missing limb to re-develop.

Gerhart and Kirschner [Gerhart and Kirschner, 1997] dbsdiour proper-
ties of cells that lead to developmental flexibility: (i) THestruction of a small
number of cells can be tolerated, as there is enough redayndhaat others in
the group can replace it. (ii) As all the cells in a group perfdhe same ac-
tion, their arrangement does not matter. (iii) Moving céitsm one group to
another equivalent group is possible, as the cells can aoléipe local stimuli.
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(iv) Finally, if an organizer, such as the bicoid gene ddmatiin section 2, is
moved then the cells respond to their new distance from tip@nizer.

Which of these features are relevant and appropriate toeimgat in ar-
tificial development? In conventional engineering, redumy is the normal
approach to implement fault tolerance and robustness.oidth natural sys-
tems do have redundancy, for example the duplication ofeeatgans such as
eyes and lungs, they also have the ability re-grow anythioign fmissing cells
to entire limbs. Current hardware technology does not allaimilar feat.

However, perhaps we can look forward to the time when narsobitgive
hardware this ability. The application of developmentatsyns in pattern for-
mation for such systems is obvious - nanobots will have &thitomputational
and sensing abilities - much like real cells. Hence, thigtypapproach could
be applicable in these scenarios.

Bentley shows that computer programs can be evolved thahheeently
fault tolerant, i.e. one can damage bits of the code, andelt&iour will
gracefully degrade [Bentley, 2005]. As the author notess difficult to test
if the development gives an advantage in this case. The amwental pro-
gram is longer, and hence may be more susceptible to faatteXdmple from
faulty memory) - however when the developmental progranoisupted, be-
haviour degrades gracefully. The developmental program r@quired more
computation to execute, in terms of the simulation of graptime artificial or-
ganism. Is this trade-off ultimately worth it? Bentley lesdes that the fragility
of the solutions may be caused by the "conventional (byittgure of the pro-
gramming language, compiler and hardware”, and hence wehaagyto think
differently about the methods of implementing these comanal systems.
For example, if we were to apply the cellular computing mitaiio hardware
then so far all attempts have required vast amounts of haedketative to the
size of the problem being solved - and far in excess of whaidvoe required
from traditional n-module redundancy. Perhaps one couléggution to find
solutions that are more than the sum of its parts which woiddsgus back
the advantage? Such a system may allow us to evolve circitishigh com-
ponent counts, that also have intrinsic fault toleranceasé thot yet achieved
with a purely evolutionary approach.

4, Evolvability and Search Spaces

Artificial developmental systems are an example of an ictligjenotype-to-
phenotype mapping. In development, genotypes are typishthrter than the
phenotypes they represent, which means that developmeitteceiewed as a
de facto decompression algorithm. This changes the way iohagvolution
tackles the search space.



(a) (b) ()

Figure 2. A direct encoding,(a), only tests the search space at aespaiht specified by the
genotype (shown as a star within the search space). A dewelaal encoding (b) can travel
through the search space when developing. A stochastitogemental encoding (c) could take
this further, and search a large area of the space, butetiidresult of a single genotype.

For some encodings, the genotype may only be able to map tuoitdi
part of the search space, as it may be the case that the nufrdiates poten-
tially represented by a short genotype is fewer than the mummbstates in the
phenotype space. For such systems, parts of the phenotgpe ape ignored
- which can potentially benefit evolution, although caredse® be taken to
ensure that potential solutions can be accessed.

A stochastic genotype-phenotype mapping could be viewedlassy de-
compression algorithm. The benefit here is that it enablegplag from a
greater region of the phenotype space than a deterministipimg. Natural
systems are often subject to high levels of noise. The naisees from a va-
riety of sources, from thermal noise at small scale to uriptaole external
environmental factors. Natural evolution has found meidmg to cope with
such noise, however in artificial systems we tend to avoslftirim of stochas-
tic behavior. Artificial evolution [Thompson and Wasshyl2800, Miller and
Hartmann, 2001, Harding, 2005] shows that algorithms ateonty capable
of operating in such situations, but actually benefit fromphesence of noise.
Artificial chemistries [Banzhaf and Lasarczyk, 2004] andtesc program-
ming languages such as “Whenever”, execute program itigtngcin random
orders - yet are still able to implement a desired computatio

One potentially undesirable feature of stochastic mapgitigat for fitness
evaluation each individual will need to be tested a numbéinods, to ensure
that the fitness is an accurate sample of the phenotype duetcé genotype
maps to. Another consequence is that it can no longer be mpeachthat a par-
ticular genotype will produce a particular phenotype, Wwhsaggests that such
approaches would be most useful where a phenotype stilLadiely performs
even ifitis imperfect. On the other hand, the degree of amyucan be graded
by the amount of computational power invested into the nrappi

In a typical setting artificial development mimics the clhustructure used
by nature, where cellular modules cooperate to perform ticpéar task. This
approach has implications for the types of problems that are attempt to
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solve, as it may be that some problems are not easily mapgdedtiua for-
mat. Indeed, human designers have difficulties in implemgrguch systems,
and this is particularly evident in programming parallesteyns, or indeed in
defining rules for cellular automata. Miller reports thableing the devel-
opmental French Flags is hard - with very few runs being sssfak[Miller,
2004]. ltis still unclear whether developmental systeneseasier to evolve
than non-developmental systems. Although the genotypelmajorter - and
hence fewer variables have to be manipulated, developraartte expected to
distort the fitness landscape. For example, in [Harding aiilgfyi2006], the
evolvability of a simple developmental encoding was ingaded, and it was
found that evolution was less effective at finding solutiossg development
than with a direct encoding.

Roggen and Federici compared evolving direct and develaphenap-
pings for the task of producing specific two dimensional gvat of various
sizes (the Norwegian Flag and a pattern produced by Wolgdm' CA rule
90) [Roggen and Federici, 2004]. They showed in both casas #s the
pixel dimensions of the patterns increased, the develotahemethods out-
performed the direct methods. It is noteworthy that peréomoe disparity was
much more marked for the relatively regular Norwegian flatjgoa than for
pattern generated by a 1D cellular automata. Hornby ané&oévolved con-
text free L-systems to define three dimensional objectdg(@ddsigns) [Hornby
and Pollack, 2001]. They found that their generative systeatd produce de-
signs with higher fitness faster than direct methods. They pat that genera-
tive or developmental systems will scale better than dimethods when there
is modularity present. For instance, in the case of furaitlesign, if there is
a module that is responsible for producing a table leg, ¢aiwnly needs
to alter and perfect one module rather than having to indigratty adjust an
arbitrary number of independent table leg producing codaggons. A num-
ber of genotype—phenotype mappings on a problem of creattegsellating
tile pattern were examined in [Bentley and Kumar, 1999]. @bthors found
that an indirect developmental mapping (that they refetoeds an implicit
embryogeny) could evolve tiling patterns much quicker tharriety of other
representations (including direct) and further, that tbeyld be subsequently
grown to much larger sized patterns.

One drawback that they reported was that the implicit emipepy tended
to produce the same types of patterns (i.e. of relativelydomplexity). As we
will see later our results support this finding. In these iagibns, it appears
that development is satisfactory for low complexity praobg where there are
many regularities - possibly regardless of scale. Likedfiencodings, their
behavior does deteriorate as the phenotype scales. Ongpeauate that this
is due to the decrease in the genotype—phenotype correlaitb an increase
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in complexity of the phenotype, which in turn reduces evoiiy, as Lehre
and Haddow found [Lehre and Haddow, 2003].

Heritable information can also be passed on through mesimsnbther than
the DNA, and this will effect evolvability and the developmt&l processes.
Such information is subject of the field of Epigenetics [QAQ06]. This
includes the maternal influences described earlier and froatibns to the
genome caused by the mother’s interaction with the enviesimit appears
that in addition to the standard base pair encoding in DNA,ganome also
carries another code, the epigenetic code, attached to Bhththat informa-
tion provided by this code affects the expression of cerggines. Heritable
epigenetic information alters the packing density of theADhanging the
likelihood of genes being expressed. For example, reseavoiparing the
development of twins, shows that epigenetic codes may be smnsitive to
environmental influences than DNA [Qiu, 2006], where it isased that just
by making changes to the diet of a pregnant mouse, the coatircof pups
can be changed. The role of epigenetics in nature is stillnwncler research,
however there are a growing number of examples demongriatiw the envi-
ronment alters gene expression.

In addition to the effects on development, epigenetics alay affect the
evolvability of a species, as epigenetic information is samat heritable. Roe-
mer et al showed that manipulations of epigenetic inforamath mice were
passed down to offspring [Roemer et al., 1997], and comntett“tf epi-
genetic inheritance indeed exists, what is its evolutipregnificance? The
extent of its effects will depend on the number of geneti¢ iothe genome
that can be modified epigenetically, and on the stabilityhef modifications.
Whether “epimutations” have any adaptive significance edsaains to be es-
tablished. It should be emphasized that this type of indweci is rooted firmly
in Darwinian selection, with selection possibly both foe tihhodified locus and
for the genes that control epigenetic modifications.” The osmaternal ef-
fects has been demonstrated in developmental neural rfetwdfatos et al
[Matos et al., 2005] found that the use of the maternal ggreotyecreased
evolvability. They speculate that this may be down to lagrfrevolutionary
momentum. In a second experiment, they looked at how placémterac-
tion with the mother affected the evolvability of the neungtworks. Here
they found improvements over a standard developmentabappr It is clear
that maternal influences shape developmental behaviordeweloping suit-
able analogies may help artificial development.

5. The Role of Physics

Development in the real world is not just the product of gefié®re are in-
teractions with the environment, and in particular the tations of biological
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chemistry and physics constrain what biological procesaesdo. It is likely
that primitive life forms relied more on the properties oftteg such as vis-
coelasticity and chemical/mechanical excitation, rathan on gene expres-
sion. Forgacs and Newman argue that such physical propentea “rough
sort development”, and that we should not expect eithergenphysics to be
enough on their own [Forgacs and Newman, 2005]. Earlier weudsed that
when organs form, the shapes are the result of a small nunfilpgpcesses.
These basic processes are determined by the physical tiespef the cell
namely adhesion, diffusion and viscoelasticity - whiclgidentally, are also
found in nonliving systems but are not under any form of gerezintrol.

Early multicellular life consisted of cell aggregates. $aeell aggregates
would have the ability to self organize into patterns, basethe chemical ac-
tivity of each cell. Essentially, a cell aggregate would he=gcitable medium.
The primary role for cell adhesion would be for tissue foriarat Due to their
chemistries, biological cells have different rates of eelhesion which leads
to an interesting property during early stages of develogmilature tissues
have strong, long-lived links between the cells. Cell adthealso allows for
ions and small molecules to pass between neighbouring-ceithout allow-
ing other ions or molecules from outside to get in.

During early development, however, cells are not joinedhis tvay, but
move easily as if in a liquid. This, combined with differeattadhesion, forces
the cells to become sorted as they move. Furthermore, sdifséhage adhe-
sive polarity, which causes certain patterns to be formedeshe cells wish
to reorganize themselves into a stable, low energy statéxiking example is
when a mixture of celfsfrom an organism called a hydra, are mixed together
(producing a random pattern): They will sort themselves thie precise ar-
rangement found in the original organism [Technau and wis.992].

When cells evolved to have a variety of types, each with aifie adhesive
properties, these effects of cell sorting would have oeziand new spatial
patterns were constructed. As those properties were abuptk the evolution
of polarized cells, the cells could form lumens or elastieeth. In artificial
development, we can use the properties of cell adhesiomirgi some target
patterns without having to evolve a gene regulatory networkequivalent).
To illustrate this, we present in the following section a lnoet for evolving
patterns, including the familiar French flag, using diffaral cell adhesion.

We would expect that using physical effects such as celirgpwould have
limited utility on its own. As in nature, a combination of bahherent phys-
ical effects and control by a genotype, however, might yeeligh degree of
sophistication. One advantage of a strong bias toward tiisigdd control of
development, compared to the genetic control, is that ndéiacenations can
be achieved through minute genetic change. This may be wgpgriant for
search algorithms, as one can explore the search space smairnwmays. In
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effect, a combination of both physics and genetics, an@mdifft ratios of the
influence between these two factors may give a search hHeuhst contains
two very different algorithmic aspects. Perhaps as in eattlre balance be-
tween the responsibilities of each will be automaticallyirmzed by evolution.

In artificial development the constraints of reality praddby physics do
not exist. That means that their benefits, namely to guidecanstrain search,
are lacking. Because it appears that physics is useful iralatystems, one
should perhaps find an analogous artificial physics for adifidevelopment.
At present, it is unclear what the artificial equivalents elf adhesion, surface
tension, gravity and diffusion are. Itis also unclear whatrelationship would
be between developmental physics and the physics of thevhegcn which
the artificial developmental system is implemented. Workvolvable hard-
ware has shown that evolution is able to make use of the pilymioperties of
its environment, and perhaps we can expect the same fronogevent.

6. Resultsfrom a Cell Sorting Experiment

Figure 3. Target French flag pattern

Our model for cell growth uses a grid, where each point on tie ¢an
hold a cell, or can be empty. There are three different cpkt$y(to map to the
red, white and blue of the flags) and each one of these has iisadivesive
properties - to be determined by evolution. To simulate toe Bf cells, we
employ a simple mechanism whereby cells that wish to movewap into
a neighboring empty cell, or swap places with an existingymgoring cell.
When the simulation is run, a cell is picked and a calculat®performed
to see, whether the entropy of the cell would drop, as desdrib [Forgacs
and Newman, 2005, chapter 4] if it were to swap with any of éghboring
cells. The energy of a particular cell is calculated as time stithe differences
between the center cell’s adhesion coefficient and thosts aighbors. If a
suitable swap is found, then cells swap position. This isaégd a number of
times; the number of cell swaps allowed is determined byutiam. We also
allow the cells to split, in order for the artificial embryo goow. If there is
an empty neighboring cell, then a cell can divide into thip gad take on the
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same cell type as its parent. The number of times cells avevedl to split is
also determined by evolution.

For these experiments we tried two different approachdset@volutionary
system.

In the first, we use two different chromosomes . In one, therlsome
specifies the cell adhesion properties of all cell types,nlagimum number
of swaps allowed and the maximum number of times cells aogvell to split.
The other chromosome type contains a list of cells and thesitipns, in ad-
dition to the properties described. This list is used to defire initial starting
configuration of the developing embryo. These initial calitions may be
analogous to the maternal influences described in section 2.

We also investigate the behavior without the evolved stgrtiositions, but
where the simulation uses a scaled-down version of thettatgined by hand.
Here only the adhesion coefficients need to be evolved.

Adhesion coefficients are represented by floating point reimbThe cell
positions are stored as a variable-length list of coordmaind cell types. In
this model we ignore the possibility of cell polarizatiomtdgers are used to
store the number of iterations the simulation runs, and hawyneell divisions
are possible.

The fitness function determining the success of a solutiontsache number
of cells in resultant arrangements that were the same as tatet.

A basic evolutionary algorithm was used, consisting of aytefon of 50
individuals with tournament selection and elitism. In diddi to mutation, we
employ a basic two-point crossover on the genotype. Ewnlutvas allowed
to run for 5000 generations.

For these experiments, the target pattern was a cell clagteounded by
an outer cell layer. Figure 4 shows the target image, whicghdmailar form
to some biological formations such as retinas ([ForgacsNewman, 2005,

p93]).

Figure 4. Target cell cluster

Figures 5 and 6 shows two examples of evolved cell clusters, évolution
was allowed to determine the starting configuration for gles¢top left frame
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Figure 5. Example of developing cell cluster, where the cell sortirayes the darker cells to
the middle of the cell mass.

Figure 6. A second example of a developing cell cluster. Again a cédénk mass is formed,
but here the outer cells produce a spaced pattern.

& W

’
b b
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of each sequence). The behavior is similar to that createshwie initial target
pattern was not specified by the chromosome, such as in tugsaled in the
first ten frames of Figure 7.

Figure 7 shows the effect of running a simulation for twice greriod of
time specified by evolution. The first 10 frames show the secgi¢hat was
used in fitness evaluation, and the following frames showt\wbppens after
the embryo has reached “maturity”. We see that the geneggdesremains
consistent, and that the center of the cell continues tosadijntil it finds a
point of minimum energy, and stabilises.

As in nature, embryos undergoing development are able w@irrdpmage
to some extent. Figure 8 shows the same developing embrymaeH, but
this time the embryo is damaged by removing a band of cells dmhbryo
remains disrupted, however it starts to reform into theebmpttern. This
ability was not selected for during evolution, and is theutesf the physics
of development being used for this secondary purpose. Tierattial cell
adhesion is not only responsible for sorting the cells immugs, but is also
responsible for bringing different cell clusters togethidris is likely to be one
of the mechanisms used for repair in the developing organism

Other shapes can be produced by evolving the starting coafigas, and
allowing cell growth and cell sorting to finalise the patteFor example, Fig-
ure 9 shows an evolved French flag. In contrast to the previoesch flag
patterns discussed here, this one did not require the éwolaf a program to
control the behaviour of the cells.
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Figure 7. Running the cell sorting beyond the period specified by éiaiuresults in sta-
ble patterns. Here the first ten frames are from the perioddaluring evolution to produce
maturity. The following frames show the effect of running gimulation for additional time.

Figure 8. An example of the regrowth of a damaged artifical embryo
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Figure 9. Two examples of a French Flag produced by cell sorting.

The final example is a complicated pattern, based on the tyfeshavior
seen during this artificial development. Figure 10 showsamahbr board in the
shape of a triangle, attached to a basic two color “flag”. Tingpse of these
shapes is to demonstrate that we can evolve for a varietyrgéttgatterns
that have rounded shapes, solid layered masses, shapagcanpatterns of
empty space and regular structures with sharp edges. Imentitere are a
limited number of forms that cell groups can form, and theasidpatterns
are used as building blocks for organs. Without the difféa¢icell adhesion,
it was found to be impossible to get chequer board patterrevatre. The
nearest that could be obtained were three groups of celils,alarge amount
of mixing. This demonstrates that cell movement can be aiuaatl important
part of developmental systems.

Figure 11 shows an interesting result observed duringntpsif the sim-
ulation software. Here, each cell group has slightly défgrcell adhesion
properties and the initial state is a randomized cell clust®wever, without
any guidance from evolution, a rough French flag patternaslyced. As in
nature, certain patterns are perhaps an inevitable coeseguof the physical
properties of the cells that make them. If this is true, inportant to under-
stand to how much the patterns are restricted by biologieatldpment and
from this determine the consequences for artificial devakt.

7. Conclusions

Developmental systems may prove to be a very useful tecarimgeom-
puter science. The field however is still in its infancy, anid difficult to see
how the developmental analogy can be applied to many of thiedlyproblems
in computer science. Specifically, the challenge is to magldpment into a
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Figure 10. Target chequer board and flag, and an example of a developihgre that forms
this pattern.

Figure 11. French flag emerging because of differential cell adhesion



18

computational domain. The applications described here damonstrated its
utility in producing patterns, whether as abstract imagessdopographies for
neural networks, but transforming these preliminary ide&s a more gener-
alized and practical computational system has yet to be.ddowning argues
that this is “largely because embryogenesis evolved fopthipose of synthe-
sizing 3-dimensional structure from a linear code, not fawgng Universal
Turing Machines” [Downing, 2003], and that while we can mapgbems onto
a developmental framework, it is unclear whether this isdeiently suitable
approach. Despite these issues, development has mansefettat are attrac-
tive in artificial systems - and that if we can get these ideasdrk, we will
have another powerful, bio-inspired technique to apply.
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