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Abstract There is growing interest in the use of analogies of biological development for
problem solving in computer science. Nature is extremely intricate when com-
pared to human designs, and incorporates features such as the ability to scale,
adapt and self-repair that could be usefully incorporated into human-designed
artifacts. In this chapter, we discuss how the metaphor of biological develop-
ment can be used in artificial systems and highlight some of the challenges of
this emerging field.
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1. Introduction

Organic processes can serve as inspiration for computational systems. The
design and functionality of organic systems is both a challenge and an exis-
tence proof of achievements of Nature posed to the human designer. In this
context it has turned out that the level of complexity commanded in the design
of natural systems is still unparalleled. To put the scalability of biological sys-
tems into perspective: Microsoft’s latest version of Windows has106 lines of
code, some Linux distributions have107 lines of computer code, but there are
10

14 cells in the human body each much more complex than a line of code.
Such complexity would be out of reach of human designers, whoeven struggle
to keep the simplest designs and manufacturing processes defect-free. With the
increasing complexity of both hardware and software, thereis need is growing
for new design techniques that allow us to work with such complexity.

Evolutionary algorithms that mimic Darwinian evolution have provided part
of the answer to this problem. Algorithms such as genetic algorithms and ge-
netic programming [Banzhaf et al., 1998, Eiben and Smith, 2003, Mitchell,
1996] allow us to quickly search through vast search spaces,finding novel so-
lutions to our problems. However, there are limits to how evolvable certain
applications are, especially those that - with a naïve implementation - would
require long genotypes. Under such circumstances evolution can find it diffi-
cult to fine tune the genotype - mutations are more likely to bedisruptive than
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beneficial and the combinatorics of search spaces is prohibitive. It would be
impossible to evolve a functioning computer program with millions of lines
of code, or a circuit with a hundred million components with our present-day
methods. So how does nature correctly assemble a system containing trillions
of cells?

Nature uses the process of development, by which a fertilized egg grows
into a fully mature individual. Here we shall discuss how onecan grow com-
plicated programs and other structures by starting from an artificial zygote. For
example, Figure 1 shows a single artificial cell developing into a predefined
pattern [Miller, 2004]. Each cell contains a computer program, discovered by
evolution, that when executed contains instructions for growing the virtual or-
ganism. In this chapter, we shall provide a brief discussionof the biology of
development, and shall link it to artificial development. Wewill also present
some ideas for improving the current state of developmentalmodels, in partic-
ular the use of physical analogies.

Figure 1. Miller’s French Flag Problem

2. Embryogenesis

Embryogenesis is the first stage of the developmental process by which the
embryo is formed. The development starts with the zygote, which is the fer-
tilized ovum. The zygote undergoes a process called cleavage, where mitosis
splits the cell into two (and later more) identical cells. Even at this stage,
spatial patterns are being produced. Egg cells are asymmetric, and the first
cleavage occurs along one axis, the second cleavage on an axis perpendicular
to it. The developing embryo receives a substantial amount of information in
the starting configuration from its zygote - this is called molecular prepattern-
ing [Nusslein, 2006]. In insect ovaries, in addition to the egg, there are other
cells, such as nurse cells, which produce proteins requiredfor growth, and pass
these into the egg cell. They contain maternal DNA that has animportant role
in the embryo’s growth.
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Mitosis repeats until 128 cells have been produced, at whichpoint the next
phase of development, called blastulation, occurs. At thisstage, the cells are
still stem cells - they have yet to differentiate into a specialized cell type. In
mammals, the cells organize into a spherical structure called a blastocoele,
which subsequently develops into a blastocyst. The outer cells (called the tro-
phoblast) will go on to form the placenta, and the inner cells(called the embry-
oblast) will form the embryo. Subsequently, the blastocoele forms three layers,
the ectoderm, endoderm, and mesoderm, that develop into theinternal organs
of the animal.

The cells differentiate into their organ types, and groups form certain phys-
ical shapes. Shapes themselves are the result of a small number of different
processes, governed by differences in cell adhesion and rates of differentia-
tion. The cells can form tubes or sheets, or condense into clusters. We further
discuss the role of physics in Section 5.

Positional information, used by the genes of the embryo comes from chem-
ical gradients that are set up by proteins from the maternal RNA. These divide
the space inside the egg, and form the axes along which different developmen-
tal processes occur. For example in Drosophila, nurse cellsanchored at one
end of the egg, contain a gene that produces a protein (Bicoid) that diffuses
across the egg, setting up a gradient. As a morphogen, the concentration of
this protein determines whether certain other genes are expressed and hence
control the fate of cells: A high concentration results in the formation of head
and thorax. The embryo develops, however, without these features if the gra-
dient is artificially suppressed.

The genes in the embryo are responsible for the majority of the developmen-
tal process. They produce proteins which not only build the cellular structures,
but also form part of the control process. The program storedin genes is the
aspect typically replicated by evolved programs in artificial developmental pro-
cesses. The genes form networks of interactions, where the behaviour of one
gene represses or triggers the behaviour of others. Howeverit is important to
note that in addition there are maternal genes that sit at thetop of this complex
hierarchy of gene interactions. Maternal genes influence the zygotic genes,
which in this instance are labeled gap genes, since in Drosophila a mutation in
one of these genes results in a gap in the developing body plan. These genes in
turn then influence other layers in the gene hierarchy - at thebottom of this di-
agram are genes that influence the development of the wings. Effectively, each
layer in the hierarchy occurs at different stages in the developmental cycle,
with the lowest level occurring last, and interacting the least with the maternal
RNA.

Development is sensitive to its environmental conditions.Amounts of food,
water, sun and other resources play an important role in defining the growth of
an animal as well as do external signals. If any of these resources is deficient,
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the body develops in a different way. For example, fish release hormones into
the water that prevent further growth if their concentration gets too high. This
prevents overuse of food resources in the wild, but also explains why the size
of fish held in captivity is dependent on their tank size. Plants grow to fit their
containers - or their roots flow around rocks and other obstacles underground.

In recent years, some researchers have started to look at embryogenesis as
an inspiration for the development of electronic circuits.This field of inquiry
has been namedEmbryonics[Ortega-Sanchez et al., 2000].

3. Scalability, Plasticity and Robustness

Multicellular organisms start from a single cell, which develops into a com-
plete organism - potentially containing trillions of cells. Each cell contains the
genetic information, encoded in DNA, that controls the properties of that cell.
However, DNA does not directly specify the properties of a cell. Instead, DNA
instructs the construction and development of a cell, usingas much environ-
mental information and material as possible. The human genome consists of
about3.2 × 10

9 base pairs, coding for approximately 25,000 genes which in
turn produce1014 cells. A large portion of the genome contains regulatory
information.

Scalability

A good example of scalability in artificial development comes from neural
networks. Scalability in this context means that it is possible to grow more
neurons if they are needed in the neural net to solve harder problems. Spec-
ifying the properties of each cell would be computationallyinfeasible due to
combinatorics and training algorithms like back-propagation would be unsuit-
able. As a result, direct evolution of weights and topology of the net sooner or
later will encounter a size barrier, where training is no longer computationally
practicable

Can we write a computer program that will grow an arbitrarilysized neural
net of the right properties? Is this easier than evolving thenetwork directly?
Here we are combining evolution, development and learning.Could we make
the neural network perform difficult tasks? For example, saywe wanted to
write a voice recognition program. The scalable approach would require that
we make it work satisfactorily on a cell phone processor, good on a desktop
and amazingly well on a supercomputer. In this example, growing would allow
the program to fit the processor and memory availability. Would we find that
evolution/development will discover unusual topologies that one would not
have considered otherwise?

Kitano was one of the first to use artificial development to produce neu-
ral networks [Kitano, 1990]. Kitano evolved L-system rulesthat produced
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the connection matrix of neurons, specifying the network’stopology and their
weights. He found that, unlike a conventional direct encoding, the develop-
mental encoding scaled well. Kitano developed a method for evolving the
architecture of an artificial neural network using a matrix re-writing system
that manipulated adjacency matrices [Kitano, 1990]. According to his results,
this method produced results superior to direct methods (i.e. a fixed architec-
ture, directly encoded and evolved). It was later claimed, however, that the two
approaches were of equal quality [Siddiqi and Lucas, 1998].

Gruau devised a graph re-writing method called cellular encoding [Gruau,
1994]. Cellular encoding is a language for local graph transformations that
controls the division of cells growing into artificial neural networks. The
cells, which we can identify as nodes in the ANN, store connection strengths
(weights) and a threshold value. The cells also store a grammar tree that de-
fines the graph re-writing rules and a register that defines the start position
in the grammar tree. The grammar tree was evolved using an evolutionary
algorithm and the method was shown to be effective at optimising both the ar-
chitecture and weights at the same time. It scaled better than a direct encoding
where all the weights had to be independently evolved [Gruauet al., 1996].

Federici has successfully evolved spiking neural networksthat are con-
structed with a developmental system [Federici, 2005]. Here the developmen-
tal system outperformed the direct encoding by a considerable margin. How-
ever, as the parameters of either experiment were not optimized, it may not be
a fair test of the algorithm’s ability.

Human designs are often limited by their ability to scale, and adapt to chang-
ing needs. Our rigid design processes often constrain the design to solving the
immediate problem, with only limited scope for change. Organisms, on the
other hand, appear to be able to maintain functionality through all stages of de-
velopment, despite a vast change in the number of cells from the embryo to a
mature individual. It would be advantageous to empower human designs with
this on-line adaptability through scaling, whereby a system can change com-
plexity depending on conditions. We should expect organic computing to solve
a related problem: Adaptation of the complexity of algorithmic approaches to
problems of variable difficulty.

Plasticity

In nature we find that designs scale, as is evident from the growth of ani-
mals after gestation: The various functions of the organismstill work all the
way from infancy to adulthood. This gives organisms the ability to grow to
sizes that fit the environment, without sacrificing reproductive capability. The
hormones in the water already mentioned limit the growth of fish, and this
prevents fish from becoming too large if there is not enough room, and hence
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allow the fish to survive with less competition for resources. Similar effects
can be found in artificial developmental systems. For example, in Linden-
mayer systems the models of plants can be run to any size, and still retain the
same morphology or shape, L-systems were originally used tomodel the de-
velopment of plants, however they have also been used for producing neural
networks [Carrascal et al., 2003], protein structure prediction [Escuela et al.,
2005] and object design [Hornby and Pollack, 2001].

These results, both in natural and artificial contexts, gives us some confi-
dence that if we wish to produce designs with a large number ofcomponents,
we should be able to utilize the developmental approach. Forexample, if we
wish to build a control system for a large plant, such as a power station, the de-
sign should yield a stable, fail-safe control system. As with all mechanical and
electrical systems, faults develop over time. It would be beneficial for the sys-
tem to cope with component failure, and the system should be able to maintain
its function in the event that a sensor fails. As the needs of the plant change,
the system may be required to grow to accommodate new features, perhaps a
boiler would be added with new sensors, actuators and terminals; could we use
the principles of developmental systems to allow the control system to auto-
matically “grow” and adapt to accommodate this?

Robustness

Biological systems are remarkably tolerant to failures in individual com-
ponents, and this is clearly a desirable attribute for engineered systems. The
ability to regenerate lost or damaged limbs, tissues or organs is common in
animals - although the abilities vary. Some animals, such asnewts have the
ability to re-grow entire limbs. Humans cannot regenerate limbs, however they
can re-grow ribs and fingertips. The liver is also able to regenerate, and the
skin is constantly being replaced.

The processes involved in development and regeneration arerelated. For
example, during the early development of a fetus it is possible for it to fully
recover from a deep cut. However, later during development the regrowth is not
as effective and the fetus becomes scarred.The self-repairof the newt involves
a layer of cells growing over the injured stump, which revertto stem cells.
These stem cells, like those in the developing embryo, can become any cell
type and allow the missing limb to re-develop.

Gerhart and Kirschner [Gerhart and Kirschner, 1997] describe four proper-
ties of cells that lead to developmental flexibility: (i) Thedestruction of a small
number of cells can be tolerated, as there is enough redundancy that others in
the group can replace it. (ii) As all the cells in a group perform the same ac-
tion, their arrangement does not matter. (iii) Moving cellsfrom one group to
another equivalent group is possible, as the cells can adaptto the local stimuli.
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(iv) Finally, if an organizer, such as the bicoid gene described in section 2, is
moved then the cells respond to their new distance from the organizer.

Which of these features are relevant and appropriate to implement in ar-
tificial development? In conventional engineering, redundancy is the normal
approach to implement fault tolerance and robustness. Although natural sys-
tems do have redundancy, for example the duplication of entire organs such as
eyes and lungs, they also have the ability re-grow anything from missing cells
to entire limbs. Current hardware technology does not allowa similar feat.

However, perhaps we can look forward to the time when nanobots will give
hardware this ability. The application of developmental systems in pattern for-
mation for such systems is obvious - nanobots will have limited computational
and sensing abilities - much like real cells. Hence, this type of approach could
be applicable in these scenarios.

Bentley shows that computer programs can be evolved that areinherently
fault tolerant, i.e. one can damage bits of the code, and its behaviour will
gracefully degrade [Bentley, 2005]. As the author notes, itis difficult to test
if the development gives an advantage in this case. The developmental pro-
gram is longer, and hence may be more susceptible to faults (for example from
faulty memory) - however when the developmental program is corrupted, be-
haviour degrades gracefully. The developmental program also required more
computation to execute, in terms of the simulation of growing the artificial or-
ganism. Is this trade-off ultimately worth it? Bentley believes that the fragility
of the solutions may be caused by the ”conventional (brittle) nature of the pro-
gramming language, compiler and hardware”, and hence we mayhave to think
differently about the methods of implementing these computational systems.
For example, if we were to apply the cellular computing metaphor to hardware
then so far all attempts have required vast amounts of hardware relative to the
size of the problem being solved - and far in excess of what would be required
from traditional n-module redundancy. Perhaps one could get evolution to find
solutions that are more than the sum of its parts which would gives us back
the advantage? Such a system may allow us to evolve circuits with high com-
ponent counts, that also have intrinsic fault tolerance - a task not yet achieved
with a purely evolutionary approach.

4. Evolvability and Search Spaces

Artificial developmental systems are an example of an indirect genotype-to-
phenotype mapping. In development, genotypes are typically shorter than the
phenotypes they represent, which means that development can be viewed as a
de facto decompression algorithm. This changes the way in which evolution
tackles the search space.
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Figure 2. A direct encoding,(a), only tests the search space at a single point specified by the
genotype (shown as a star within the search space). A developmental encoding (b) can travel
through the search space when developing. A stochastic developmental encoding (c) could take
this further, and search a large area of the space, but still be the result of a single genotype.

For some encodings, the genotype may only be able to map to a limited
part of the search space, as it may be the case that the number of states poten-
tially represented by a short genotype is fewer than the number of states in the
phenotype space. For such systems, parts of the phenotype space are ignored
- which can potentially benefit evolution, although care needs to be taken to
ensure that potential solutions can be accessed.

A stochastic genotype-phenotype mapping could be viewed asa lossy de-
compression algorithm. The benefit here is that it enables sampling from a
greater region of the phenotype space than a deterministic mapping. Natural
systems are often subject to high levels of noise. The noise comes from a va-
riety of sources, from thermal noise at small scale to unpredictable external
environmental factors. Natural evolution has found mechanisms to cope with
such noise, however in artificial systems we tend to avoid this form of stochas-
tic behavior. Artificial evolution [Thompson and Wasshuber, 2000, Miller and
Hartmann, 2001, Harding, 2005] shows that algorithms are not only capable
of operating in such situations, but actually benefit from the presence of noise.
Artificial chemistries [Banzhaf and Lasarczyk, 2004] and esoteric program-
ming languages such as “Whenever”, execute program instructions in random
orders - yet are still able to implement a desired computation.

One potentially undesirable feature of stochastic mappingis that for fitness
evaluation each individual will need to be tested a number oftimes, to ensure
that the fitness is an accurate sample of the phenotype space that the genotype
maps to. Another consequence is that it can no longer be guaranteed that a par-
ticular genotype will produce a particular phenotype, which suggests that such
approaches would be most useful where a phenotype still adequately performs
even if it is imperfect. On the other hand, the degree of accuracy can be graded
by the amount of computational power invested into the mapping.

In a typical setting artificial development mimics the cellular structure used
by nature, where cellular modules cooperate to perform a particular task. This
approach has implications for the types of problems that we can attempt to
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solve, as it may be that some problems are not easily mapped onto this for-
mat. Indeed, human designers have difficulties in implementing such systems,
and this is particularly evident in programming parallel systems, or indeed in
defining rules for cellular automata. Miller reports that evolving the devel-
opmental French Flags is hard - with very few runs being successful [Miller,
2004]. It is still unclear whether developmental systems are easier to evolve
than non-developmental systems. Although the genotype maybe shorter - and
hence fewer variables have to be manipulated, development can be expected to
distort the fitness landscape. For example, in [Harding and Miller, 2006], the
evolvability of a simple developmental encoding was investigated, and it was
found that evolution was less effective at finding solutionsusing development
than with a direct encoding.

Roggen and Federici compared evolving direct and developmental map-
pings for the task of producing specific two dimensional patterns of various
sizes (the Norwegian Flag and a pattern produced by Wolfram’s 1D CA rule
90) [Roggen and Federici, 2004]. They showed in both cases that, as the
pixel dimensions of the patterns increased, the developmental methods out-
performed the direct methods. It is noteworthy that performance disparity was
much more marked for the relatively regular Norwegian flag pattern than for
pattern generated by a 1D cellular automata. Hornby and Pollack evolved con-
text free L-systems to define three dimensional objects (table designs) [Hornby
and Pollack, 2001]. They found that their generative systemcould produce de-
signs with higher fitness faster than direct methods. They point out that genera-
tive or developmental systems will scale better than directmethods when there
is modularity present. For instance, in the case of furniture design, if there is
a module that is responsible for producing a table leg, evolution only needs
to alter and perfect one module rather than having to independently adjust an
arbitrary number of independent table leg producing codingregions. A num-
ber of genotype–phenotype mappings on a problem of creatinga tessellating
tile pattern were examined in [Bentley and Kumar, 1999]. Theauthors found
that an indirect developmental mapping (that they referredto as an implicit
embryogeny) could evolve tiling patterns much quicker thana variety of other
representations (including direct) and further, that theycould be subsequently
grown to much larger sized patterns.

One drawback that they reported was that the implicit embryogeny tended
to produce the same types of patterns (i.e. of relatively lowcomplexity). As we
will see later our results support this finding. In these applications, it appears
that development is satisfactory for low complexity problems, where there are
many regularities - possibly regardless of scale. Like direct encodings, their
behavior does deteriorate as the phenotype scales. One can speculate that this
is due to the decrease in the genotype–phenotype correlation with an increase
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in complexity of the phenotype, which in turn reduces evolvability, as Lehre
and Haddow found [Lehre and Haddow, 2003].

Heritable information can also be passed on through mechanisms other than
the DNA, and this will effect evolvability and the developmental processes.
Such information is subject of the field of Epigenetics [Qiu,2006]. This
includes the maternal influences described earlier and modifications to the
genome caused by the mother’s interaction with the environment. It appears
that in addition to the standard base pair encoding in DNA, the genome also
carries another code, the epigenetic code, attached to DNA,and that informa-
tion provided by this code affects the expression of certaingenes. Heritable
epigenetic information alters the packing density of the DNA, changing the
likelihood of genes being expressed. For example, researchcomparing the
development of twins, shows that epigenetic codes may be more sensitive to
environmental influences than DNA [Qiu, 2006], where it is reported that just
by making changes to the diet of a pregnant mouse, the coat colour of pups
can be changed. The role of epigenetics in nature is still much under research,
however there are a growing number of examples demonstrating how the envi-
ronment alters gene expression.

In addition to the effects on development, epigenetics alsomay affect the
evolvability of a species, as epigenetic information is somewhat heritable. Roe-
mer et al showed that manipulations of epigenetic information in mice were
passed down to offspring [Roemer et al., 1997], and comment that “If epi-
genetic inheritance indeed exists, what is its evolutionary significance? The
extent of its effects will depend on the number of genetic loci in the genome
that can be modified epigenetically, and on the stability of the modifications.
Whether “epimutations” have any adaptive significance alsoremains to be es-
tablished. It should be emphasized that this type of inheritance is rooted firmly
in Darwinian selection, with selection possibly both for the modified locus and
for the genes that control epigenetic modifications.” The use of maternal ef-
fects has been demonstrated in developmental neural networks. Matos et al
[Matos et al., 2005] found that the use of the maternal genotype decreased
evolvability. They speculate that this may be down to lag from evolutionary
momentum. In a second experiment, they looked at how placental interac-
tion with the mother affected the evolvability of the neuralnetworks. Here
they found improvements over a standard developmental approach. It is clear
that maternal influences shape developmental behavior, anddeveloping suit-
able analogies may help artificial development.

5. The Role of Physics

Development in the real world is not just the product of genes. There are in-
teractions with the environment, and in particular the limitations of biological
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chemistry and physics constrain what biological processescan do. It is likely
that primitive life forms relied more on the properties of matter, such as vis-
coelasticity and chemical/mechanical excitation, ratherthan on gene expres-
sion. Forgacs and Newman argue that such physical properties are a “rough
sort development”, and that we should not expect either genes or physics to be
enough on their own [Forgacs and Newman, 2005]. Earlier we discussed that
when organs form, the shapes are the result of a small number of processes.
These basic processes are determined by the physical properties of the cell
namely adhesion, diffusion and viscoelasticity - which, incidentally, are also
found in nonliving systems but are not under any form of genetic control.

Early multicellular life consisted of cell aggregates. These cell aggregates
would have the ability to self organize into patterns, basedon the chemical ac-
tivity of each cell. Essentially, a cell aggregate would be an excitable medium.
The primary role for cell adhesion would be for tissue formation. Due to their
chemistries, biological cells have different rates of celladhesion which leads
to an interesting property during early stages of development. Mature tissues
have strong, long-lived links between the cells. Cell adhesion also allows for
ions and small molecules to pass between neighbouring cells- without allow-
ing other ions or molecules from outside to get in.

During early development, however, cells are not joined in this way, but
move easily as if in a liquid. This, combined with differential adhesion, forces
the cells to become sorted as they move. Furthermore, some cells have adhe-
sive polarity, which causes certain patterns to be formed, since the cells wish
to reorganize themselves into a stable, low energy state. A striking example is
when a mixture of cells1 from an organism called a hydra, are mixed together
(producing a random pattern): They will sort themselves into the precise ar-
rangement found in the original organism [Technau and Holstein, 1992].

When cells evolved to have a variety of types, each with different adhesive
properties, these effects of cell sorting would have occurred and new spatial
patterns were constructed. As those properties were coupled with the evolution
of polarized cells, the cells could form lumens or elastic sheets. In artificial
development, we can use the properties of cell adhesion to generate some target
patterns without having to evolve a gene regulatory network(or equivalent).
To illustrate this, we present in the following section a method for evolving
patterns, including the familiar French flag, using differential cell adhesion.

We would expect that using physical effects such as cell sorting would have
limited utility on its own. As in nature, a combination of both inherent phys-
ical effects and control by a genotype, however, might yielda high degree of
sophistication. One advantage of a strong bias toward the physical control of
development, compared to the genetic control, is that new cell formations can
be achieved through minute genetic change. This may be very important for
search algorithms, as one can explore the search space in unusual ways. In
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effect, a combination of both physics and genetics, and different ratios of the
influence between these two factors may give a search heuristic that contains
two very different algorithmic aspects. Perhaps as in nature, the balance be-
tween the responsibilities of each will be automatically optimized by evolution.

In artificial development the constraints of reality provided by physics do
not exist. That means that their benefits, namely to guide andconstrain search,
are lacking. Because it appears that physics is useful in natural systems, one
should perhaps find an analogous artificial physics for artificial development.
At present, it is unclear what the artificial equivalents of cell adhesion, surface
tension, gravity and diffusion are. It is also unclear what the relationship would
be between developmental physics and the physics of the hardware on which
the artificial developmental system is implemented. Work inevolvable hard-
ware has shown that evolution is able to make use of the physical properties of
its environment, and perhaps we can expect the same from development.

6. Results from a Cell Sorting Experiment

Figure 3. Target French flag pattern

Our model for cell growth uses a grid, where each point on the grid can
hold a cell, or can be empty. There are three different cell types (to map to the
red, white and blue of the flags) and each one of these has its own adhesive
properties - to be determined by evolution. To simulate the flow of cells, we
employ a simple mechanism whereby cells that wish to move canjump into
a neighboring empty cell, or swap places with an existing neighboring cell.
When the simulation is run, a cell is picked and a calculationis performed
to see, whether the entropy of the cell would drop, as described in [Forgacs
and Newman, 2005, chapter 4] if it were to swap with any of its neighboring
cells. The energy of a particular cell is calculated as the sum of the differences
between the center cell’s adhesion coefficient and those of its neighbors. If a
suitable swap is found, then cells swap position. This is repeated a number of
times; the number of cell swaps allowed is determined by evolution. We also
allow the cells to split, in order for the artificial embryo togrow. If there is
an empty neighboring cell, then a cell can divide into this gap and take on the
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same cell type as its parent. The number of times cells are allowed to split is
also determined by evolution.

For these experiments we tried two different approaches to the evolutionary
system.

In the first, we use two different chromosomes . In one, the chromosome
specifies the cell adhesion properties of all cell types, themaximum number
of swaps allowed and the maximum number of times cells are allowed to split.
The other chromosome type contains a list of cells and their positions, in ad-
dition to the properties described. This list is used to define the initial starting
configuration of the developing embryo. These initial cell positions may be
analogous to the maternal influences described in section 2.

We also investigate the behavior without the evolved starting positions, but
where the simulation uses a scaled-down version of the target, defined by hand.
Here only the adhesion coefficients need to be evolved.

Adhesion coefficients are represented by floating point numbers. The cell
positions are stored as a variable-length list of coordinates and cell types. In
this model we ignore the possibility of cell polarization. Integers are used to
store the number of iterations the simulation runs, and how many cell divisions
are possible.

The fitness function determining the success of a solution counts the number
of cells in resultant arrangements that were the same as in the target.

A basic evolutionary algorithm was used, consisting of a population of 50
individuals with tournament selection and elitism. In addition to mutation, we
employ a basic two-point crossover on the genotype. Evolution was allowed
to run for 5000 generations.

For these experiments, the target pattern was a cell clustersurrounded by
an outer cell layer. Figure 4 shows the target image, which has similar form
to some biological formations such as retinas ([Forgacs andNewman, 2005,
p93]).

Figure 4. Target cell cluster

Figures 5 and 6 shows two examples of evolved cell clusters, here evolution
was allowed to determine the starting configuration for the cells (top left frame
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Figure 5. Example of developing cell cluster, where the cell sorting moves the darker cells to
the middle of the cell mass.

Figure 6. A second example of a developing cell cluster. Again a central dark mass is formed,
but here the outer cells produce a spaced pattern.

of each sequence). The behavior is similar to that created when the initial target
pattern was not specified by the chromosome, such as in runs illustrated in the
first ten frames of Figure 7.

Figure 7 shows the effect of running a simulation for twice the period of
time specified by evolution. The first 10 frames show the sequence that was
used in fitness evaluation, and the following frames show what happens after
the embryo has reached “maturity”. We see that the general shape remains
consistent, and that the center of the cell continues to adjust until it finds a
point of minimum energy, and stabilises.

As in nature, embryos undergoing development are able to repair damage
to some extent. Figure 8 shows the same developing embryo as Figure 7, but
this time the embryo is damaged by removing a band of cells. The embryo
remains disrupted, however it starts to reform into the target pattern. This
ability was not selected for during evolution, and is the result of the physics
of development being used for this secondary purpose. The differential cell
adhesion is not only responsible for sorting the cells into groups, but is also
responsible for bringing different cell clusters together. This is likely to be one
of the mechanisms used for repair in the developing organism.

Other shapes can be produced by evolving the starting configurations, and
allowing cell growth and cell sorting to finalise the pattern. For example, Fig-
ure 9 shows an evolved French flag. In contrast to the previousFrench flag
patterns discussed here, this one did not require the evolution of a program to
control the behaviour of the cells.
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Figure 7. Running the cell sorting beyond the period specified by evolution results in sta-
ble patterns. Here the first ten frames are from the period found during evolution to produce
maturity. The following frames show the effect of running the simulation for additional time.

Figure 8. An example of the regrowth of a damaged artifical embryo
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Figure 9. Two examples of a French Flag produced by cell sorting.

The final example is a complicated pattern, based on the typesof behavior
seen during this artificial development. Figure 10 shows a chequer board in the
shape of a triangle, attached to a basic two color “flag”. The purpose of these
shapes is to demonstrate that we can evolve for a variety of target patterns
that have rounded shapes, solid layered masses, shapes containing patterns of
empty space and regular structures with sharp edges. In nature there are a
limited number of forms that cell groups can form, and these basic patterns
are used as building blocks for organs. Without the differential cell adhesion,
it was found to be impossible to get chequer board patterns toevolve. The
nearest that could be obtained were three groups of cells, with a large amount
of mixing. This demonstrates that cell movement can be a useful and important
part of developmental systems.

Figure 11 shows an interesting result observed during testing of the sim-
ulation software. Here, each cell group has slightly different cell adhesion
properties and the initial state is a randomized cell cluster. However, without
any guidance from evolution, a rough French flag pattern is produced. As in
nature, certain patterns are perhaps an inevitable consequence of the physical
properties of the cells that make them. If this is true, it is important to under-
stand to how much the patterns are restricted by biological development and
from this determine the consequences for artificial development.

7. Conclusions

Developmental systems may prove to be a very useful technique in com-
puter science. The field however is still in its infancy, and it is difficult to see
how the developmental analogy can be applied to many of the typical problems
in computer science. Specifically, the challenge is to map development into a
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Figure 10. Target chequer board and flag, and an example of a developing embyro that forms
this pattern.

Figure 11. French flag emerging because of differential cell adhesion
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computational domain. The applications described here have demonstrated its
utility in producing patterns, whether as abstract images or as topographies for
neural networks, but transforming these preliminary ideasinto a more gener-
alized and practical computational system has yet to be done. Downing argues
that this is “largely because embryogenesis evolved for thepurpose of synthe-
sizing 3-dimensional structure from a linear code, not for growing Universal
Turing Machines” [Downing, 2003], and that while we can map problems onto
a developmental framework, it is unclear whether this is an inherently suitable
approach. Despite these issues, development has many features that are attrac-
tive in artificial systems - and that if we can get these ideas to work, we will
have another powerful, bio-inspired technique to apply.
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