
Evolving chess playing programs

R. Gro�, K. Albrecht, W. Kantschik and W. Banzhaf
Dept. of Computer Science
University of Dortmund
Dortmund, Germany

Abstract

This contribution introduces a hybrid GP/ES
system for the evolution of chess playing com-
puter programs. We discuss the basic system
and examine its performance in comparison
to pre-existing algorithms of the type alpha-
beta and its improved variants. We can show
that evolution is able to outperform these
algorithms both in terms of eÆciency and
strength.

1 Introduction

Computer programs capable of playing the game of
chess have been designed for more than 40 years, start-
ing with the �rst working program that was reported
in 1958 [BR58]. Since then countless numbers of pro-
grams were developed and appropriate hardware was
designed.

This article introduces a chess program which learns
to play the game of chess under limited resources. We
want to demonstrate the capabilities of Computational
Intelligence (CI) methods to improve the abilities of
known algorithms. More precisely we investigate the
power of Genetic Programming (GP) [BNKF98] and
Evolutionary Strategies (ES) [Sch96] using the exam-
ple of computer chess. The relevance of computer chess
is probably comparable to that of fruit ies in genetics,
it is a laboratory system with paradigmatic character.

In previous work we have studied the evolution of
chess-playing skills from scratch [BKA+00]. In this
contribution we do not want to create an entirely new
program to play chess. Instead, we start with a scaf-
folding algorithm which can perform the task already
and use a hybrid of GP and ES to �nd new and bet-
ter heuristics for this algorithm. We try to improve a
simple algorithm, the alpha-beta algorithm. In order

to evolve good standard heuristics we use evolutionary
techniques.

It is very time consuming to evolve chess playing indi-
viduals. Thus the basis of our evolutionary system is
a distributed computing environment on the internet
called qoopy . Distributed computing is necessary be-
cause of the high costs of one �tness evaluation for a
chess program. Each individual has to perform several
games against computer programs and a game might
last several hours in worst case. The additional com-
puter power needed to perform the evolution of chess
programs is borrowed from participating users world-
wide through the internet.

The performance of our evolved programs is neither
comparable to Deep Blue [Kor97] nor to other com-
puter chess programs playing at expert level. This
was not intended at the present stage of development.

2 The Chess Individuals

We use an alpha-beta algorithm [Sch89] as the kernel
of an individual which is enhanced by GP- and ES-
modules. The goal of these modules is the evolution
of smart strategies for the middle game. So no open-
ing books or end game databases have been used to
integrate knowledge for situations where a tree search
exhibits weak performance. Also, GP/ES individuals
always play white and standard black players are em-
ployed to evaluate the individuals. The black players
are �xed chess programs which think a certain number
of moves ahead and then choose the best move (accord-
ing to the minimax-principle, restricted by the search
horizon) [Bea99, BK77]. The individuals are limited
to search not more than an average of 100,000 nodes
per move to ensure an acceptable execution speed.

Like standard chess programs, individuals perform a
tree search [IHU95]. In particular, they use an alpha-
beta-algorithm. Three parts of this algorithm are

Table 1: The pseudocode shows the �� algorithm with
the evolutionary parts (bold).

��max (position K; integer �; �) f
integer i; j; value ;
nodes = nodes+ 1;
IF POSITION DECIDED(K) THEN
RETURN position module (K);
IF (depth == maxdepth) THEN
RETURN position module (K);
restdepth = depth module (restdepth);
IF (((restdepth == 0) OR
(nodes > maxnodes))
AND (depth >= mindepth)) THEN
RETURN position module (K);

determine successor positions K:1; : : : ;K:w;
move ordering module (K:1; : : : ;K:w);
value = �;
FOR j = 1 TO w DO f
restdepthBackup = restdepth;
restdepth = restdepth� 1;
value=max(value; ��min(K:j; value; �));
restdepth = restdepthBackup;
IF value � � THEN f
ADJUST KILLERTABLE;
RETURN value;
g

g
RETURN value;

g

evolved:

� The depth module, which determines the remain-
ing search depth for the given node.

� The move ordering module, which changes the or-
dering of all possible moves.

� The position module, which returns a value for a
given chess position.

Evaluation of a chess individual is performed in the
following way (see table 1): The depth module deter-
mines the remaining depth for the current level in the
search tree. If the position is a leaf then the position
module is called to calculate a value for it. Other-
wise the node (move) will be expanded and all possi-
ble moves will be calculated. Subsequently the move
ordering module for these moves is called and changes
the order of the moves, so that moves which are more
important can be evaluated �rst in the search tree.

2.1 Depth module

Table 2: The terminal set of the depth module with a
short description. With chess-speci�c operations the
depth module receives chess knowledge.

terminal description of the terminal

accumulator Default register for all func-

tions, initialized each node.

level register Special register which holds in-

formation of the current level in

the search tree, initialized each

search.

search/game register Special register, initialized each

search/game.

search depth Returns the current search

depth of the tree.

search horizon Value of the current search hori-

zon.

piece value Value of a piece given by the ac-

cumulator.

captured piece Value of a captured piece, if the

last move was a capture move.

alpha/beta bound Value of alpha/beta bound.

move number Number of current move, given

by the move ordering module.

pieces Number of knights, bishops,

rooks and pawns of the board.

expanded nodes Number of expanded nodes for

the current position, in percent.

value of move Value of the move which led to

the current position, given by

the move ordering module.

branching factor Number of moves of the prece-

dent position.

position score Value of the current position,

given from the position module.

The depth module decides for each position whether
the search tree should be expanded and to what depth.

Normally chess programs have a �xed search hori-
zon [PSPDB96]. This means, that after a certain num-
ber of plies the expansion in the search tree will be
terminated. In contrast, the depth module should give
the individual a higher exibility in the search to avoid
the search horizon e�ect.

The depth module has two limitations, the search
depth and the amount of nodes used in a search tree.
The maximal depth is 10 plies but if all moves until
ply 10 would be executed approximately 1014 nodes
would be expanded. Therefore the amount of ex-

panded nodes in the search tree was limited to 100,000
nodes on average per move. On average means, that
the individual might save nodes in particular periods
of the game to spend them later.

The depth module is a GP-program of branched op-
eration sequences. The structure is an acyclic graph
where each node holds a linear program and each if-
then-else condition makes a decision which node of the
program will be executed next (see section 2.4). Its
function set holds very simple functions but its termi-
nal set is more chess-speci�c, see tables 2 and 3.

Table 3: The function set of the depth module with
a short description. No function of the set has chess
knowledge.

function description of the function

+, -, *, / Arithmetic functions; result is

written to the accumulator.

inc/decHorizon Function to increment/decre-

ment the search depth by one,

but the search depth can only

be increased/decreased by 2 per

level.

sine The sine function.

sigmoid The sigmoid function
1

1+e
�terminal .

store in level/game/ Stores the terminal in the

search register level/game/search register.

load Loads the terminal to the accu-

mulator.

if If the condition is true the left

branch will be executed, other-

wise the right one. A condition

can be a comparison of two ter-

minals.

The depth module does not de�ne the depth of search
directly, rather it modi�es how much depth is left
for searching - the restdepth. It can be incremented
or decremented by the operation incHorizon and de-

cHorizon, or stay untouched. The restdepth is initial-
ized with a value of 2. Once a move is executed the
restdepth is automatically decremented by 1.

2.2 Position module

The position module of an individual calculates a value
for the current position.

The position module is a �xed algorithm which evalu-
ates the position by using evolved values for the di�er-
ent chess pieces and some structural values of a check.

These values are accumulated whereas bonus values
are added and punish values are subtracted - a higher
value corresponds to a better position. We used a sim-
ple ES to evolve these values. The idea of this module
is to �nd a better set of parameters than a �xed po-
sition evaluation algorithm would provide. Values of
hand-written programs are determined through expe-
rience of the programmer or by taking parameters from
the literature.

Our ES evolves the following weights for the position
evaluation algorithm. The �rst two numbers in brack-
ets reects the range within which the values can be
chosen, the last number is the standard value which
was chosen for the black players (see 3.3).

� Values of di�erent pieces: pawn [85-115, 100],
knight [290-360, 340], bishop [300-370, 340], rook
[440-540, 500], queen [800-1000, 900].

� Bishops in the initial position are punished [0-30,
15].

� Center pawn bonus: Pawns in the center of the
chessboard get a bonus [0-30, 15].

� Doubled pawn punishment: If two pawns of the
same color are at the same column [0-30, 15].

� Passed pawn bonus: A pawn having no opponent
pawn on his and the neighboring columns [0-40,
20].

� Backward pawn punishment: A backward pawn
has no pawn on the neighboring columns which is
nearer to the �rst rank [0-30, 15].

� If a pawn in end game is near the �rst rank of the
opponent it gets a promotion bonus depending on
the distance, this value �xes the maximal bonus
[100-500, 300].

� Two bishops bonus: If a player has both bishops
it gets a bonus [0-40, 20].

� A knight gets a mobility bonus, if it can reach
more than 6 �elds on the board [0-30, 15].

� Knight bonus in closed position: A closed position
is de�ned if more than 6 pawns occupy the center
of the board. The center consists of the 16 �elds
in the center of the board [0-40, 20].

� Knight punishment: If opponent pawns are on
each side in end game [0-50, 25].

� Rook bonus for a half open line: A half open line
is a line with no friendly pawn that does have an
enemy pawn [0-30, 15].

� Rook bonus for an open line: An open line is a
line without a pawn on this line [0-30, 15].

� Rook bonus for other positional advantages [0-20,
10].

� Rook bonus: If a rook is on the same line as a
passed pawn [0-30, 15].

� King punishment, if the king leaves the �rst rank
during the opening and the middle game [0-20,
10].

� Castling bonus, if castling was done [0-40, 20].

� Castling punishment for each weakness of pawn
structure (exception: end game) [0-30, 15].

� Castling punishment, if the possibility was missed
[0-50, 25].

� Random value, this is a random value which will
be added or subtract from the position value [0-
30, 20].

The structure of the position evaluation algorithm for
the chess individual and the black player is identical.
However there is a di�erence: Values for individuals
are evolved, values for black players are prede�ned and
�xed.

2.3 Move ordering module

The move ordering module of an individual orders the
moves for each chess position by assigning a real num-
ber to every possible move. The value of a move is the
sum of several weighted features of the move. Moves
are sorted according to these values and moves will
be expanded by this order. By default the value of a
feature is in [0; 100].

An ES evolves the following weights for the sorting
algorithm:

� Piece values in the opening/middle and end game:
Each piece are assigned three values which reect
how important this piece is in the opening/middle
and end game.

� Most valuable victim/Least valuable aggressor:
The ratio of aggressor and victim move values is
calculated. A position with a high ratio is better
than one with a smaller value.

� Check: If the move leads to a check position then
the move ful�lling this feature gets a bonus.

� Capture move: These are moves which can cap-
ture a piece of the opponent.

� Pawn moves that can attack a piece of the oppo-
nent.

� Pawn moves that do not attack a piece of the op-
ponent.

� Pawn moves that lead to a promotion of a queen.

� Center activity: Pieces which move from and/or
to the center of the chess board gets a bonus.

� Killer moves: Killer moves are moves which of-
ten lead to a cut in the search tree. The table
contains at most 4 killer moves for each level in
search tree. The table will be �lled during the
search, and if a move is in the killer table it gets
a bonus depending on its rank, a lower and upper
bound is given by this feature. Besides, the com-
position of the killer table which changes during
search is inuenced by the move ordering module
of an individual.

Based on these weights, the value for moves will be
calculated. Sorting of the moves is very important
for the alpha-beta search algorithm. If the best move
is visited �rst, the following moves don't need to be
considered. A very good move ordering module results
in a better performance of the alpha-beta algorithm.

2.4 GP structure of the depth module

The depth module of an individual, as illustrated in
Figure 1, is represented by a program with nested if-
then-else statements [KB01]. This representation has
been developed with the goal of giving a GP-program
greater exibility to follow di�erent execution paths
for di�erent inputs. It also achieves a reuse of the
evolved code more frequently than is the case in linear
GP [Nor94, Pro95].

A program consists of a linear sequence of statements
and if-then-else statements, that contain a bifurca-
tion into two sequences of statements. Nested if-then-
else statements are allowed up to a constant recur-
sion depth. The resulting structure is a graph where
each node contains a linear GP-program and a deci-
sion part. During the execution of the program only
one path of the graph will be executed for each input.

Crossover of two programs can be realized in di�er-
ent ways. We have chosen the following two types.
The �rst crossover operator selects a sequence of state-
ments in each program. In case of selected if-then-else
statements, the associated statements of the then- and

Figure 1: The representation of the GP program,
which is a graph structure. The squares represents
the linear programs and the circles represents the if-
then-else decisions.

else- parts are selected, too. Then the selected se-
quences are swapped. Secondly, a swapping of branch-
free sequences is allowed for an exchange of informa-
tion between individuals.

Mutation is performed subsequently to crossover or in-
dependently from it. There are two types of mutation
operators. The �rst one performs a crossover with a
randomly generated individual. The second one selects
a sequence of statements (in case of if-then-else state-
ments including the statements belonging to the asso-
ciated then- and else- parts). Afterwards each state-
ment other than an if-then-else one will be mutated
with an adjustable probability (see [KB02]).

3 Evolution

Evolution is based on populations of several individ-
uals. Each individual has to be evaluated by deter-
mining its �tness. In our system a �tness case is a
chess game and an individual has to play several chess
games before its �tness can be assigned. We used the
approach of distributed computing [GCK94] to allow
for enough computing power. We developed the qoopy
system in order to spread our task among the internet.
As opponents of GP-/ES-programs, chess programs
with �xed depth were used. Fitness was calculated
based on the number of wins, losses and draws against
these opponents.

In the following sections we describe this system in
more detail.

3.1 Internet-wide evolution based on qoopy

qoopy is an environment for distributed computing

tasks [GCK94, Far98]. It is possible to develop dis-
tributed programs for the qoopy environment and use
qoopy to run these programs.

The �rst application of qoopy is EvoChess, a dis-
tributed software system which creates new chess pro-

grams in an evolutionary process. After qoopy is in-
stalled on a machine each participant runs a deme
containing a variable number of individuals (default
value is 20). In each deme evolution begins and, dur-
ing the evolution, individuals might be copied between
demes (pollination) to create o�springs. qoopy pro-
vides the necessary infrastructure for communication
between demes and the connection to an application
server.

The application server is necessary because qoopy has
to register users being online to let them connect to
each other and to exchange data. The server holds
results of the internet evolution, and each deme sends
its best individuals and other statistics back to the
server on a regular basis.

3.2 Fitness evaluation

The �tness of an individual is a real number between
1 and 15, with higher values corresponding to better
individuals. In order to determine �tness, individuals
have to play chess games against �xed algorithms of
strength 2, 4, 6, 8, 10, 12 and 14. For �tness evaluation
an individual always plays white (see 3.3).

The result of a game is a real number between -1 and
1. It is 1 in case that the individual wins the game, -1
if the standard algorithm wins the game and 0 in case
of draw. Sometimes it is obvious that one side can
win or that the game has to end draw. In such a case
the game is stopped to save time. In rare cases lengthy
games are aborted because nothing happens anymore.1

Then the position is evaluated and the result reects
the advantage of white (positive) or black (negative)
as a value in the range of [�1; : : : ; 1].

Fitness is initialized with a value of 1. Resulting val-
ues are weighted with the number of games played
relative to the strength of the opponent. If, e.g., the
individual loses twice and wins once against an oppo-
nent of strength 6 (�1;�1; 1), this results in values
(5:0; 5:0; 7:0), and the �tness is 5:667.

In general, the �tness of an individual is calculated by
the following function:

fitness =
X

j2C

njX

i=1

j + resultji
nj � jCj

Classes C are the classes with wins, draws and losses of
the individual. These classes lie in an interval whose

1There are several criteria to prevent games to be can-
celed in interesting situations, e.g. when a king has been
checked or a piece has been captured within the last moves.

bounds are de�ned by the following rules: If an in-
dividual wins all its games up to class i, these results
are ignored and if an individual loses all its games from
class i to the highest class, these results are ignored.

For example if an individual i wins all games of classes
2, 4, and 8, and has wins, draws and losses in the
classes 6 and 10, and loses all games in the classes 12
and 14, Ci holds the classes 6, 8 and 10. The �rst rule
de�nes the lower bound of the interval (4), and the
second rule de�nes the upper bound of the interval
(12). The �rst rule does not hold for class 8 because
in class 6 the individual has had a draw or loss.

In general, the �tness of an individual is calculated in
four phases. Thus weak individuals can be dropped
from �tness evaluation in the �rst or second phase.
Fitness evaluation in phase three and four is very CPU
time expensive and we try to reduce the computation
time by removing inviable programs.

In phase one the individual plays two games against 2.
If the individual is very weak it can be identi�ed by the
�tness function and replaced immediately. In the sec-
ond phase the individual plays against 4, 6, 8 and 10.
If the �tness is at least 4.5 at the end of phase two, the
evaluation is continued in phase three. In phase three
the individual plays 1-2 games against 2, 4, 6, 8 and 10.
Successful individuals might skip games against 2 and
4. These are individuals which win each game up to
strength 6 and receive good results in games against 8
and 10. In phase four games are performed against 12
and 14. Only the best individuals play in this phase,
however. Games against the standard algorithm of
class 12 and 14 are very expensive.

To play more than twice against class 12 (or 14) it is
required to win in one of the two games before. Every
draw results in 1 point, every loss in 2 points. If the
individual has more than 6 (5) points it does not play
any more against class 12 (14). If the individual is
good enough it will play 4 times against 12 and then
3 times against 14.

3.3 Opponents of the individuals (black
players)

The opponents of individuals are chess programs which
can fully traverse the search tree up to a �xed depth.
We use these players to calculate the �tness of an indi-
vidual, by playing against �xed programs of di�erent
search depth. Fixed programs can play to a depth of
1, 2, 3, 4, 5, 6 and 7. Each of these programs de�nes
a corresponding �tness class of 2, 4, 6, 8, 10, 12 and
14. The value for a �tness class is the search depth
multiplied with 2, so that an individual which defeats

Figure 2: Average number of nodes used in the search
tree for di�erent �xed search depths. For search depth
6 the plot shows a large di�erence between a random
move ordering and an evolved move ordering module.
Even the f-negascout search algorithm requires more
resources than an evolved individual. The data are av-
erage values of more than 1000 moves (from reference
games).

an individual of class 4 but loses against an individual
of class 6 can be inserted into class 5.

The GP/ES individuals use a position evaluation of
the same structure and the same criteria - but their
weights are determined by the individual's genotype.

To reduce the number of nodes of the game tree an
f-negascout algorithm [Rei89] combined with iterative
deepening is performed for the black players. The f-
negascout algorithm is an improved variant of alpha-
beta, which is the most wide-spread tree search algo-
rithm. Iterative deepening performs a search to depth
d� 1 before searching to depth d (recursively). In ad-
dition, so-called killer moves are stored and tried �rst
whenever possible. Killer moves are moves which re-
sult in the cut of a subtree. This means that much of
the game tree can be discarded without loss of infor-
mation!

4 Results

In this section we describe the current results of an
ongoing evolution on the internet.

First we look at the evolved individuals and their eÆ-
ciency in search. The question is: How many resources
are needed by the evolved move ordering modules in
case of a �xed-depth search in comparison to other
move ordering strategies. Figure 2 shows the number

Figure 3: Box plot diagram of average number of used
nodes during a game with one of an evolved individual
combined with a simple �xed-depth alpha-beta algo-
rithm, average taken over more than 5000 moves from
50 reference games. The bar in the gray boxes is the
median of the data. A box represents 50 % of the
data, this means that 25 % of the data lies under and
over a box. The smallest and biggest usual values are
connected with a dashed line. The circles represents
outliers of the data.

of nodes examined in the search tree of an alpha-beta-
algorithm with a random move ordering, an evolved
individual and the f-negascout algorithm (the oppo-
nent of an individual (the black player) is always an
f-negascout algorithm). The �gure shows that a ran-
dom move ordering algorithm calculates seven million
nodes with a search tree of depth 6. The f-negascout
algorithm needs one million nodes. An evolved in-
dividual only needs 250,000 nodes. So evolution has
managed to create individuals which perform a very
eÆcient search through the tree.

Figures 3 and 4 show a box plot diagram investigat-
ing the number of search nodes visited by an evolved
and a random move ordering module combined with a
simple �xed-depth alpha-beta algorithm. The evolved
individual clearly outperforms the random one. Be-
sides, the �gures show that most nodes during a game
are used between ply 10 and 60.

The other aspect of the evolved chess programs is the
quality of the selected moves. Currently evolution suc-
ceeded to evolve a chess playing program, with a �t-
ness of 10.48. This means that the evolved program is
better than the opponent program of �tness class 10.
The �tness value was measured by a post-evaluation of
best programs: An individual plays 20 games against
class 8, 10 and 12, so that the �tness value is the re-

Figure 4: Box plot diagram of average number of used
nodes during a game with a random individual (see
also �gure 3).

sult of 60 games. Note that the individual achieves
this result by expanding on average 58,410 nodes per
move in the search tree. A simple alpha-beta chess pro-
gram needs 897,070 nodes per move for search depth
of 5, which corresponds to class 10. The f-negascout
algorithm which is an improved variant of alpha-beta,
needs 120,000 nodes per move for this search depth.
In other words evolution has improved the search al-
gorithm, so that it wins by only using 50% of the re-
sources of a f-negascout algorithm which, in turn, out-
performs an alpha-beta-algorithm. Evolved individu-
als win against a simple alpha-beta-algorithm by using
only 6% of the resources.

5 Summary and Outlook

We have shown, that it is possible to evolve chess play-
ing individuals superior to given algorithms. At this
time evolution is still going on and results are still im-
proving.

Next we shall develop this approach by using other
search algorithms as the internal structure, and by ex-
changing the di�erent modules. A further feature will
be that individuals will play against each other.

The ultimate goal of our approach is to beat computer
programs like Deep Blue, which to this day use brute-
force methods to play chess.

ACKNOWLEDGMENT

The authors gratefully acknowledge the enthusiastic
support of a large group of EvoChess users. A

list of participants is available at http://qoopy.cs.uni-
dortmund.de/qoopy e.php?page=statistik e . All of
them have helped to produce these results and to im-
prove both EvoChess and the qoopy system con-
siderably. Support has been provided by the DFG
(Deutsche Forschungsgemeinschaft), under grant Ba
1042/5-2.

SUPPLEMENTARY MATERIAL

More information on the qoopy system, the EvoChess
application, and experimental data are available from:

http://www.qoopy.net.

References

[Bea99] D.F. Beal. The Nature of Minimax

Search. PhD thesis, University of Maas-
tricht, 1999. Diss.Nr.99-3.

[BK77] J. Birmingham and P. Kent. Tree-
Searching and Tree-Pruning Techniques.
In M.R.B. Clarke, editor, Advances in

Computer Chess 1, pages 89{97. Edin-
burgh University Press, 1977.

[BKA+00] J. Busch, W. Kantschik, H. Aburaya,
K. Albrecht, R. Gross, P. Gundlach,
M. Kleefeld, A. Skusa, M. Villwock,
T. Vogd, and W. Banzhaf. Evolu-
tion von GP-Agenten mit Schachwissen
sowie deren Integration in ein Comput-
erschachsystem. SYS Report SYS-01/00,
ISSN 0941-4568, Systems Analysis Re-
search Group, Univ. Dortmund, Infor-
matik, 10 2000.

[BNKF98] W. Banzhaf, P. Nordin, R. E. Keller,
and F. D. Francone. Genetic Program-

ming { An Introduction On the Automatic

Evolution of Computer Programs and its

Applications. Morgan Kaufmann, San
Francisco und dpunkt verlag, Heidelberg,
1998.

[BR58] A. Bernstein and M. de V. Roberts. Com-
puter v Chess-Player. Scienti�c Ameri-

can, 198:96{105, 1958.

[Far98] J. Farley. Java Distributed Computing.
O'Reilly, 1998.

[GCK94] J. Dollimore G.F. Coulouris and T. Kind-
berg. Distributed Systems, Concepts and

Design. Addison-Wesley, 2 edition, 1994.

[IHU95] H. Iida, K. Handa, and J. Uiterwijk. Tu-
toring Strategies in Game-Tree Search.
ICCA Journal, 18(4):191{205, December
1995.

[KB01] W. Kantschik and W. Banzhaf. Linear-
tree GP and its comparison with other GP
structures. In J. F. Miller, M. Tomassini,
P. Luca Lanzi, C. Ryan, A. G. B. Tet-
tamanzi, and W. B. Langdon, editors,
Genetic Programming, Proceedings of Eu-

roGP'2001, volume 2038 of LNCS, pages
302{312, Lake Como, Italy, 18-20 April
2001. Springer-Verlag.

[KB02] W. Kantschik and W. Banzhaf. Linear-
graph gp - a new gp structure. In J. F.
Miller, M. Tomassini, P. Luca Lanzi,
C. Ryan, A. G. B. Tettamanzi, and
W. B. Langdon, editors, Genetic Pro-

gramming, Proceedings of EuroGP'2002,
LNCS. Springer-Verlag, 2002.

[Kor97] R.E. Korf. Does Deep Blue Use Arti�cial
Intelligence? ICCA Journal, 20(4):243{
245, December 1997.

[Nor94] J. P. Nordin. A Compiling Genetic Pro-

gramming System that Directly Manipu-

lates the Machine code, pages 311{331.
MIT Press, Cambridge, 1994.

[Pro95] Proceedings of the Sixth International
conference of Genetic Algorithms. Evolv-
ing Turing complete Programs for a Reg-

ister Machine with Self Modifying Code,
Pittsburgh, Penn., USA, 1995. Morgan
Kaufmann Publishers.

[PSPDB96] A. Plaat, J. Schae�er, W. Pijls, and
A. De Bruin. Best-�rst �xed-depth min-
imax algorithms. Arti�cial Intelligence,
87:255{293, 1996.

[Rei89] A. Reinfeld. An improvement of the scout
tree search algorithm. ICCA Journal,
6(4):4{14, June 1989.

[Sch89] J. Schae�er. The History Heuristic
and Alpha-Beta Search Enhancements in
Practice. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence,
11(11):1203{1212, 1989.

[Sch96] H-P. Schwefel. Evolution and Optimum

Seeking. John Wiley & Sons, Inc., 1996.

