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Abstract. The effect of neutrality on evolutionary search is known to
be crucially dependent on the distribution of genotypes over pheno-
types. Quantitatively characterizing robustness and evolvability in geno-
type and phenotype spaces greatly helps to understand the influence of
neutrality on Genetic Programming. Most existing robustness and evolv-
ability studies focus on mutations with a lack of investigation of recombi-
national operations. Here, we extend a previously proposed quantitative
approach of measuring mutational robustness and evolvability in Linear
GP. By considering a simple LGP system that has a compact representa-
tion and enumerable genotype and phenotype spaces, we quantitatively
characterize the robustness and evolvability of recombination at the phe-
notypic level. In this simple yet representative LGP system, we show
that recombinational properties are correlated with mutational proper-
ties. Utilizing a population evolution experiment, we demonstrate that
recombination significantly accelerates the evolutionary search process
and particularly promotes robust phenotypes that innovative phenotypic
explorations.

Keywords: Robustness, Evolvability, Accessibility, Neutrality, Recom-
bination, Genetic Programming.

1 Introduction

In natural systems, the term evolvability is usually put forward to describe the
capacity of a population to produce heritable and beneficial phenotypic varia-
tions [16,25,31]. Although the mechanisms and origins of evolvability are still
largely under debate, another pervasive property of natural systems, robustness,
is often discussed in connection with evolvability and is assigned explanatory
power for some of the high evolvability of living systems [18,21]. Despite the
fact that most random mutations to genetic material are deleterious, random
mutations are the fundamental fuel of long-term evolutionary innovation and
adaptation. Robustness enables living systems to remain intact in the face of
constant genetic perturbations through allowing genetic variants to expand in
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neutral spaces. These neutral spaces are genotypic regions in which mutations
do not change phenotype or fitness and are the consequence of a redundant
genotype-to-phenotype mapping [32]. Such neutrality augments evolvability, by
accumulating genetic variations that might be non-neutral under changes of the
environmental context [7,8,17,22,35].

A redundant mapping from genotype to phenotype is also pervasive in Genetic
Programming (GP), where multiple genotypes encode identical phenotypes. A
genetic change to a genotype, either mutation or crossover, is considered as neu-
tral if it does not alter the phenotype or fitness. Extensive investigations and
discussions have been carried through on how to characterize and utilize such
neutrality in GP [1,3,4,11,28]. It has been recognized that neutrality enables phe-
notypes to be robust to genetic perturbations [29,36] and, more importantly, that
it promotes the evolvability of phenotypes by expanding genotypes in neutral
genotypic space without subjecting them to selection pressure [9,13].

In addition to extensive studies on mutational robustness and evolvability,
it has been proposed recently in the context of gene regulatory circuits that
recombination can create novel phenotypes more efficiently with a much less
disruptive effect than mutation [20,33]. It is argued that recombination reorga-
nizes genes and gene circuits and thus has greater phenotypic consequences than
point mutation. Meanwhile it is less deleterious since it reuses existing genetic
materials. In terms of expanding neutral spaces, recombination is also consid-
ered to be able to promote evolvability better than mutation. Neutral genetic
variations by mutations are also called cryptic genetic variations that possess
potential for creating novel phenotypes [21]. Such mutational robustness pro-
vides the quantitative staging ground for long-term adaptation and innovation.
Recombination has a powerful effect augmenting those cryptic genetic variations
to make qualitative changes [2,23,24].

Recombination has long been the center of the discussion on effective genetic
operations in GP [5,19,27,30,34]. Similar to observations in gene regulatory cir-
cuits, it is well accepted in GP community that recombination is less destructive
and has a larger phenotypic effect compared to point mutation. However, most
robustness and evolvability studies in GP only consider mutations, and little has
been done on quantifying recombinational robustness and evolvability and in-
vestigating the correlation between mutational and recombinational properties.

In a previous study [14], a quantitative characterization of mutational robust-
ness and evolvability was performed in a simple Linear GP (LGP) system, where
the entire genotype and phenotype spaces are finite and enumerable. In the cur-
rent study, we adopt the same LGP system to utilize its compact properties and
extend the quantitative metrics to recombination. In particular, we are inter-
ested to see whether different phenotypes have varying resilience or innovation
potential under recombination. That is, if crossover is applied to a genotype from
a given phenotype, is the individual more likely to stay in the same phenotype
or to reach a novel phenotype? Are the probabilities to reach different novel
phenotypes evenly distributed? Which phenotypes are more accessible from re-
combining genotypes of other phenotypes? Can recombination promote robust
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phenotypes to generate high evolvability? We answer these questions by charac-
terizing phenotypic recombinational properties in genotype and phenotype space
under a special recombination operator as well as utilizing a population evolution
scheme to look into the interplay between mutation and crossover in evolutionary
dynamics.

2 Methods

2.1 Linear Genetic Programming on Boolean Search

We consider a simple Linear Genetic Programming system as in the previous
study [14]. In the LGP representation, an individual (or computer program) con-
sists of a set of L instructions, which are structurally similar to those found in
register machine languages. Each instruction has an operator, a set of operands,
and a return value. To further restrict the search space, we use the LGP sys-
tem on a Boolean search problem where each instruction consists of an oper-
ator drawn from the Boolean function set {AND, OR, NAND, NOR}, two Boolean
operands, and one Boolean return value. The inputs, operands, and return val-
ues are stored in registers with varying read/write permissions. Specifically, R0
and R1 are calculation registers that can be read and written, whereas R2 and R3
are input registers that are read-only. Thus, a calculation register can serve in
an instruction as an operand or a return, but an input register can only be used
as an operand. An example program of length L = 4 is given here:

R1 = R2 AND R3

R0 = R2 OR R1

R1 = R1 NOR R2

R0 = R3 NAND R0

Instructions are executed sequentially from top to bottom. Prior to program
execution, the values of R0 and R1 are initialized to FALSE. Registers R2 and R3
read two Boolean input values. After program execution, the final value in R0 is
returned as output.

2.2 Genotype and Phenotype Space

We consider each LGP program as a genotype and the binary Boolean function f :
B2 → B, whereB= {TRUE, FALSE}, represented by the program as its phenotype.
As described in the previous section, we allow two calculation registers, R0 and
R1, two input registers, R2 and R3, and four possible Boolean operators, AND,
OR, NAND, NOR. For the four loci on each instruction, only the two calculation
registers can serve as the return (first locus), but all four registers can serve as
operands (second and fourth locus), and all four Boolean functions can serve as
the operator (third locus), which means there are 2 × 4 × 4 × 4 = 27 possible
instructions and thus 228 possible programs of length L = 4. These 228 programs
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R1 = R2    R3 

R0 = R2      R1

R1 = R1    R2

R0 = R3  R0

R1 = R1    R3 

R1 = R2      R3

R0 = R1      R2

R0 = R0   R1

Parents

R1 = R2    R3 

R0 = R2      R1

R0 = R1      R2

R0 = R0   R1

R1 = R1    R3 

R1 = R2      R3

R1 = R1    R2

R0 = R3  R0

Offspring

Fig. 1. Symmetric recombination. The crossover point is chosen at half length of a LGP
program. Two parent programs (left) swap their third and forth instructions with each
other to form two new offspring (right). A offspring is called phenotypically neutral
with its parents if it does not map to a novel phenotype different from its parents.

define the finite genotype space mapping to the 16 possible binary Boolean
functions f : B2 → B as phenotypes. Such a highly redundant genotype-to-
phenotype mapping suggests great robustness in the system.

We can expect that the distribution of genotypes among different phenotypes
is highly heterogeneous. We use si to denote the size of a phenotype i, i.e.
the total number of genotypes that map to the same phenotype i. si ranges
from a minimum of 24,832 genotypes (for phenotype EQUAL and NOTEQUAL) to
a maximum of 60,393,728 genotypes (for FALSE), occupying between � 1% and
23% of the genotype space, respectively. As examined previously [14], for this
particular Boolean LGP system, all phenotypes are connected to each other in
the mutational genotypic space. That is, for any given phenotype, there exists a
genotype that belongs to this phenotype and can transform to another genotype
in any other phenotypes through a point mutation.

2.3 Symmetric Recombination

In the current study, we only consider a single-point recombination [10,12,26]
and always choose half of program length as the crossover point (Fig. 1). This
allows all offspring resulting from crossover to have the same length as their
parents and thus to limit recombination dynamics to within the finite genotype
space we have defined. We restrict the crossover point in the current study in
order to reduce the computational load of monitoring all possible recombination
events. Recombinations are allowed for genotypes within a phenotype and across
different phenotypes. Two parent programs generate two offspring through a
recombination event.

We investigate crossover events for genotypes from each of the
(
16
2

)
+16 = 136

different unordered phenotype pairs, denoted 〈i, j〉, where i, j ∈ {1, 2, 3, ..., 16}.
A phenotype pair 〈i, j〉 has a finite number ri,j of possible recombination events,
i.e. ri,i = si × (si − 1)/2 if i = j and ri,j = si × sj otherwise, where si is
the size of phenotype i as defined previously. Although the genotype space is
finite, enumerating all possible recombination events for all pairs of phenotypes
would be computationally prohibitive. For instance, there are more than 308
million possible recombination events for choosing two genotypes from even the
smallest phenotype EQUAL. Therefore, we sample S = 1, 000, 000 crossover events
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(without replacement) for genotypes from each phenotype pair 〈i, j〉. Among all
the offspring generated by recombining a parent from phenotype i and a parent
from phenotype j, we use x(i,j),k to denote the number of offspring that belong
to phenotype k. Since we sample the same number S of crossover events across
all possible phenotype pairs, we normalize x(i,j),k by adjusting it for different
phenotype pairs, i.e. x′

(i,j),k =
ri,j
S × x(i,j),k.

2.4 Metrics on Recombinational Properties of Phenotypes

Intuitively, a phenotype is more robust under recombination if its crossover off-
spring are less likely to be phenotypically different from their parents. We define
recombinational robustness R of phenotype i as the average fraction of pheno-
typically neutral offspring over all offspring,

Ri =
1

16
×

16∑

j=1

∑
k=i,j x

′
(i,j),k

∑16
k=1 x

′
(i,j),k

. (1)

Similar to mutational metrics [6,14,15], we capture recombinational evolvability
as the potential to change from one phenotype to another (different) phenotype.
Let

f(i,j),k =

⎧
⎨

⎩

x′
(i,j),k∑

l �=i,l �=j x
′
(i,j),l

, if k �= i and k �= j

0, otherwise
(2)

denote the fraction of offspring that result in genotypes of phenotype k by recom-
bining genotypes from phenotypes i and j. We define recombinational evolvability
E of a phenotype i as

Ei = 1−
∑

j,k

(
f(i,j),k∑
l,m f(i,l),m

)2

. (3)

Since
∑

j,k

f(i,j),k∑
l,m f(i,l),m

= 1 for each i, Eq.(3) describes the diversity of the

connections from phenotype i to other phenotypes via recombination. In other
words, Ei captures the probability that randomly chosen genotypes from pheno-
type i generate recombination offspring with distinct phenotypes. This evolvabil-
ity measure takes on a higher value if a phenotype has a more evenly distributed
potential to reach other phenotypes through recombinations.

In addition to measuring the propensity to leave a phenotype, we also use
recombinational accessibility Ak to describe how easily a phenotype k can be
reached via recombination events from other phenotypes, formally defined as,

Ak =
∑

i,j

f(i,j),k. (4)
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Fig. 2. A) recombinational evolvability andB) recombinational accessibility relative to
recombinational robustness. Each data point represents a phenotype. Linear-log scale is
chosen for A) and log-log scale is chosen for B) based on their best fitting relationship.
The lines show the best fitting curves and provide a guide for the eye.

2.5 Population Evolution

In addition to sampling recombination events in the static genotype and pheno-
type spaces, we also perform population evolution experiments to investigate the
interplay between mutation and recombination in a population under evolution.
We choose the least represented phenotype EQUAL as the target phenotype to
allow evolution to proceed over a longer time.

A non-overlapping generational evolution model with a fixed population size
|P | is adopted in this study. After population initialization, a new generation
of offspring is produced sequentially. We randomly choose an individual with
replacement, mutate according to a certain rate, and place it into the next gen-
eration. This is repeated |P | times until the next generation of the population is
filled. When both mutation and recombination are applied, for each generation,
we randomly choose two individuals with replacement, cross them over at a given
rate, mutate their crossover offspring at a given rate, and place both offspring

into the next generation. This is repeated |P |
2 times until the next generation

of the population is filled. The evolution process is terminated when the target
phenotype is reached, and the required number of generations is recorded for
each run.

3 Results

3.1 Recombinational Robustness, Evolvability, and Accessibility

Through the extensive sampling, this LGP problem instance is found having
complete recombinational connections. That is, for any given phenotype pair,
there exist pairs of their genotypes that can generate recombinational offspring of
any other phenotypes. Fig. 2 shows the correlations among the recombinational
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Fig. 3. A) recombinational robustness, B) recombinational evolvability, and C) re-
combinational accessibility relative to mutational robustness. Log-log, linear-log, and
log-log scales are chosen accordingly based on the best-fitting relationships. Each data
point represents a phenotype and the lines depict the best fitting curves.

metrics. Recombinational evolvability is weakly and negatively correlated with
recombinational robustness with linear-log fitting r2 = 0.02395, p = 0.5671
(Fig. 2-A). Phenotypes that have low recombinational robustness are highly
evolvable, and robust phenotypes can have either high or low recombinational
evolvability. In contrast, recombinational accessibility is strongly and positively
correlated with recombinational robustness with a log-log fitting r2 = 0.8262,
p = 1.09 × 10−6 (Fig. 2-B). This suggests that phenotypes that are resilient
to recombination are also very accessible from recombining genotypes of other
phenotypes.

3.2 Comparisons of Recombinational and Mutational Measures

We now compare the recombinational measures to the previously investigated
mutational measures [14,15]. Fig.3 shows recombinational robustness, evolvabil-
ity, and accessibility relative to mutational robustness. Recall that phenotypic
mutational robustness is defined as the size of a phenotype, i.e. its total number
of underlying genotypes.
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Fig. 4. The generations required to reach the target as a function of A) mutation rate
and B) crossover rate. A) Mutation rate varies from 0.1 to 1 and crossover rate is
fixed to 1. Two sets of experimental results are included, population evolution with
mutation only (circles) and population evolution with both mutation and crossover
(solid points). B) When both mutation and crossover are applied, we fix mutation rate
to 0.1 and 1 and vary crossover rate from 0.1 to 1.

Recombinational robustness is positively correlated with mutational robust-
ness (Fig. 3-A), which suggests that mutationally robust phenotypes are also
resilient to recombinations (r2 = 0.8732, p = 1.172 × 10−7). Similar to the
weak relationship between recombinational evolvability and recombinational ro-
bustness, recombinational evolvability is weakly and negatively correlated with
mutational robustness (Fig. 3-B with r2 = 0.06805, p = 0.3291). As seen in the
upper-left corner of the figure, less mutationally robust phenotypes that have
fewer underlying genotypes are highly evolvable through recombination. Among
mutationally robust phenotypes, some are also highly evolvable through recombi-
nation, but some only have very biased recombinational connections to other phe-
notypes. Interestingly, recombinational accessibility has a very strong positive
correlation with mutational robustness (Fig. 3-C). In addition to the previously
found strong positive relationship between mutational robustness and mutational
accessibility [14], this very strong correlation (r2 = 0.9915, p = 7.021 × 10−16)
suggests that phenotypes with a large number of underlying genotypes are highly
accessible from other phenotypes by both mutation and by recombination.

3.3 Population Dynamics Results

We compare two evolution scenarios with mutation only and with both mutation
and crossover. Population size is set to 100 for both cases. Fig. 4 shows the
population evolution results. Each data point is an averaged value of 100 runs for
each configuration. We first vary mutation rate from 0.1 to 1 and fix crossover
rate to 1. In general, increasing mutation rate accelerates the search process,
and applying both mutation and crossover allows to reach the target faster than
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Fig. 5. The reduced evolution time, obtained by comparing mutation-only evolution
and mutation-and-crossover evolution, relative to A) mutational robustness and B)
recombinational robustness of the starting phenotypes. Data points represent different
starting phenotypes, the line depicts the best linear-log fitting curve.

applying mutation alone. We then fix mutation rate and vary crossover rate
(Fig. 4-B). Mutation rate is set to 0.1 and 1, and for each fixed mutation rate,
crossover rate varies from 0.1 to 1. As seen in the figure, increasing crossover rate
also accelerates the evolution process. The trend is more significant for mutation
rate 0.1 than for mutation rate 1 in the figure, but it is clearly observable for
both cases when one takes a closer look at appropriate scales.

Since it is shown that combining mutation and crossover significantly accel-
erates evolution, next we are interested to see if this improvement is correlated
with the robustness of the starting phenotype. We choose a representative set-
ting with mutation rate 0.1 and crossover rate 1, and obtain the reduced evo-
lution time by taking the difference between mutation-only evolution time and
mutation-and-crossover evolution time. As shown in Fig. 5, the reduced evolution
time is positively correlated with the starting phenotypic mutational robustness
(r2 = 0.7756, p = 1.513 × 10−5) and recombinational robustness (r2 = 0.6772,
p = 1.644 × 10−4). This suggests that recombination improves the evolvability
of phenotypes, and this improvement is more significant for more robust phe-
notypes. In other words, recombination promotes robust phenotypes to be more
evolvable.

4 Discussion

This study examines the phenotypic robustness and evolvability subject to re-
combination. Utilizing a simple LGP system that has compact and finite geno-
type and phenotype spaces allows us to quantitatively characterize robustness
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and evolvability at the phenotypic level. We also investigate the interplay be-
tween mutation and recombination in evolution dynamics by performing a gen-
erational population evolution experiment.

The phenotypes of our LGP system have varying recombinational robustness.
Some of them are more tolerant to recombinations but some of them are not.
Recombination-sensitive phenotypes are found highly evolvable by possessing a
relatively evenly distributed potential to reach other phenotypes via recombi-
nation. Recombination-robust phenotypes are very accessible from recombining
genotypes of other phenotypes. Recombinational robustness is positively cor-
related with mutational robustness, which suggests that over-represented phe-
notypes that have a great number of underlying genotypes are robust to both
mutation and recombination. These over-represented phenotypes are also very
accessible via both mutation and crossover. Through investigating population
dynamics, recombination is found to be able to significantly accelerate evolu-
tionary search if added to mutation. This acceleration is more significant when
a population is initialized from a more robust phenotype.

Our results agree with findings from biological systems and also provide in-
sights into our own computational systems. The ease of finding a target pheno-
type considerably depends on whether this target phenotype is over-represented
by many genotypes. Less-represented phenotypes might be hard to reach, but
they could serve as important bridges accessing other novel phenotypes. Robust
phenotypes enhance the innovative power of recombination as they provide rich
cryptic genetic variations for phenotypic exploration.

Future work will consider applying different recombinational operations such
as a crossover point different from the mid-point adopted in this study or a non-
symmetric crossover operation. We want to test if the current observations still
hold in other scenarios and if our quantitative measures are sensitive to the choice
of recombinational operation. It is also important to extend our quantitative
measures to larger and more realistic systems. The results obtained here using
a simple LGP system showcase the effectiveness of the quantitative approach
and also generate hypotheses on how real and large-scale computational systems
could behave. It would be very beneficial to test the scalability of our approach
on more complex problem instances. An advantage of using larger-scale problem
instances is that evolution will have a longer trajectory, and thus we could make
observations on the detailed evolution dynamics at the individual level and see
whether crossover leads to the prevalence of robust genotypes/phenotypes. We
also would like to include fitness selection in our next step in particular with
larger-scale problem instances. Finally, a varying selection pressure may have an
impact on the evolution towards high robustness.
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