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Abstract. In this contribution we investigate the evolution of opera-
tors for Genetic Programming by means of Genetic Programming. Meta-
evolution of recombination operators in graph-based GP is applied and
compared to other methods for the variation of recombination operators
in graph-based GP. We demonstrate that a straightforward application
of recombination operators onto themselves does not work well. After
introducing an additional level of recombination operators (the meta
level) which are recombining a pool of recombination operators, even
self-recombination on the additional level becomes feasible. We show that
the overall performance of this system is better than in other variants of
graph GP. As a test problem we use speaker recognition.

1 Introduction to Graph GP

The representations of programs used in Genetic Programming can be classified
into three major groups by their underlying structure which directs the pro-
gram flow: 1) tree-based [Koz92,Koz94], 2) linear-based [Nor94,BNKF98], and
3) graph-based [TV96] representations. Graph-based GP is defined as a GP sys-
tem where the program flow during the interpretation/execution of an individual
is directed by a graph.

For our system we use the structure that has been introduced by Teller
in [TV96]. We refer to the representation of Teller when we talk about graph
GP. In the literature one can find either systems using graph-like structures,
for instance Poli’s PDGP (parallel distributed GP [Pol96] or the MIP (multiple
interacting programs) system developed by Angeline [Ang98]. The main differ-
ence between these approaches and the approach by Teller is that edges in the
graph-like programs of PDGP and MIPs denote data flow whereas edges in the
graph programs of Teller denote program flow.

In graph-based GP each program p is represented by a directed graph of
Np nodes. Each node can have up to Np outgoing edges. Each node in the
program has two parts, action and branching decision. The action part is either
a constant or a function that will be executed when the node is reached during
the interpretation of the program. The environment of a program consists of an
indexed memory and a stack, both of which are used to transfer data among
the nodes. An action function could therefore get its inputs from the stack and
could push its output back onto the stack. After the action of a node is executed,
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an outgoing edge is selected according to the branching decision. This decision
is made by a branching function which determines the edge to the next node,
while using the information held on the top of the stack, in memory or in the
branching constant of each node. Hence, not all nodes of a graph are necessarily
visited during an interpretation. Figure 1 shows the structure of a node.
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Fig. 1. The structure of a node in a graph-based GP program (left) and an
example node (right).

Each program has two special nodes, a start and a stop node. The start node is
always the first node to be executed when the interpretation of a program begins.
After the stop node is reached, its action is executed and the program halts. Since
the graph structure inherently allows loops and recursion, it is possible that the
stop node is never reached during the interpretation. In order to avoid that a
program runs forever it is terminated after a certain time threshold is reached.
In our system the time threshold is implemented as a fixed maximum number
of nodes which can be executed during the interpretation.

1.1 Recombination of Graph-based Programs

The crossover operation combines the genetic material of two parent programs
by swapping certain program parts. Each node of a parent p is labeled by a fixed
index i ∈ {1, . . . , Np}. The following algorithm for the recombination of graphs
is applied for recombination [TV96]:

1. Mark some nodes in both parents which will be exchanged.
(Here, this operation will be performed either by a random selection of nodes
or by a ”smart” or “meta” operator to be explained below.)

2. Label all edges as external which are connecting marked nodes with un-
marked nodes and all edges which are connecting unmarked nodes with
marked nodes.
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3. Replace the nodes of a parent by the marked nodes of the other parent. A
marked node with index i replaces a node with the same index in the other
parent. If the target parent p does not contain a node with index i, then the
node gets a new index Np + 1 and will be added to the parent p.

4. Modify all external edges in a parent so that they point to randomly selected
nodes of the same parent which have not been exchanged.

The method assures that all edges are connected in the two child graphs and
that valid graphs are generated. Figure 2 shows an example of this crossover
method.
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Fig. 2. Crossover-operation of two graph-based programs.

2 Levels of Evolution

The focus of this contribution is the meta-evolution of genetic recombination-
like variation operators. This is done by expressing (recombination) operators as
graph programs that may undergo their own evolution, possibly using the same
methods. In order to compare different approaches we consider four variants
(Fig. 3):
Variant (a) “task random”: This is the conventional GP approach, where
individuals are recombined by exchanging randomly chosen sub-components.
There is only one population of individuals that should solve the desired task,
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Fig. 3. System structure of the different recombination variants. Variant (a) a
conventional GP approach, variant (b) is using the smart level to recombine
programs of the task level. Smart level individuals are recombined by random
recombination. Variant (c) is like variant (b) but smart operators are recombined
by themselves. Variant (d) uses the meta level to recombine programs of the
smart level and themselves.

here, speaker identification. Its individuals are called task programs to distinguish
them from individuals of the higher level (smart or meta), explained below.
Variant (b) “smart random”: In this variant a second population of GP pro-
grams exists. These individuals are called smart operators and their population
smart level. Task programs are recombined by smart operators [Tel96]. Smart
operators, in turn, are recombined by a random recombination as in variant (a).
Variant (c) “smart self”: Like variant (b) but smart operators are recombined
by themselves.
Variant (d) “meta self”: Like variant (b) but smart operators are recombined
by meta operators. Meta operators form a third population (meta level) and are
recombined by themselves.

The following sections describe the task, smart and meta levels in more detail.

3 The Task Level

The task level consists of a population of task programs which should solve the
desired test problem, a speaker identification problem [RS86a,RS86b,FSD97].
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Therefore, a task program ptask represents a mapping

ptask : Input→ [min,max] (1)

where Input represents the set of spoken word smaples (see below).

3.1 Fitness Function on Task Level

The speaker identification problem considered in this study is to identify one
person out of a set of four persons based on speech samples.

The raw sound data was sampled at 22 kHz in 16 bit format. A fast Fourier
transformation has been done on a 20 msec window, which was weighted using
a Hamming window. Windows were overlapping by 50 %. A spectral vector
of dimension 32 was computed out of these FFT spectral vectors by using a
triangle filter. The spectral vectors for the different word groups and speakers
were received by the task programs as inputs to identify whether a given input
(a word group of one speaker) belongs to the specific class (speaker) or not. The
input data for one identification task consist of one to five different words form
each class, i.e., the task program has to identify a speaker based on a speech
sample of less than 5 seconds.

The return value of an individual is a number between min = −10000 and
max = 10000. The normalized return value is interpreted as a measure of prob-
ability. If the return value is high and the individual is associated with class i,
then the input sample is identified as belonging to class i. By combining the
identification result of programs associated with different classes it is possible to
identify the speaker for a given input.

The fitness F it(ptask) of a task program ptask associated with class i on the
fitness cases C, is computed as

F it(ptask) =
∑
e∈Ci

((nC − 1) ∗ r(ptask, e))−
∑
e 6∈Ci

r(ptask, e) (2)

where r(p, e) is the return value of program p executed with input e, Ci ⊂ C
is the subset of the fitness cases containing only samples class i, and nC is the
number of classes. The return value of a positive classification is multiplied with
(nC − 1) so it is possible for an individual to get a positive fitness value even
though it makes false classifications. This is done because for each class there
are (nC − 1) times more negative example during the fitness evaluation then
positive examples.

Each individual gets nC fitness values, one fitness value for each class. So
it is possible to evolve individuals for the different classes in one pool. For the
recombination the pool is divided in subpools, so that the best individuals for
each class are found in the subpools. After the recombination all subpools are
merged to one pool.
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3.2 Representation and Operator Set on Task Level

On each level programs are represented as graphs. On the task level programs
need the ability to examine input data (spectral vectors) in sufficient detail in
order to perform their task. Therefore they use various functions which operate
directly on the input vectors. These function can read the values at a special po-
sition in the input sample, compare two values of the input data, or calculate the
average or difference of some input values. The programs have no opportunity to
store a vector of the input data to compare it later to other input. In other words,
programs have to identify a speaker without the use of reference vectors. This
distinguishes the method from classical solutions for the speaker identification
problem. Stack and indexed memory only store one-dimensional real values dur-
ing the execution of program. Task programs use the action function set shown
in Tab. 1

function name description of action function (task level)

+,−, ∗, / arithmetic functions
<,>,= comparison functions
readFrequency reads the value of a given frequency and spectral vector.
maxFreq returns the frequency and value with the maximal value of a

given spectral vector.
minFreq returns the frequency and value with the minimal value of a

given spectral vector.
interMaxFreq returns the spectral vector number and value of a given fre-

quency with the maximal frequency value of 6 following spectral
vectors.

interMinFreq returns the spectral vector number and value of a given fre-
quency with the minimal frequency value of 6 following spectral
vectors.

countFreq returns the number of spectral vector which have a frequency
value equal x.

frameAverage returns the average frequency value of a given spectral vector.
interAverage returns the average frequency value of a given frequency of a

variable number of spectral vectors.
variance returns the average variance value of a given spectral vector.
interVariance returns the average variance value of a given frequency of a

variable number of spectral vectors.
smallerFreq returns the smaller value of two given frequency of one spectral

vectors.
greaterFreq returns the greater value of two given frequency of one spectral

vectors.

Table 1. Action functions (operators, non-terminals) at task level.
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3.3 Variation and Selection on Task Level

The selection method on the task level is a (µ + λ)-strategy [Sch96]. The vari-
ation method depends on the variant: Variant (a) uses random recombination
and applies random mutation to 5 % of the programs in the pool after the re-
combination. During the mutation maximal 5 % of the program nodes will be
mutated. Variants (b)-(d) use recombination by randomly chosen smart op-
erators from the smart level. Mutation is only performed by an explicit mutate
instruction as part of the smart operator set in smart programs (see below and
Tab. 2).

4 The Smart Level

Smart operators1 [Tel96] should enable the GP system to find a good and suit-
able recombination method automatically. Therefore, a smart operator psmart
represents a mapping

psmart : P × P → P × P (3)

where P is the set of all programs (task or smart operators).

4.1 Fitness Function on Smart Level

The goal of the smart operators with respect to the task level population is
to maximize the fitness of task programs. Smart operators and task programs
co-evolve. A smart operator is tested by allowing it to actually perform a recom-
bination of task programs. Its fitness value is a function of the relative fitness
of the task programs it recombines (parents) and the fitness of programs it pro-
duces as descendants (children). To compute this fitness in a generation-based
evolutionary algorithm the relative fitness increase a smart operator is able to
cause on task programs during a generation is accumulated by using Ω ( see step
4c ) in the following algorithm. The fitness value is than computed in step 6 of
the algorithm. The algorithm represents a loop of one generation during which
λ task programs are generated.

1. Reset counters:
∀p ∈ P : Ω(p)← 0, m(p)← 0, n(p)← 0.

2. Select two parents p(p1)
task, p

(p2)
task from the task level and a smart operator psmart

from the smart level, randomly.
3. Create two offsprings by applying the smart operator on parents:

(p(c1)
task, p

(c2)
task) = psmart(p

(p1)
task, p

(p2)
task).

4. FOR j = 1 TO 2 DO
(a) Let n(psmart)← n(psmart) + 1

1 Simply called “operator” by Edmonds [Edm98].
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(b) Let fcj = F ittask(p
(cj)
task) and fpj = F ittask(p

(pj)
task) be the fitness of a child

and its corresponding parent, respectively.
(c) If fcj (child) is better than fpj (parent) then let

Ω(psmart)← Ω(psmart) +
fcj + fmax
fpj + fmax

− 1,

m(psmart)← m(psmart) + 1.

where fmax is the maximal fitness a program can reach,

5. GOTO 2 UNTIL λ task programs are created to form the next generation.
6. The fitness of a smart operator is defined by

F itsmart(psmart) =
m(psmart)
n(psmart)

∗Ω(psmart).

This means that a smart operator is good, if the children (at least one) have
a better fitness than the parents.

4.2 Representation and Operator Set on Smart Level

A smart operator recombines two given programs by creating subsets which is
achieved by marking some nodes in both parents according to step 1 of the
recombination algorithm in Sec. 1.1. To perform this task the smart operator
needs the ability to examine its input programs in sufficient detail. Therefore we
provide the special action functions shown in Tab. 2.

During the execution of a smart operator the environment contains an addi-
tional elements the current node, this is the program node the smart operator
currently works with. The smart operator executes its graph-program at first
on parent p(p1)

task and then independently on p
(p2)
task. After the smart operator has

been executed, the new child programs will be created by exchanging the marked
nodes according to the algorithm in Sec. 1.1. If a parent has no marked node,
the smart operator receives fitness 0 and a random crossover is executed.

The smart operators used for this study also mark a subset of nodes to
be mutated after the recombination. So the recombination process of a smart
operator is a combination of a crossover and a mutation operation.

4.3 Variation and Selection on Smart Level

The selection method on the smart level is rank proportional. The variation
method depends on the variant: Variant (a) does not use the smart level.
Variant (b) uses random recombination for smart operators and applies random
mutation of some nodes after recombination. Variant (c) uses recombination by
choosing the best programs from the same level (smart level). Mutation is only
performed by an explicit mutate instruction in the smart operators. Variant (d)
uses recombination by randomly chosen programs from the meta level. Mutation
is performed by an explicit mutate instruction in meta operators.
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function name description of action function (smart and meta level)

pickRand Picks at random a new current node which is not member of the
set.

pickNode Picks a specific node to be the new current node.
pickChild Picks node pointed to by an edge of the current node to be the new

current node.
addCurrent Adds current node to set.
addChild Adds children of current node to set.
delCurrent Deletes current node form set.
delChild Deletes children of current node from set.
randSet Makes set be a random set of nodes.
setSize Returns size of set.
progSize Returns size of program.
nodeAction Returns action of current node.
nodeConst Returns constant of current node.
nodeOutgrad Returns out grade (number of out going edges) of current node.
nodeBAction Returns branching action of current node.
nodeBConst Returns branching constant of current node.
mutate Marks a specific node and a specific part of the node to be mutated

after recombination.

Table 2. Action functions at smart and meta level.

5 The Meta Level

Until now we have described a system with two levels, the task level and the
smart level. The task programs at the task level are evolved to solve the given
problem. Those at the smart level are evolved to perform recombination at the
task level. One of the most obvious issues of the smart level is the question how
the smart operators should be evolved.

New meta operators are introduced because self-recombination (Variant (c))
does not work on the smart level (a result stated in [Tel96] and confirmed in Fig.
4 below). However, there is the chance that it works if a next level (the meta
level) of evolution is introduced. Why should this be possible?

The reasoning might go as such: The goal of smart operators is to find a
good recombination for programs on the task level and not for the smart level.
Smart operators have a different structure than task programs. Therefore it is
possible that a good smart operator for a task program has a low performance
in recombining smart operators. Teller uses the random recombination for smart
operators because empirically tests have shown that self recombination does not
work at the smart level.

5.1 Fitness Function and Representation on Meta Level

To allow the self-recombination on the meta level (Variant (d)) the meta level
uses the same fitness function as the smart level (see Sec. 4.1). It also uses the
same representation and operator set as the smart level (see Sec. 4.2).
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5.2 Variation and Selection on Meta Level

The selection method on the meta level is rank proportional. The variation
method depends on the variant: Variants (a)-(c) do not use the meta level.
Variant (d) recombines meta operators by choosing the best programs from the
same level (meta level) as recombination operators. Mutation is only performed
by an explicit mutate instruction in the meta operators.

6 Test Problem Results

In this section we describe the effects of the four variants (a) task random, (b)
smart random, (c) smart self, and (d) meta self recombination.

In this study the task level contains 400 programs and the maximum number
of nodes for each program is 600. The smart population contains 100 operators
and the maximum number of nodes is 300. The meta population contains 50
operators with the same structure as the smart operators. The fitness cases
consist of 15 sound examples for each speaker. In each generation the programs
are tested with 6 randomly chosen examples from each speaker.

The task level uses a truncation or (µ+λ) selection [Sch96] with µ = 100 and
λ = 300, the smart and meta pools use a rank proportional selection method,
like Teller [TV96]. All plots in this section are based on averages over 30 runs.

Figure 4 shows the progression of the fitness values using the different recom-
bination variants. The figure shows the advantage of smart random and meta
self recombination over task random and smart self recombination. The results
also confirm that self-recombination on the smart level does not work [Tel96]
and that self-recombination on the meta level works in our test case. This result
indicates that smart operators use a different recombination scheme than meta
operators. An interesting result is that meta recombination produces, on aver-
age, fitter individuals than smart recombination although the operators use the
same operator set.

6.1 Diversity

For measuring the diversity during evolution we define a simple measure of
diversity, called I-O diversity. The diversity measure is based on the I-O distance,
which describes the difference of the result values r, between two individuals, for
a given set of input data:

Definition 1 (I-O Distance).
Let E be a finite set of input data, then the I-O distance d(p, p′) between the

individuals p, p′ ∈ P is defined by

d(p, p′) =
∑
e∈E

{
1 if r(p, e) 6= r(p′, e),
0 otherwise.

(4)
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Fig. 4. These curves show the average fitness value of the best 20 individuals
at the task level for four recombination variants in percent of maximum fitness.
Each curve is an average over 30 runs. The order of the curves according to
fitness in generation 50 is significant.

Definition 2 (I-O Diversity).
Let S be a population of individuals out of P and d : P ×P → IN0 be the I-O

distance. The I-O diversity D(S) is then defined as

D(S) =
∑
p∈S

∑
p′∈S

d(p, p′). (5)

A high I-O diversity value means that the results for a given input are different
between different individuals.

Figure 5 indicates that recombination with smart operators uses a different
recombination scheme than the random recombination, because the diversity
of the random recombination decreases slower than the diversity with smart
operators. An interesting aspect of this figure is that the diversity of meta self
recombination shows the same diversity behavior as smart random and smart
self recombination although they create on average individuals with poor fitness
values.

6.2 Mutation Rate

Another interesting aspect of the smart and meta operators is their ability to
select explicitly nodes for mutation by using the special action function which
marks a node to be mutated. Thus, the mutation rate depends on the smart and
meta operators and is therefore subject to evolution and changes over time. The
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Fig. 5. I-O diversity in percent of the task level for the different recombination
variants. The lower three curves can not be discriminated significantly.

mutation rate of the task level actually defines how often the smart operators
use this special operation during the crossover operation in a generation. Fig-
ure 6 shows the mutation rate of the task level over the course of generations.
The mutation rate for random recombination is 5 % over all generations. The
mutation rate for self-recombination is zero during all runs. This mean that no
operator uses the possibility to mutate an individual even though it could. The
mutation rate in each run starts at about zero. This can be an indication that
mutation becomes more important during the evolution. An interesting aspect is
that, although smart and meta-recombination result in different mutation rates,
the I-O diversity of the individuals is rather the same.

7 Summary and Outlook

We haver investigated a system which used smart and meta-recombination to
find a better recombination scheme. We have shown that it is possible to create
a GP system which does not use a fixed recombination operator, and that such
a system can create individuals with better fitness.

The most significant results are: GP programs can be used to perform a
crossover operation. In our test case self recombination at the level of smart
operators does not work well. Self recombination at the level of meta operator
works. Smart and meta-recombination could find a recombination scheme which
is better than random recombination. To say whether these are general phenom-
ena more experiments have to be run on a varity of test cases. We are currently
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Fig. 6. Average mutation rate at the task level with smart and meta recombi-
nation. The mutation rate during self-recombination is zero in all runs.

testing meta-evolution with different representation and different levels by using
the SYSGP system [BDKB98].

Meta-evolution has long been applied in evolutionary algorithms [Sch77],
[Bäc97]. For example, in evolution strategies (ES) [Sch96] parameters are used
which determine the variance and covariance of a generalized n-dimensional nor-
mal distribution for mutations. The strategy parameters themselves are adapted
during the optimization process. Only the operators used for adaptation are
fixed. In our system, the variation of an object on the meta level alters the
way how other objects on the meta level are modified, because the object will
subsequently interact with others. This “strange loop” and the relation of self-
adaption in classical evolutionary algorithms to self-modifying programs should
also be investigated in the future.
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