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Abstract. Two prominent genetic programming approaches are the graph-based 
Cartesian Genetic Programming (CGP) and Linear Genetic Programming (LGP).  
Recently, a formal algorithm for constructing a directed acyclic graph (DAG) 
from a classical LGP instruction sequence has been established.  Given graph-
based LGP and traditional CGP, this paper investigates the similarities and 
differences between the two implementations, and establishes that the significant 
difference between them is each algorithm’s means of restricting inter-
connectivity of nodes.  The work then goes on to compare the performance of two 
representations each (with varied connectivity) of LGP and CGP to a directed 
cyclic graph (DCG) GP with no connectivity restrictions on a medical 
classification and regression benchmark.   
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1   Introduction 

Genetic programming implementations have been proposed that evolve populations of 
individuals that are constructed as graphs.  Two prominent options in the literature 
that model GP individuals in this way are Cartesian Genetic Programming (CGP) [1-
3] and Linear Genetic Programming (LGP) formulated as a graph structure.  LGP in 
graph form was first presented in [4, 5], with the algorithm for the conversion of 
imperative instructions to graph  formally stated in [6].  The goal of this work was to 
definitively determine the differences and similarities between CGP and LGP.  The 
comparison motivated an obvious new representation to compare connectivity of the 
implementations: a directed, cyclic graph (DCG) version of CGP, which is subse-
quently empirically compared to the original LGP and CGP representations on two 
types of benchmark problems.  The DCG alternative in this paper is simply referred to 
as “DCG” and is the CGP implementation with the input nodes allowing cycles in the 
graph.  That is, there is simply no restriction on the permitted input nodes: the inputs 
for a given node may refer to other nodes that occur further “ahead” in the graph, or 
permit the node to reference itself.  Many other more or less elaborate DCG 
implementations have been introduced in the past, often with the aim of relaxing the 
restriction of using only feed-forward connectivity to adapt the graphs to real world 
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applications.  The aim of this paper, rather than to survey graph-based GP approaches, 
is to investigate the fundamental difference between traditional forms of LGP and 
CGP, and their restrictions in connectivity.   

The following section describes the Cartesian Genetic Programming (CGP) 
implementation and the components of its representation, with Section 3 describing 
the implementation and representation of Linear Genetic Programming (in its graph 
form) in a similar vein.  Section 4 compares CGP and LGP implementations to 
determine their fundamental differences and similarities.  Section 5 applies CGP and 
LGP, each with two parameterizations with differing connectivity constraints, and an 
unrestricted connectivity DCG, to a classification and regression benchmark. 

2   Cartesian Genetic Programming 

Cartesian genetic programming (CGP) represents phenotypes of individuals as a grid 
of nodes addressable in a Cartesian coordinate system.  Formally, a Cartesian 
program is defined by Miller in [3] as the set {G, ni, no, nn, F, nf, nr, nc, l} where G is 
the genotype that is a set of integers to be described, ni is the indexed program inputs, 
nn is the node input connections for each node, and no is program output connections.  
The set F represents the nf functions of the nodes, and nr, nc are the number of nodes 
in a row and column, respectively.  The levels back parameter, l, indicates how many 
previous columns of cells have their outputs connected to a node in the current 
column (with primary inputs treated as node outputs).  Program inputs are permitted 
to connect to any node input, but nodes in the same column are not allowed to be 
connected to each other.  Any node can be either connected or disconnected.  See 
Figure 1 for a diagram of a typical CGP graph.   

A graph of the individual consists of a string of integers specifying, firstly, nn 
inputs and one internal function for each node, and lastly the no program outputs.  The 
CGP genotype thus takes the form of the string of integers 

C0, f0; C1, f1;…;Ccr-1, fcr-1;O1, O2, …,Om                               (1) 

where Ci indicates the points to which the inputs of the node are connected, and each 
node is given an associated user-defined function fi.  It is possible to have a list 
composed of functions with different arities by setting the node arity to be the 
maximum arity present in the function list and allowing nodes that require fewer 
inputs to simply ignore the extra inputs.  Node 0, described by C0, f0, always has an 
output label that is one greater than the number of program inputs (denoted n in 
Figure 1). There are also m output genes Oi corresponding to the m program outputs. 

In principle, CGP is capable of representing directed multigraphs but has only been 
used thus far to represent directed acyclic graphs (DAGs).  If CGP only encodes 
DAGs, then the set of possible alleles for Ci are restricted so nodes can only have their 
inputs connected to either program nodes from a previous (left) column or program 
inputs.  (In other words, they have “feed-forward” connectivity.)  As stated by Miller  
 



184 G. Wilson and W. Banzhaf 

and Smith [2], in many actual CGP implementations the number of rows (r) is set to 
one, and thus the number of columns (c) is the maximum allowed number of nodes.  
The levels-back parameter (l) can thus be chosen to be any integer from one to the 
number of nodes in the graph (n).   The output genes are also unnecessary if the 
program outputs are taken from the m rightmost consecutive nodes when only one 
row is used.  The generic form of CGP is presented in Figure 1 (left), along with 
typical practical restrictions (right). 

 

Fig. 1. The generic (left) and typical (right) CGP representations where fi is a member of the 
function set, n is the number of inputs, m is the number of outputs, c is the number of columns, 
and r is the number of rows  

To relate CGP in practice to CGP as originally defined in [3], we recall that a CGP 
program is formally defined by  

{G, ni, no, nn, F, nf, nr, nc, l}                                            (2) 

For simplicity, since we are interested in the final graphical representation of a 
CGP individual, we can eliminate G (the integer representation of the graphical 
elements no, nn which is redundant for the purposes of representing only the 
components of a CGP graph) and F (the set of user-defined functions that will be 
represented as nodes) that are not themselves components of the graph.  The CGP 
graph is now represented  

{ ni, no, nn, nf, nr, nc, l}                                                 (3) 

In practice, the no program outputs need not be used in a graph representation [2].  
Instead, recall that some m < c rightmost consecutive nodes for c columns provide 
outputs when one row is used.  This eliminates the need of the no variable in the graph 
representation.  Also, when the number of rows is set to one, the number of nodes in a  
 



 A Comparison of Cartesian Genetic Programming and Linear Genetic Programming 185 

 
column nc will always be one and it is necessarily the case that nr = c (where c is the 
number of columns = number of internal nodes).  Finally, the levels back parameter is 
often set to be the number of columns, c (as in [2]) to allow a given node to connect to 
any previous node, but l can be set to any integer k, k < c.  Making appropriate 
substitutions, this gives us the typical graph representation of  

 

{ ni, 0, nn, nf, 1, c, l}                                                  (4) 

3   Graph Representation of Linear Genetic Programming (LGP) 

In linear genetic programming (LGP), the genotype individuals have the form of a linear 
list of instructions as a binary string [6].  This binary string may in turn be interpreted or 
represented as a set of integers, just as in CGP genotype representations.  Program 
execution is that of a simple register machine (Von Neumann computer), and 
instructions are made up of opcodes and operands (providing linear forms of Functional 
and Terminal sets, respectively).  As the program executes, it alters the contents of the 
internal registers (or stack) and solution register(s). 

When the bit strings are interpreted, they correspond to members of the Functional 
(and sometimes Terminal) sets to produce a phenotype solution.  For instance, the 
binary sequence “011” in the individual’s genotype could be interpreted as the 
functional set member “addition” in the phenotype.  The immediately following bits 
often refer to destination and source registers, if registers are used as opposed to a 
stack.  The phenotype is then evaluated to determine the corresponding fitness.  The 
structure of a linear GP individual is depicted below in Figure 3.   

The instruction sequence (imperative) view of a linear program can be transformed 
into an equivalent functional representation in the form of a directed acyclic graph 
(DAG).  This is simply an alternate way of representing the linear program and 
registers.  The directed nature of the graph better enables the deciphering of 
functional dependencies and execution flow during interpretation of the instructions.  
For details of the formal algorithm to convert LGP to a DAG, the reader is referred to 
[6].  The application of the algorithm to imperative instructions produces a DAG such 
that the number of inner nodes always equals the number of imperative instructions.  
Each of these inner nodes includes an operator, and has as many incoming edges as 
there are operands for that operator in the corresponding imperative instruction.  Sink 
nodes have no outgoing edges and are labeled as registers or constants.  While the 
nodes in [6] are labeled with only operators, the nodes are plotted as unique nodes in 
virtue of target register and operator at a particular execution point.  The maximum 
number of sink nodes is thus the total number of registers and constants in the 
terminal set.  Upon completion of the DAG, the sinks represent input variables of the 
program.  Constant sinks and inputs may be pointed to from every program position.  
An LGP program in the form of binary genotype, interpreted program, and graph 
structure is shown in Figure 2 below. 
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Fig. 2. Representations of a LGP individual 

4   Comparison of CGP and LGP Representations 

We must now determine whether or not LGP and CGP graphs are similar 
representations, and if they are, what is the nature of that similarity?  In the case of 
both graphs, each unique node is identified by a function and the nodes from which 
input to the function is received.  Again, in both cases, inputs for a given inner node 
can only be received from nodes or variable/constant sinks (inputs for CGP) that have 
already been established in the graph.  The semantic representation of the nodes is 
thus relevantly similar between the two representations. 

Using the seven-tuple {ni, no, nn, nf, nr, nc, l} representation of CGP, how would 
LGP be formulated?  In LGP, the constant and variable sinks are effectively program 
inputs, ni.  By specifying the output to be the content of an LGP register at the finish 
of imperative instruction execution, no is set to 0 as in common CGP practice.  That 
is, there are no special output nodes in either CGP or LGP.  There are a given number 
of internal nodes in LGP specified by input connections and functions; let us specify 
these as nn just as in CGP implementations.  There is also a function set consisting of 
nf functions.  As in the most common CGP implementations, there is no notion of 
separate rows and columns in LGP, so there are nc = c and nr = 1 nodes in an LGP 
graph.  If nodes are capable of being connected to any previous node in LGP (as is 
typical in CGP), then l = c.  However, the usual in LGP (as presented in [6]) is that a 
given node can only connect to the particular nodes in the previous layers that last 
used the registers specified by the function in the current node.   

Given the considerations thus far in this section, the tuple representing a LGP graph 
contains the same representative elements as typical CGP (Eq. 4), with the exception 
that nodes in LGP graphs take input from previous nodes that last used the registers 
the current node requires as inputs.  Thus, the levels-back parameter (l) of the tuple is 
not relevant to LGP graphs, giving the tuple where l is not applicable (n/a):   
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{ ni, 0, nn, nf, 1, c, n/a}     (5) 
 

The representation elements of typical LGP and typical CGP in practice really only 
differ in the parameter of the number of levels back.  (Compare Eq. 4 and Eq. 5.)  In a 
practical sense, this means that there are different restrictions on how a given inner 
(function) node in the two implementations can refer to incoming nodes.  The 
interconnectivity of the LGP graph is thus constrained in an implicit way, as opposed 
explicitly specifying the levels-back parameter in CGP. 

In terms of genotype representation, a CGP genotype is a series of pairs 
representing nodes.  Each pair consists of a set of points to which the inputs of the 
node are connected, and the function for the node.  Upon listing the connections and 
functions for all nodes, the nodes from which the output(s) are to be taken are 
specified in the genotype (see Section 2), or they may simply be specified as some 
number of last nodes in the graph as a parameter outside the genotype.  This is largely 
a design decision, but the specification of output nodes may or may not be under 
control of evolution as part of the genotype in CGP.  In contrast, an LGP implement-
tation typically chooses particular register(s) in which the output is to be found, and 
the output registers are not listed in the genome.  As mentioned previously, the output 
nodes are typically taken to be the last layer of graph nodes in CGP, so output nodes 
are effectively left out of the CGP genotype in modern representations (making the 
genotype similar to LGP in that the nodes specified for output are not part of the 
genotype).  In the case of both LGP and CGP, one can also have a number of outputs 
from the registers or nodes, respectively.   

An LGP individual’s genotype is a list of imperative instructions.  Each line 
represents a function and has some associated registers and a destination register.  
Using the algorithm of Brameier and Banzhaf, though, the genotype representation 
can be converted to a graph, which can alternately be described as a listing of nodes 
including function and input edges.  A node is made unique in virtue of three 
components: source register(s) (or source data) and destination register, function, and 
when it is executed in the program (placed in the graph).  The source register(s) or 
source data effectively indicate nodes to which the incoming edges are connected 
because the last nodes having used the source registers of the current node as their 
target register (or simply the specified input data from variable or sink nodes) will be 
connected to the incoming edges.  The destination register serves to reference the 
output edge of the node because the next future nodes to reference the current node’s 
destination register as source registers will form an incoming edge from the current 
node. The final value in the register(s) of interest at the end of execution in LGP are 
the output value(s) in LGP, and they are the last instances of the nodes labeled with 
the relevant registers in an LGP graph.  Note that this has the same effect as choosing 
a particular node (or nodes) as the output in CGP, which is what is done typically in 
current implementations.  Also, nodes are actually labeled with only the instruction 
operator, and the target register can be added to the node label for clarity but is 
generally used as a temporary variable to plot the LGP graph (see [6]).  In this work, 
the target registers are included on the node labels for clarity of interpretation, but 
they are generally left out the of the final plot (as in [6]).      
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Functions are encoded in the same way in both CGP and graph LGP.  Collectively, 
the components of a single instruction in an LGP genotype correspond to a node that 
is a unique imperative instruction.  The only difference in the encoding of the LGP 
and CGP graph is that there is an explicit identification of the node for future 
outgoing edges that is encoded in the genome in LGP (in virtue of the instruction’s 
target register), whereas in CGP the nodes are just sequentially ordered as they appear 
and not encoded as part of the genome.  This means that the encoding of the genome 
restricts what previous nodes get connected to a node in a current layer in graph LGP. 
In contrast, in CGP that restriction is handled by specifying the levels back (l) 
parameter, and it is not explicitly coded in the genome.  Thus, in LGP the 
connectivity of the nodes is under evolutionary control since it is part of the genome, 
but in CGP it is specified a priori as a design parameter.      

The characteristics of the elements required for graph representation and the 
genotype structures of CGP and LGP dictate their graphs will be similar (Eq. 4 and 
Eq. 5).  Consider the common CGP using one row and the LGP graph for programs of 
single non-conditional, non-branching imperative instructions.  Typically, these 
graphs will both involve two inputs per node if Boolean functions such as AND, 
NAND, OR, and NOR as are typically used in circuit board design are used.  
However, in both CGP and LGP graphs, the nodes may accept varying numbers of 
input edges depending on the maximum required by the function with the most 
arguments in the function set.  Furthermore, both graphs are directed, with data only 
flowing in the direction from input nodes/sinks to output nodes.  In other words, 
programs are restricted such that nodes only have their inputs connected to the 
program inputs or nodes from a previous column; edges only point in the general 
direction of the output.  To summarize, both CGP and DGP are represented as DAGs 
with each node capable of any number of input edges.  The only difference between 
CGP and DGP graphs is the restriction on how the input edges are assigned to a node 
(as discussed in the previous section).  Thus, given an unlabelled DAG with arbitrary 
node layout generated by either GP variant, the user could not readily distinguish 
between the two without further information, namely the design parameterization of 
the CGP tuple {ni, no, nn, nf, nr, nc, l} and the number of registers used in the LGP 
algorithm.  See Table 1 below for a summary of the comparison of LGP and CGP 
graph representations. 

Table 1.  Comparison of representation components of CGP and LGP (differences in bold) 

 CGP Graph Graph LGP 
Tuple  { ni, 0, nn, nf, 1, c, l} { ni, 0, nn, nf, 1, c, n/a} 
Genotype Integer or binary string Integer or binary string 
Graph Type DAG DAG 
Node content Function Function 
Connectivity  Restricted by levels-back 

(not under evolutionary control) 
Restricted by usage of target 
registers (evolutionary control) 

Incoming edges Maximum required by function set Maximum required by function set 
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5   Comparison of Graph-Based Genetic Programming Techniques 
on Classification and Regression Benchmarks 

In previous sections, the representation elements and their implications for the 
functionality of the CGP and LGP graph types was discussed.  The main difference 
between LGP and CGP was the mechanism used to restrict the allowed input edges to 
a given node, including whether or not the edges are under evolutionary control.  To 
provide contrast to, and determine the practical value of, the connectivity restrictions 
of CGP and LGP, we introduce a new graph type called simply “DCG” for “directed 
cyclic graph.”  This new graph type follows the CGP representation, only that each 
node can accept inputs from any node in the graph.  This means that there is no 
restriction of data flow to only feed-forward connectivity, cycles are permitted, and 
the levels back parameter is not relevant.  LGP graphs can also permit cycles, but the 
corresponding imperative LGP programs would have to involve jump statements.  
Such considerations are beyond the scope of this work, as the LGP would no longer 
conform to the current formal algorithm in [6] which  is used here for the comparison 
of traditional CGP and graph LGP. 

Two implementations of CGP with varying connectivity are tried, with levels back 
being equal to the number of columns (nodes), or only 2.  In LGP, two progressively 
constricting instruction forms are tried: 1 input and 2 input.  In the single input 
implementation, an instruction applies a function to data from a source register X and 
target register Y, replacing the data in that same target register Y.  In the two input 
implementation, an instruction applies a function to data from two source registers X 
and Y, placing the result in another target register Z.  In addition, the number of inner 
nodes in LGP graphs is determined by the nature of the instructions: Due to the use of 
registers in LGP, functions in nodes may draw their input(s) from registers or fitness 
cases.  If there is a larger number of fitness cases than registers (as in the 
classification benchmark), fewer bits are needed to specify one of four registers, but 
more bits are needed to load from one of the fitness case fields.  In the regression 
benchmark, there are fewer fitness case features than number of registers.  Whether or 
not to load from register or fitness case is determined by a binary flag.  Only the 
required number of bits is used to interpret a given instruction, resulting in individual-
dependent graph sizes.  The summary of the general parameterization of the 
implementations is given in Table 2. 

Table 2.  General parameterization of CGP, LGP, and DCG implementations 

Tournament Style Steady State, 4 individuals per round 
Population size  25 
Genotype structure 240 bit string, 4 registers (LGP) 
Graph structure  16 inner nodes + input nodes (CGP & DGP), 

determined by bit string (LGP) 
Genotype mutation point mutation, threshold = 0.9 

 
Here we compare the graph GPs’ empirical performance on a real world 

classification benchmark, namely the Heart Disease data that is part of the UCI 
Machine Learning Repository [7],  and the Mexican Hat regression benchmark as 
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described in [6].  Only mutation is used in these experiments, as crossover in CGP 
does not make intuitive sense.  Furthermore, mutation is appropriately restricted in 
CGP so that a given node can only refer to previous nodes in the graph according to 
the levels back parameter.  Naturally, mutation is unrestricted in LGP and DGP.  
Execution is carried out from inner start node to end node in CGP and DCG 
(execution sequence is already determined by order of instructions in LGP).  To allow 
data (other than default) placed in a node to be fed back through the network in DCG, 
multiple execution iterations over the inner nodes is required.  In DCG experiments, 
five iterations of the inner nodes are executed per fitness case.    

The medical database contains 303 instances (164 negative, 139 positive), each 
consisting of 13 attributes, with a 14th indicating positive or negative diagnosis.  Prior 
to trials, unknown values were replaced by the mean value of the relevant attribute 
and the positive or negative diagnosis was changed to ‘1’ or ‘0’, respectively.  The 
results use four-fold cross-validation to verify accuracy of the findings.  Each 
partition consisted of a unique 25% test set and 75% training set and retained the class 
distribution of the entire data set.  If the output of an individual was less than 0 on a 
fitness case, the case was classified as a negative diagnosis; otherwise the individual 
classified the case as positive.  The function set used was { +, *, -, /, SIN, COS, EXP, 
NATLOG }, protected as appropriate.  Fitness was defined simply as number of 
correct classifications, and training was conducted for 30 000 rounds.  The results are 
shown in Figure 2.  The median and spread shown in the boxplot correspond to the 
mean accuracy across the four unique test sets used in four-fold cross-validation over 
the 50 trials.  Each box indicates the lower quartile, median, and upper quartile 
values.  If the notches of two boxes do not overlap, the medians of the two groups 
differ at the 0.95 confidence interval.  Points represent outliers to whiskers of 1.5 
times the interquartile range.  A customized version of the popular Java-based Prefuse 
[8] framework was created a provide a means of visualizing the final graph topo-
logies, where the best trial in each implementation for the first partition are shown in 
Figure 3.   

 
Fig. 3. Boxplot of mean classification accuracy for the Cleveland Heart data set over 50 trials 
using four-fold cross-validation.  Each partition was 75% training, 25% test.   
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Fig. 4. Individuals corresponding to the best final solution for CGP (l = c), LGP (2 input), and 
DCG types for the best trial in a particular partition of the UCI Machine Learning Repository 
Heart Disease test set.  The node corresponding to final classification is the lower right-hand 
node in the CGP and DCG graphs, and the upper left node in LGP.  

 
Figure 2 indicates that the chosen DCG model (center) outperformed the more 

restrictive and traditional Cartesian GP implementations (two leftmost).  DCG was 
not outperformed by the more restrictive form of LGP (rightmost), with no 
statistically significant difference shown (note overlapping notches.)  The least 
restrictive LGP implementation did not perform as well as the other implementations 
(second from the right).  The additional freedom of data flow within the DCG graph 
due to the admission of cycles enhanced classification ability.  Furthermore, in all 
cases, the restriction of information flow within implementations of both CGP and 
LGP models led to decreased classification accuracy.  In figure 3, the directed edges 
in the DCG solution show that it clearly takes advantage of its freedom of 
connectivity and admission of cycles. 

The two- Mexican Hat problem as described in [6] is tested on the implementations 
to provide a regression benchmark.  The problem is named for the shape of the three-
dimensional plot of its function 

2 22 2 ( )
8 8

( , ) (1 )
4 4

x y

mexicanhat x y

x y
f e

− −
= − − ×                              (6) 

Following the parameterization of [6], 400 fitness cases were used, with the input 
range restricted to [-4.0, 4.0].  The function set consisted of {+, -, x, /, xy}, protected  
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Fig. 5. Boxplot of mean sum squared error for the Mexican Hat problem set over 50 trials 

 

Fig. 6. Individuals corresponding to the best final solution for CGP (l = c), LGP (2 input), and 
DCG types for the best trial for the Mexican Hat problem.  The node corresponding to final 
classification is the lower right node in CGP and DCG, and the upper left node in LGP. 

when needed, and tournaments ran for 1000 rounds.  Figure 4 shows the boxplot of 
the mean sum squared errors of the implementations for the Mexican Hat problem, 
with best final networks of CGP, DCG, and LGP shown in Figure 5. 

Given the regression benchmark (Figure 4), DCG clearly does not perform as well.  
It is also noteworthy that the unrestricted LGP has the greatest variability over all 
solutions.  Comparing classification and regression benchmark performance (Figures 
2 and 4), it is evident that less restricted connectivity (DCG and 2 source LGP) is not 
of benefit in this regression benchmark.  Furthermore, all CGP variants and the 
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restricted LGP variant perform best on the regression benchmark but worse on the 
classification.  This difference may be due to the freely connected nature of DCG 
allowing it to provide a more highly adapted configuration for classification of a 
complex problem.  In contrast, the definite answer in the regression problem, to be 
found within a lower number of tournament rounds, is hindered by the greater 
availability of configurations and cycles in the DCG.  In Figure 5, we see that this is 
the case where the best DCG incorporates extensive connectivity while processing 
only one input, whereas CGP does not maximize its available levels-back flexibility. 

6   Conclusions and Future Work 

This work establishes that the difference between graph-based LGP and CGP is the 
means with which they restrict the feed-forward connectivity of their DAG graphs.  In 
particular, CGP restricts connectivity based on the levels-back parameter while LGP’s 
connectivity is implicit and is under evolutionary control as a component of the 
genotype.  Unrestricted forms of LGP and CGP, and DCG, performed well on the real 
world medical classification benchmark, but the flexibility of the less restricted graph 
types did not allow them to perform as well on a regression benchmark.  In future 
work, we plan to explore GP-based search using DCGs in an industry-based real 
world application.  Possibilities for future investigation also include a DCG analogy 
of LGP graphs, and a closer examination of the relationship between performance of 
the representations and their connectivity characteristics and evolvability. 
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