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Abstract. We introduce a genetic programming (GP) approach for
evolving genetic networks that demonstrate desired dynamics when sim-
ulated as a discrete stochastic process. Our representation of genetic net-
works is based on a biochemical reaction model including key elements
such as transcription, translation and post-translational modifications.
The stochastic, reaction-based GP system is similar but not identical with
algorithmic chemistries. We evolved genetic networks with noisy oscilla-
tory dynamics. The results show the practicality of evolving particular dy-
namics in gene regulatory networks when modelled with intrinsic noise.

1 Introduction and Background

In recent years, there has been significant interest in synthetic biology and the
engineering of genetic circuits [1,2,3,4,5,6,7]. To this end, efforts have been made
to construct small constituent subnetworks or “modules” for general use in larger
genetic circuits [1,6]. Typically, synthetic genetic circuits [1] are either designed
by hand or by using the directed evolution paradigm in vivo [7]. This process
is both time–consuming and expensive. Alternatively, evolutionary approaches
in silico have shown that regulatory networks can be evolved to display cer-
tain dynamical characteristics (e .g. as bistable switches or oscillators) [5,8,9].
Essentially, these approaches differ in the specific formalism describing genetic
networks (e. g. piece–wise linear differential equations augmented by Boolean
functions [5], differential equations corresponding to deterministic rate equations
[8], artificial regulatory network model with dynamics derived from differential
equations [9]). In this contribution, we introduce a genetic programming (GP)
approach for evolving biochemical reaction networks based on simple enzyme
kinetics which demonstrate sustained (noisy) oscillations when simulated as dis-
crete stochastic models.

Stochasticity (or noise) is a fundamental phenomenon in many biological sys-
tems such as gene regulatory systems [10,11,12,13]. Although noise can adversely
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affect cell function, it is also considered a source of robustness and stability, signal
amplification, and selection of signalling pathways. Stochasticity originates from
the fact that the relative statistical uncertainty for the system state is inversely
proportional to the square root of the system size, i. e. the number of elements or
molecules. As a result, with smaller numbers of interacting molecules, fluctua-
tions become increasingly noticeable. Due to the uncertainty of knowing when a
reaction occurs and which reaction it might be, this form of stochasticity is also
called intrinsic stochasticity, as opposed to extrinsic stochasticity which results
from environmental effects. Here, only intrinsic stochasticity is considered.

In order to model intrinsic noise, we use the stochastic simulation algorithm
(SSA) of Gillespie [14]. The SSA represents a nonlinear discrete Markov process,
X(t), whose elements represent the number of molecules of molecular species in a
well-mixed system at time t (see Sec. 3). Since the dynamical behaviour of chem-
ical systems can be very different in the ODE regime (where we deal with very
large numbers of molecules neglecting the stochastic nature of their interactions)
from the SSA regime, it is important to see how certain dynamical behaviour can
evolve when there are only small numbers of certain key molecules. By taking
this stochastic nature into account, this can be considered to be a more realis-
tic scenario. Examples of different dynamical behaviours between deterministic
continuous and stochastic discrete versions of a model can be found in [6,15].
Specifically, the deterministic model of blood testosterone levels in [15] shows a
globally stable fixed point while its discrete stochastic counterpart shows sus-
tained oscillations. The repressilator designed in [6] behaves in an oscillatory
fashion in both regimes. However, stochastic simulations of this system exhibit
large variabilities in oscillations. These and other studies confirm the relevance
of considering stochasticity in modelling and analysis of biochemical systems.

In this contribution genetic networks are modelled as reaction systems. The
underlying model is explained in the following section.

2 The Reaction Model

In this reaction model inspired by the work of François and Hakim [8], a genetic
network is defined by a set of species (genes, mRNAs, proteins and complexes
such as gene-protein bindings or protein complexes) and elementary, irreversible
chemical reactions (first–order reactions, second–order reactions and homodimer
formations) governing their interactions. That is, each reaction has associated
reaction substrates, products and the specific rate constant. One or more elemen-
tary reactions are combined in master reactions which constitute the building
blocks of the genetic network and correspond to biologically meaningful processes
(cf. Table 1). The following seven biological (master) reactions are modelled:

1. Transcription and translation: a new gene, its mRNA, and the corresponding
protein are added to the genetic network model. Elementary reactions for
the basal transcription, translation, mRNA degradation, and protein degra-
dation are generated. Unlike the reaction model in [8], transcription and
translation are modelled as separate reactions.
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Table 1. Set of master reactions that are the building blocks of the genetic networks.
Lowercase letters followed by two underscores, such as a , represent genes with un-
bound regulatory sites. The corresponding mRNA is indicated such as in amRNA. The
associated capitalized letters (A,B, etc.) represent the proteins produced by the asso-
ciated genes. Protein complexes are represented using colons (i.e. a protein complex
composed of proteins A and B is represented by A:B). When a promoter P is bound
to an unbound gene a the binding is denoted aP . The case of a repressor R bound
to aP is denoted as aPR. Each reaction is specified by a reaction rate constant that
is ignored in this representation.

No. Master Reaction Single Reactions
1 Transcription a → a + amRNA

and translation amRNA → amRNA + A
amRNA → ∅

A → ∅
2 Regulation a + P → aP

aP → a + P
aP → aP + amRNA

aP + R → aPR
aPR → aP + R

3 Protein modification A → A∗

A∗ → ∅
4 Dimerization A + B → A:B

A:B → A + B

5 Partial degradation A:B → A

6 Catalytic degradation A + B → A

7 Partial cat. degradation AB + C → A

2. Regulation: transcriptional regulation is based on Goutsias’ simplified model
of transcriptional regulation of the bacteriophage λ repressor protein [16].
Each gene has two regulatory binding sites, R1 and R2. Binding of a tran-
scription factor at R1 activates transcription for every non-zero reaction rate,
whereas binding at R2 excludes any transcriptional activity and hence, re-
presses transcription. In addition, binding of a transcription factor at R2
requires R1 to be occupied by another factor.

3. Protein modification: a single protein or protein complex reacts leading to
an altered version of the original species (e.g. phosphorylation).

4. Dimerization: two proteins / protein complexes form a compound product.
5. Partial degradation: a protein complex degrades such that a constituent

protein is the degradation product.
6. Catalytic degradation: one protein / protein complex catalyses degradation

of another protein / protein complex.
7. Partial catalytic degradation: in the case of protein complexes, this reaction

is a catalytic degradation where one of the proteins (or sub–complexes) being
part of the complex is also the reaction product.
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3 Stochastic Simulation

To analyse and evaluate the dynamics of regulatory networks given in the reac-
tion model described above, we use Gillespie’s stochastic simulation algorithm
[14]. This is a method for exact simulation of biochemical systems that are as-
sumed to be homogeneous and well-mixed within a constant volume.

In the following we briefly describe the functioning of the SSA according to
[17]: Let the biochemical system consist of N ≥ 1 molecular species {S1, . . . , SN}
that chemically interact through M ≥ 1 reaction channels {R1, . . . , RM}. The
system state at time t is described by a vector X(t) ≡ (X1(t), . . . , XN (t))T

where Xi(t) is the number of molecules of species i at time t. Let X(t0) = X0
be the initial state. For each j = 1, . . . , M we can define the propensity function
aj for reaction Rj such that aj(X)dt is the probability that given X(t) = X ,
one reaction Rj will occur somewhere in the system in the next infinitesimal
time interval [t, t + dt). The state-change or stoichiometric vector νj specifies
the update of the system state when reaction Rj occurred. This is defined by νji

for i = 1, . . . , M , which is the change in the number of Si molecules produced
by one Rj reaction. Our SSA implementation simulates the time evolution of a
system according to the direct method : two independent samples r1 and r2 of
the uniform random variable U(0, 1) are drawn consecutively. The length of the
time interval [t, t + τ) is given by

τ =
1

a0(X(t))
ln(

1
r1

) ,

where

a0(X(t)) =
M∑

j=1

aj(X(t))

is the sum of all propensities. The specific reaction Rj occurring in [t, t + τ) is
determined by the index j satisfying

j−1∑

j′=1

aj′(X(t)) < r2a0(X(t)) ≤
j∑

j′=1

aj′ (X(t)) .

Table 2 specifies the propensity functions and non-zero entries of the state-
change vectors for the three elementary reaction types: the first and second order
reaction and homodimer formation (cf. Sec. 2). As the SSA becomes computa-
tionally intensive for systems with a large number of reaction channels and/or
fast reactions due to large reaction rates and/or large numbers of molecules,
we limit our model to small numbers of species with small population size. In
fact, we keep the number of genes/mRNA/protein creations fixed and limit the
number of reactions creating new species. In addition, in order to avoid “unend-
ing” calculations, the algorithm stops simulation if the reciprocal value of the
summed propensities (a0) falls below a predefined threshold (e. g. 10−8). Meth-
ods to accelerate the SSA while maintaining a reasonable accuracy such as the
τ -leap method, the midpoint-τ -leap method [17] or binomial leap methods [18]
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Table 2. For the three types of elementary reactions we determine the propensity
functions and non-zero entries of the state-change vectors for the present state X(t) =
X. cj is the reaction rate constant of the respective reaction.

Reaction Propensity Function Stoichiometric Coefficients
First order reaction
Sk

cj→ Sl aj = cj ∗ Xk νjk = −1, νjl = 1
Second order reaction
Sk + Sl

cj→ Sm aj = cj ∗ Xk ∗ Xl νjk = νjl = −1, νjm = 1
with Sk �= Sl

Homodimer formation
Sk + Sk

cj→ Sl aj = cj ∗ Xk ∗ (Xk − 1)/2 νjk = −2, νjl = 1

are not used as they allow all the reaction channels to fire within each time step
with a certain frequency.

4 The GP System

Here we use a GP–based algorithm to evolve genetic networks that obtain sus-
tained oscillations in an arbitrarily chosen protein or mRNA. Typical GP algo-
rithms use tree–based encodings [19,20]. This allows an individual solution to
be parsed into an equation where order of operations is important. However,
this encoding is inappropriate for this application since the order in which reac-
tions are triggered is chosen randomly. Instead, we choose a set–based encoding
scheme where each individual is represented by a set of biochemical reactions.
This reaction- or set-based GP approach is very similar (but not equivalent) to a
GP-approach based on algorithmic chemistries [21] which, unlike our approach
acts on instruction multisets and aims to create functioning algorithms.

Each individual initially starts with two gene (+ mRNA + protein) creation
reactions (reaction 1) and three other master reactions. This is not essential
for evolution but complies with our intention of studying small regulatory sys-
tems consisting of two genes. The individual master reactions (2 to 7) listed in
Section 2 are added to an individual through subsequent mutation steps. Re-
actions of type 1 cannot be added to genetic circuits during evolution. When
a reaction is added to the network this may introduce a new product. There-
fore, its list of species, i. e. proteins and bindings, is updated. Reaction rates
are uniformly drawn between 0 and 1 and reactants are randomly chosen from
the list of suitable reactants while avoiding the generation of duplicate reac-
tions. Other mutation operations involve deletions of reactions and modification
of reaction rates. The deletion of a reaction eventually includes the deletion
of the product introduced by this reaction and of all other reactions using the
product as a substrate. Reaction rates are modified by multiplication with a ran-
dom number from U [0, 2]. At the beginning of each evolutionary run, the initial
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concentrations of proteins and protein complexes are randomly chosen from
{1, 2, . . . , 10} and remain fixed for the entire evolution.

Recognizing sustained oscillations from noisy signals is the crucial point in our
evolution. The individual’s fitness is calculated by simulating the corresponding
reaction system over a predefined simulation time using the SSA. In a second
step, the resulting trajectory of length N for a specified species is assessed accord-
ing to its oscillatory behaviour. This is accomplished by applying the Fast Fourier
Transform. A rather simple and coarse indicator for oscillatory behaviour is the
ratio of the summed magnitude over the first N/2 + 1 Fourier values, Msum, to
the maximum magnitude within a predefined frequency range (e. g. 1/N . . . 1/4),
Mmax. In summary, the fitness value is calculated as 1−Mmax/Msum +1/Mmax.

Stochasticity in the outcome of the fitness evaluation is a problem that must
be dealt with: a trajectory (resulting from an SSA run) may show a certain
behaviour but another simulation may be different due to the different stochas-
tic path. To get a reliable result we perform several simulations. Calculating an
“average” trajectory from the resulting single trajectories and performing fitness
evaluation on this mean behaviour would be misleading since the average tra-
jectory might not match any single trajectory. Therefore, we calculate the mean
fitness over all SSA runs.

The selection method driving evolutionary dynamics is a simple (µ+µ) strat-
egy: each individual generates one offspring by performing two mutations on its
own copy; the best µ out of 2µ individuals build the new generation. The gener-
ational GP algorithm is implemented as a synchronous parallel GP using MPI
(message passing interface). Evolution is terminated if the number of generations
without fitness improvement exceeds a certain threshold. Table 3 lists the most
important parameters and their values used in evolutionary runs.

Table 3. These are some exemplary parameter settings of our GP system. With these
settings we evolved the genetic network shown in Fig. 1.

Parameter Value
no. of SSA runs (for each individual) 20
length of (SSA) simulation (in time units) 2048
GP termination threshold (in generations) 100
population size 100

max. no. of master reactions:
gene/mRNA/protein creation 2
regulation 2
protein modification 2
dimerization 3
partial degradation 2
catalytic degradation 2
partial catalytic degradation 2

mutation probabilities:
add reaction 0.1
delete reaction 0.1
modify rate constant 0.5



296 A. Leier et al.

5 Preliminary Results

Here we present two evolved genetic networks showing noisy oscillatory dynam-
ics. They are good representatives of other evolved networks featuring noisy
oscillatory behaviour resulting from a total of 50 GP runs. So far, we have not
focused on the performance of the evolution itself. However, the evolved so-
lutions were usually generated in the first 150 generations. Figure 1(a) shows
a regulatory genetic network that utilizes the regulation (master) reaction (cf.
Table 1). This exerts negative feedback on the transcription and translation of
gene a whenever protein A binds to the regulatory site R2, thus repressing the
transcription activated by the binding of dimer AB at R1. The Figures 2(a) and
2(b) show the resulting dynamics for a single simulation run.

A second genetic regulatory network is depicted in Figure 1(b). This network
generates a less regular form of oscillation in the concentration of protein A

gene a R2 R1

gene b R’2 R’1

a mRNA
A

B
b mRNA

AB

ABBdimerization

part. deg.

degradation

c1

c2

c3 c4

c5

c6

c7 c8

c9

c10

c11

c17

c18

c15

c16

c14
(un-)bindingc12activated

c13

unbound

c1 = 0.218725
c2 = 0.646742
c3 = 0.0098604
c4 = 0.00946732
c5 = 0.122687
c6 = 0.0720581
c7 = 0.344586
c8 = 0.331173
c9 = 0.000502236
c10 = 1.47869
c11 = 0.525822
c12 = 0.513653
c13 = 0.00414018
c14 = 1.20288
c15 = 0.0980475
c16 = 0.382358
c17 = 0.155033
c18 = 1.51887

(a)
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a mRNA
A

B
b mRNA
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ABB
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AABB
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degradation
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catalytic
degradation

B

c1

c2

c3 c4

c5

c6

c7 c8

c9

c10

c11

c12 c13

c15 c16

c14

c1 = 1.01985
c2 = 0.419244
c3 = 0.715735
c4 = 0.00133085
c5 = 0.0215976
c6 = 0.220316
c7 = 0.830314
c8 = 0.0374827
c9 = 1.81543
c10 = 0.003538
c11 = 0.886563
c12 = 0.065298
c13 = 0.377113
c14 = 0.109441
c15 = 0.450453
c16 = 0.58711

(b)

Fig. 1. Schematic representation of two evolved genetic networks exhibiting noisy os-
cillatory dynamics. (a) A core element in this genetic network that shows a regular,
sustained oscillation in protein A concentration (cf. Fig. 2(a)) is the negative autoregu-
lation of gene a. (b) This network comes without the regulation reaction but still shows
some form of oscillatory dynamics in the concentrations of protein A (cf. Fig. 2(c)).
Apparently, post-translational modifications are sufficient for generating pulsed signals.
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Fig. 2. Simulation results showing the concentration dynamics of protein A and a

mRNA of the genetic regulatory networks in Figure 1(a) (a,b) and 1(b) (c,d)

(cf. Figure 2(c)). It does so without utilizing any direct regulation reactions (cf.
Table 1) but by solely using post-translational modifications. A similar network
based only on post-translational reactions that exhibits a sustained oscillation
in the ODE model was also reported in [8]. In this model, however, one protein
complex is constantly produced without being consumed. The Figures 2(c) and
2(d) depict the concentration dynamics of protein A and a mRNA. The dynamics
of protein A are controlled by only a few other molecules that occasionally
initiate the production of protein A. This leads to a short burst in the molecular
concentration that appears quite regular. Note that all evolved networks were
simulated several times to verify sustained oscillatory behaviour. Moreover, the
corresponding ODE models of the networks in Figure 1 do not show oscillatory
behaviour which underpins the necessity of stochastic simulation.

6 Discussions and Suggestions for Future Work

In this contribution, we present a GP approach for evolving genetic regulatory
networks. Unlike others evolutionary approaches [5,8] we model those networks
as sets of elementary reactions based on simple enzyme kinetics and simulate
the network using Gillespie’s exact SSA. We showed that evolution of noisy
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oscillatory dynamics in genetic regulatory networks is practical also in the dis-
crete, stochastic regime. The networks found in [8] and the ones presented here
show that post-translational modifications can be crucial to network function. As
such, network function in this model cannot be understood by focusing only on
transcriptional interactions. This is an important consideration for researchers
in the bioinformatics community since such post-translational interactions are
often omitted from such models.

In our simulations, the number of genes was fixed but can be changed to
evolve specific dynamical behaviour in larger networks. For evolving desired dy-
namics in the concentrations of several species, the fitness function must be
redesigned. Using our fitness function for detecting oscillatory behaviour in one
protein showed success. Evolutions with more sophisticated fitness functions are
worthy of future consideration. At this point, parameter settings are heuristics.
Changing such settings might accelerate evolution. In order to obtain a better
understanding of the solution space and our representation, explorations on the
fitness landscape should be performed.

We also plan to evolve genetic regulatory networks with other types of dy-
namics. Since bistable behaviour can be observed in many biological systems,
evolution of genetic toggle switches under intrinsic noise would be of particular
interest [22]. An additional step would be to consider time delays. By using delay-
SSA (DSSA), a modified SSA algorithm incorporating delay effects [23,24], we
can model natural behaviour of processes such as transcription and translation
in a more detailed manner since they do not occur instantaneously [25].

This contribution shows how methods from evolutionary computation can
be used to achieve improved models of genetic regulatory networks, a better
understanding of regulation in cells, the finding of functional design principles
and the search for novel genetic networks.
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